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Abstract—Calling Application Programming Interfaces (APIs)
shall follow various constraints such as call orders, condition
checking and exception handling. If they are incorrectly used,
API misuses are introduced to code, and such misuses can cause
severe bugs. To effectively detect API misuses, prior approaches
mine constraints from client code, and assume that the violations
of constraints are potential misuses. However, as client code only
occurs a small portion of API usages and projects often call
different APIs, constraints mined from client code are typically
incomplete. As a result, when mined constraints are used to detect
bugs, the real misuses which can be identified are limited and
their violations are often false positives.

Our research purpose is to find more misuses and reduce
false positives. To achieve this goal, in this paper, we propose an
approach that mines API constraints from both client and library.
From client code, our approach builds API usage graphs and
uses frequent subgraph mining algorithm to mine frequent usage
patterns as API constraints. From library code, our approach
analyzes the implementation of APIs and derives various types
of constraints with our inferring strategies. After constraints
are mined from both sources, they are integrated to detect API
misuses with a graph matching algorithm. We compared our
approach with MuDetect on its MuBench dataset. Our bi-source
approach takes advantage from both the comprehensiveness and
informativeness of library-based constraints and the accuracy of
client-based patterns. As a result, it significantly improves the
detection effectiveness of MuBench from 39.5% to 50.2% of the
recall, and from 30.6% to 41.7% of the precision.

Index Terms—API misuse detection, API usage pattern, API
constraint

I. INTRODUCTION

Recently, more and more software systems are built upon
third-party libraries and frameworks through their Application
Programming Interfaces (APIs) to reduce the development
cost [1]. When invoking APIs, programmers must follow their
constraints to avoid API-related bugs. For example, before
calling next() declared by the Iterator class, programmers
must ensure that hasNext() returns true. If it is not checked,
their code can throw NoSuchElementException. In this paper,
we call the violations of API constraints as API misuses. When
they occur, API misuses can cause programming errors, slow
down code, or even introduce security vulnerabilities [2]–[5].

To mitigate API misuses, static analysis tools have been
proposed to detect API misuses [3], [6]–[8]. Before a tool can
detect these misuses, users must define API constraints in the
form of the correct or incorrect usages of APIs. As there are
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so many APIs, it is tedious and often infeasible to manually
define API constraints for all APIs. To improve the detection
capability of their tools, researchers have proposed various
approaches to mine API constraints from different sources.

One of the most intensively studied sources is client code
(§II). Client code presents many instances of calling APIs.
From client code, the prior approaches either use dynamic
analysis to extract its traces [9]–[12], or use static analysis to
extract its API usages [2]. Then they employ machine learning
techniques [13] or frequent-itemset mining algorithms [6]–[8]
to learn their API constraints. The assumption is that an API
usage is likely a bug, if it is rare. Although this assumption
is useful to detect many bugs [14], researchers [2] criticize
that there are still many exceptions, and consequently these
approaches cause a low recall and precision to detect API
misuses. In addition, Zhong and Mei [15] show that it is
difficult to collect sufficient client code for mining, especially
for those newly released APIs and less popular APIs.

The other intensively studied source is API documents
(§II). API documents define many API constraints, but they
are often written in natural languages. To formalize those
constraints, researchers [16] typically adopt various natural
language processing techniques to analyze documents. However,
in many libraries, programmers are not willing to write high-
quality documents [17]. Consequently a lot of API constraints
cannot be inferred correctly from their documents [16].

The final source is library code (§II). Library code covers
all APIs, and presents their implementation details. Although
it is informative, it is difficult to analyze library code, due to
various technical limitations. As a result, the prior approaches
can only infer simple constraints, e.g., API call sets [18].

As each source has its own limitations, researchers start to
explore the combinations of multiple sources (§II). Among
them, a recent and interesting one is the combination of client
code and library code [19]. In this work, Saied and Sahraoui
combine the two sources to mine API call sets. For an API,
its call set defines the APIs that are often called with this API.
In practice, APIs have much more complicated usages than
call sets. In addition, Saied and Sahraoui have not evaluated
their approach to detect API misuses.

To further improve the prior approach [19], we propose a bi-
source approach that mines API constraints from both client and
library to detect API misuses. From client code, we extract API
usage graphs (AUGs) [20] and mine frequent usage patterns.
From library code, we analyze the implementation of each



API and infer various types of constraints such as conditions
checking, call order and exception handling. Then, we combine
the constraints from both sources, for taking advantage at the
same time from the accuracy of client-based patterns and
the comprehensiveness and informativeness of library-based
constraints (see §III for discussion). To obtain a rich set of
constraints, our combination algorithm merges the AUG sets
of both-side constraints, and then extends the constraint set by
generating more AUGs through modification. Our detector uses
both-side constraints to detect misuses such as missing call,
missing condition checking, and missing exception handling.
We have released our tool and dataset on Github: https://github.
com/subZHS/CL-Detector.

In summary, this paper makes the following contributions:
1) To the best of our knowledge, our approach is the first

static API misuse detector whose constraints are mined
from both client code and library code. With constraints
mined from client, our detector is unlikely to identify
correct usages as misuses, because they are mined from
usages appearing in real code. With constraints mined
from library, our detector can find more misuses violating
uncommon constraints and reduce wrongly identified
misuses with the comprehensiveness and informativeness
of constraints from library.

2) In total, we design three strategies based on prior stud-
ies [21], [22] and five new strategies to infer more com-
prehensive constraints from library code. Our constraints
contain fine semantic details, i.e. the precede/follow
type of call-orders and the alternative relations between
condition checking and exception handling.

3) We compared our approach with the state-of-the-art
detector MuDetect [20] on its benchmark MuBench [23].
The results show that our approach achieves 41.7% in
precision and 50.2% in recall. Both measures are better
than those of MuDetect (30.6% and 39.5%, respectively).

II. RELATED WORK

Researchers propose various approaches to mine API con-
straints from client code, library code, or API documents.

Mining from Client Code. Most of approaches mine API
constraints from client code, in the formats of unordered call
sets [24], call sequences [25] or precondtions [26]. There
are many tools for detecting API misuses [6]–[8], [20], [27]–
[33]. They leverage different types of API constraints mined
from client code, like unordered call sets [27]–[29], call
sequences [6], [8], [30], preconditions [31], [32], or program
dependency graphs [7], [20], [33]. When their constraints are
used to detect bugs, they assume that deviations/anomalies are
API misuses. However, as client code typically only occurs a
small portion of API usages [15], these approaches produce
many false positives [2].

Inferring from Document. Some approaches analyze API
documents using NLP techniques and adopt heuristic linguistic
patterns to infer specific type of API constraints like call
orders [34] or condition checking [35], [36]. A recent ap-
proach [37] detects API misuses using an API-constraint knowl-

edge graph constructed from API documentation. Although
detecting API misuses based on API documents are confirmed
to be effective [37], it is restricted by the limitation of API
documents. Sometimes API documents are not exhaustive or
updated in time to conform to API implementation code [36],
and their quality is usually not high [17].

Inferring from Library Code. Library code can explain
why certain API usage occurs. Hence API constraints inferred
from library are informative and have fine semantic details
to accurately detect misuses. The prior approaches which
infer API constraints from library code are based on dynamic
analysis [38], [39], symbolic execution [40], [41], or static
code analysis [18], [21], [22], [42]. However, as the task
of library code analysis is very challenging, existing static
approaches can only infer simple constraints, like unordered call
sets [18], call order [22], preconditions [42], or API parameter
constraints [21].

Inferring from Multiple Sources. Due to the limitation of
each source, researchers start to explore the combinations of
multiple sources. Zhong et al. [21] and Zhou et al. [42] mine
API parameter constraints from documents and library code.
Using these both-side constraints, Zhong et al. [21] conduct an
empirical study to investigate rule types and how these rules
distribute in both sources, while Zhou et al. [42] detect defects
of API documents inconsistent with library code. Saied and
Sahraoui [19] mine API call sets from both client code and
library code. API call sets define APIs that are often called
together, as one type of the common and simplest constraints.
They have not yet made an evaluation on any application.
Although the prior techniques only infer one type of API
constraints (e.g., parameter constraints [21], [42] and API call
sets [19]) and have not use the inferred constraints to detect API
misuses, the results still inspire us to mine richer constraints
from multiple sources for API misuse detection.

As a comparison, our approach mines richer types of API
constraints (condition checking, exception handling and call
order) from both client code and library code to detect API
misuses. Our combination algorithm efficiently merges both-
side constraints through AUGs, and generates new alternative
constraints. Using the resulting rich set of constraints, various
types of API misuses are detected with the higher precision and
recall, achieving the current state of the art. The effectiveness
of our approach is contributed significantly by both the
accuracy of client-based patterns and the comprehensiveness
and informativeness of library-based constraints.

III. MOTIVATING EXAMPLES

To improve the effectiveness of API misuse detection
approaches, we analyze the pros and cons of constraints mined
from client or library. We illustrate their limitations with some
typical examples, and discuss how our approach overcome the
limitations of prior approaches.

Comprehensiveness. Constraints mined from client code
lack comprehensiveness, as we can only mine part of API
constraints that occur frequently in client code. There are still
many exceptions which they cannot cover. For example, Figure
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Fig. 1: The Constraint of java.util.Iterator

(a) (b)

Fig. 2: The Constraint of java.io.PrintWriter

1(a) shows part of java.util.Iterator API’s implementation
in java.util.LinkedList class. Obviously, we should ensure
that hasNext() returns true before calling next() or directly
handle NoSuchElementException, and we should call next()
before calling remove() to avoid IllegalStateException

when lastReturned equals null. There are two call-order
constraints: hasNext()→next() and next()→remove(), which
can be represented as an AUG [20] like Figure 1(b) (§IV-A).
The first one frequently occurs in client code and can be mined
as a usage pattern, while Iterator.remove() is used less
frequently and the second one may not be extracted. Besides,
constraints mined from client code may be low-quality as their
quality is highly dependent on the quality of client project.
When there is not enough client code (e.g. newly released
libraries, less-popular APIs, or custom APIs within projects),
the corresponding constraints cannot be identified.

Our approach is a bi-source approach. Besides mining from
client code, it also infers API constraints from library code no
matter if APIs are frequently used or with enough client code,
thus leading to relatively more comprehensive constraints. For
Figure 1(a), we can infer hasNext()→next() by identifying
hasNext() in trigger condition of exception throwing statement
in next(). We can infer next()→remove() through tracking
lastReturned field and identifying its assignment in next()

and its nullcheck in exception trigger condition in remove().

Informativeness. Constraints mined from client code are
frequent usage patterns. They only represent the consequences
of satisfying constraints, but they cannot reflect how to satisfy
the constraints. Due to lack of sufficient information about con-
straints, it is possible to violate a pattern but satisfy correspond-
ing real constraint, resulting in the misjudgment of misuses.
For example, Figure 2(a) shows part of java.io.PrintWriter
API’s implementation. Empirically, the best practice is to call

(a) (b)

Fig. 3: The Constraint of java.io.FileInputStream/File

(a) (b)

Fig. 4: The Constraint of java.util.ArrayList

close() after calling write() to close the connection timely
and reduce resource overhead. When detecting misuses based
on a call-order pattern write()→close(), only calling close()

without calling write() will be wrongly regarded as misuses.
As the original source of constraints, library code has the

explainability of why certain API usage occurs. Compared with
patterns from client, constraints from library are informative and
have fine semantic details to accurately detect API misuses, like
precede/follow type of call-order and the alternative relations
between condition checking and exception handling.

There are two types of call-order constraints: precede
and follow. Our approach adopts different strategies to infer
different call-orders from library code. In Figure 2(a), we can
track the usage of out field and identify that the null assignment
of out in close() should be executed after the method call
on out in write(), which corresponds to a follow call-order:
write()

follow−−−−−→close(), which means calling write() should
be followed by calling close(). This is represented as an AUG
like Figure 2(b). In contrast, in Figure 1(a) there are precede
call-orders: hasNext() precede−−−−−→next()

precede−−−−−→remove().
Our approach can infer alternative relations of condition

checking and exception handling constraints from library code.
Client only needs to satisfy one of alternative constraints.
Detecting misuses without considering alternative relations may
lead to false positives [2]. For example, as we can handle the
exception or check exception triggering condition before calling,
from part of FileInputStream and File’s implementation in
Figure 3(a), we can infer the alternative relation of checking
file.exists() and handling FileNotFoundException when
calling FileInputStream(file). The AUGs are in Figure 3(b).

Accuracy. A constraint mined from client code (i.e., a
pattern) represents a correct usage that uses in a common way,
and reflects accurate usages. The instances of such constraints
are unlikely API misuses, since multiple pieces of real code
use APIs in their described ways. For example, from part
of ArrayList’s implementation in Figure 4(a), we can infer
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a condition checking constraint list.size()>index before
calling list.get(index), whose AUG is shown in Figure 4(b).
In actual usage, the common practice is checking condition
list.isEmpty() before calling list.get(0), which is another
way to satisfy the pre-condition of list.get() method.

In this sense, constraints inferred from library can lead to
false positive, since there are various ways to use APIs but
it is difficult to obtain all API usages from only library code.
The purpose of our approach is to take advantage of both
the comprehensiveness and informativeness of library-based
constraints and the accuracy of client-based patterns.

IV. OUR APPROACH

Figure 5 presents an overview of our approach, which
contains four main components: 1) C-Extractor mines from
client code (§IV-B); 2) L-Extractor infers from library code
(§IV-C); 3) CL-Intergrator combines the results from above
two components to produce API constraints (§IV-D), and
4) CL-Detector detects API misuses using above constraints
(§IV-E). Mined constraints are in the format of AUGs (§IV-A).

A. Graph Representation

Compared to call sequences [43] and precondition sets [31],
graphs are more informative to encode usage elements,
structures, and data dependencies [2]. Meanwhile, graphs
ignore some syntactical details and are less sensitive to local
contexts [44]. As a result, we employ API usage graphs (AUGs)
[20] to represent constraints. An AUG is a directed, connected
multi-graph with labelled nodes and edges. Nodes represent
data entities (objects, values, and literals) and usage actions
(method calls, operators and instructions). Edges represent
control and data flow between nodes, and are categorized into

eight types, including receiver, parameters, definitions, orders,
conditions, throws, handles, and synchronizes [20].

To represent API constraints more informatively, we modify
AUGs, i.e., adding a type attribute to each order edge to
denote precede/follow orders of method calls. For example,
the AUG in Figure 1(b) denotes the call-order constraints on
java.util.Iterator. Boxes and ovals in the figure correspond
to action nodes and data nodes. The “order[precede]” edge
means calling hasNext() before calling next(). In contrast,
the “order[follow]” edge in Figure 2(b) means calling close()

after calling write(). In Figure 3(b), the recv (receiver) edge
means the exist() method call is invoked on the File object,
and the para (parameter) edge means the FileInputStream()

constructor call takes the File object as a parameter. In Figure
4(b), the def (definition) edge means the method call size()
returns a value to the int data node. The sel (condition) edge
means the result of action <r> controls branching to the action
List.get(). <r> is used to denote all equality and relational
operators, and drop negation operators to abstract over different
ways to express conditions.

With AUGs, our approach has two benefits: efficiently
encoding API constraints from library and client, and accurately
detecting the API misuses by comparing AUGs of to-be-
checked code against AUGs of API constraints.

B. C-Extractor

After building AUGs from client code, C-Extractor mines
frequent subgraphs of AUGs as API constraints. The key idea
is that, the frequency of an API usage represents the certainty
regarding the correctness of the usage. We employ MuDetect
[20] to mine constraints from client code, which implements
an apriori-based algorithm of frequent-subgraph mining [45].

When mining constraints, C-Extractor starts from call nodes
of target APIs in AUGs, and then recursively extends to larger
AUGs while ensuring enough frequent occurrences. In the
extending process, it traverses all adjacent nodes of an AUG
subgraph and ignores those connected only with order edges,
since these nodes are irrelevant to usages of target APIs and
often correspond to project-specific code. For example, an AUG
subgraph, containing an order edge from a method-call node
hasNext() to another method-call node next(), frequently
occurs and will be mined as a call order constraint.

C. L-Extractor

For each target API, L-Extractor infers constraints from the
library code. Based on the prior research work [21], [22] and our
observations, we present eight strategies for inferring various
constraints such as condition checking, exception handling and
call orders. The inferring process requires four steps.

1) Determining analysis scopes: For each method, we first
determine the analysis scope for constraint mining. If the
method is declared by a class c, then the source code of c

is added to the scope. When c is a subclass of class s and c

overrides methods M of s, we add the unoverriden code (s - M)
to the analysis scope. This is based on our observation that
when programmers call methods from the instance of a class,



they can call the methods that are declared by its super classes.
For example, add() and remove() of javax.swing.JPanel

are declared in its super class java.awt.Container, but the
two methods are often call when the type of a variable is
javax.swing.JPanel. For abstract methods, we infer their
constraints from the implementations of their subclasses. For
example, as shown in Figure 1, we infer the constraints of
the interface java.util.Iterator through analyzing the im-
plementation of its subclass java.util.LinkedList$ListItr.

2) Inferring Condition Checking Constraints: Condition
checking constraints define that parameters of the method or
status of the object shall be checked before calling a method
on an object (e.g., nullchecks).

Strategy 1: Inferring from assert, requireNonNull

and annotations. We scan the abstract syntax trees (ASTs)
of target APIs’ implementation code to locate the state-
ments including assert keyword or the method call
Objects.requireNonNull(). We extract conditions following
the assert keyword as condition checking because they
must be satisfied. For example, in the File(String child,

File parent) constructor of the java.io.File class, an
assert statement checks the condition parent.path != null.
We extract null checks on parameters by identifying the
parameters of Objects.requireNonNull() methods. For ex-
ample, in the removeAll(Collection<?> c) method of the
java.util.ArrayList class, the parameter c is checked against
null through invoking Objects.requireNonNull(c).

We also analyze annotations like @param in Javadoc.
From sentences in @param or @throws annotations, we ex-
tract nullchecks on parameters by identifying keywords like
null or elements wrapped by <code> tags. For example,
in the File(String parent, String child) constructor of
java.io.File, we derive that child should not be null through
the sentence “NullPointerException If <code>child</code>
is <code>null</code>” in the @throws annotation.

Strategy 2: Inferring from trigger conditions of throw

statements. Based on the work of Zhong et al. [21], we infer
condition checking with the following two sub-steps. We first
identify all throw elements in target APIs’ implementation code.
Next, we extract trigger conditions of such throw statements
through traversing if conditional branch statements that wrap
them. For example, as shown in Figure 1, the condition
checking of hasNext() is inferred through locating the throw

statement of NoSuchElementException.
We then filter or convert the condition statements identified

from throw statements and assert statements. Some checked
conditions cannot be directly accessed from client code because
they have externally inaccessible elements (private fields,
private methods, or local variables). For private methods, we
replace them with public methods that invoke such private
methods and return the return value of corresponding private
methods. For example, as shown in Figure 3, the private
isInvalid() method is replaced with the public exists()

method. For private fields, we convert them into their public
getter methods if they exist. For a local variable, we attempt
to simply convert it into the last assignment. If failure or the

conditions still contain externally inaccessible elements, the
condition checkings will be filtered. The above translations
cannot be fully correct, but we make a trade off between the
recall and accuracy of detecting API misuses.

Strategy 3: Inferring from native methods. We manually
define the parameter constraints for some frequent native
methods, and those native methods are implemented in C
and hard to analyze directly. For example, when accessing
the value of an array (arr[index]), we should ensure that the
condition, index<arr.length, is satisfied.

Strategy 4: Propagating condition checking through
method calls. We propagate condition checking on parameters
through method calls. In particular, given the a parameter
of the m1 method and the b parameter of the m2 method,
the condition checking on b is propagated to a, if m1 calls
m2 and the value of a is passed to b. For example, in
the getLocationOnScreen(int[] location) method of the
android.view.View class, location[0] is accessed, and the
condition checking 0<location.length on the array is propa-
gated to the parameter. For each method, we analyze methods
calls within n depth, and propagate condition checking on
parameters that are extracted by the previous three strategies.

3) Inferring Exception Handling Constraints: These con-
straints define the possible thrown exceptions of a method that
need to handle while using the method.

Strategy 5: Inferring from throw, throws and annota-
tions in Javadoc. Based on the inferring strategies in [21], we
design to infer possible thrown exceptions by locating throw

statements, throws keywords and annotations in Javadoc, in
the ASTs of the target API methods and its calling methods
within the range of calling depth n. For example in Figure 3,
we can infer FileNotFoundException of FileInputSteam()

method through identifying throws in the method declaration
statement or locating the throw statement. We can also obtain
exceptions by extracting the starting words in the annotations
like @throws, @exception in Javadoc. For the same example
about the constructor File(String parent, String child)

of java.io.File API in the first strategy of condition check-
ing constraints, we extract NullPointerException from the
sentence “NullPointerException If <code>child</code> is
<code>null</code>” in the @throws annotations.

Strategy 6: Inferring alternative relations with condition
checking. Exception handling constraints often have condition
checking constraints as their alternative constraints. Thrown
exceptions always have corresponding trigger conditions, and
client code using APIs can choose to handle exceptions or
check exception trigger conditions to avoid the exceptions.
Therefore, we establish the alternative relations of exception
handling and condition checking constraints in the process of
Strategy 2. For example in Figure 3, the alternative constraint
of handling FileNotFoundException is the condition checking
file.exists(). Considering alternative relations of constraints
are conducive to reduce the false positive rate and improve the
precision of misuse detection [20], [46]. We leave the other
alternative constraints to our future work.
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Fig. 6: An Example of Call Order Propagation

4) Inferring Call Order Constraints: These constraints
define orders of method calls.

Strategy 7: Inferring from call graphs. Based on the work
of Zhong et al. [22], we infer call orders with three sub-steps:
First, we build an inter-method call relation graph whose entries
are the API methods of interest, and traverse methods called
by them in n depth. Second, we find precede/follow call orders
(initializing primitive variable before using, calling constructors
to initialize an object field before using the methods in the
object, and assigning an object field to null to reclaim the
object space after using the field) for all called methods. Finally,
we push the call orders back to the API methods.

For a simple and straightforward example in Figure 6,
since the array arr should be initialized before using, we
can find the call order, method1() precede−−−−−→method2() in class
A. Owing to method3() invoking method1() and method4()

invoking method2(), this call order is propagated along the
call relation graph to class B and becomes the call order
method3()

precede−−−−−→method4().
Strategy 8: Inferring from method names. Based on our

experiences and observations, we exploit two heuristic naming
rules to infer call orders. The first heuristic rule infers call or-
ders about iterations like hasNextLine()

precede−−−−−→ nextLine(),
which applies to Iterator, Scanner, StringTokenizer and
so on. The second heuristic rule infers call orders about
resource usages like write()

follow−−−−−→ close(), which applies
to DataOutputStream, ByteOutputStream and so on.

D. CL-Intergrator

After mining constraints from client and library,
CL-Intergrator combines them to obtain a rich set of
constraints. The resulting set of constraints are comprehensive
and informative. Algorithm 1 shows the major steps:

1) Representing All Constraints as AUGs: Firstly, we repre-
sent all constraints in the format of AUGs. For each constraint
inferred from library, we construct an API usage as client
code and then build its AUG (Line 2). For example, for the
condition checking constraint con of an API method method(),
we construct a usage code snippet if(con){method();} and
then build its AUG.

2) Merging Constraints from Both Sources: If constraints
are overlapped, we deliver the fine semantic details of library-
based constraints to client-based constraints (Lines 3-6), such
as adding the precede/follow attribute of a call order constraint
to the corresponding order edge of client-based constraint
AUG. Next, we directly take the union of AUG collections of
constraints from client and from library (Lines 7-8).

Algorithm 1: CL-Intergrator
Input: clientConAugsm/* client patterns of m */

1 libConsm/* library constraints of method m */
Output: fullConAugsm/* full constraints of m */
/* Step 1: represent libConsm as AUGs */

2 AUG[] libConAugsm = buildAUGForLibCons(libConsm);
/* Step 2: enhance client constraints and merge

libConAugsm and clientConAugsm */
3 for clientConAugi ∈ clientConAugsm do
4 for libConAugj ∈ libConAugsm do
5 if findOverlap(clientConAugi, libConAugj )!=null then
6 enhanceconstraint(clientConAugi, libConAugj );

7 AUG[] fullConAugsm = Arrays.copyOf(clientConAugsm);
8 fullConAugsm.addAll(libConAugsm);
/* Step 3: build new alternative constraints */

9 for clientConAugi ∈ clientConAugsm do
10 for type ∈ [ConditionChecking,ExceptionHandling] do
11 subAug = findSubAUG(clientConAugi, type);
12 newconstraintAug = replaceWithLibCons(subAug,

libConAugsm);
13 fullConAugsm.add(newconstraintAug);

3) Generating New Alternative Constraints: Finally, to
improve the comprehensiveness and richness of constraints, we
modify constraints from client according to constraints from
library (Lines 9-13). In particular, if a subgraph in a constraint
from client code is related to condition checking or exception
handling, we replace the subgraph with the corresponding
constraint from library, and generate a new constraint which
has the alternative relation with the original one.

E. CL-Detector

CL-Detector detects misuses with our inferred constraints.
We design and implement misuse detection based on the graph
matching algorithm in MuDetect [20]. First, the code under
check is represented as AUGs. A piece of code is regarded as
a potential misuse, if its AUG is a violation of a constraint and
matches none of its alternative constraints. Given an AUG
of the code under check, a violation of a constraint is a
mismatch between this AUG and the AUG of this constraint.
All misuses are ranked by their suspicious scores. Considering
the ranking strategy used by MuDetect [20], the suspicious
score is calculated as follows:

score = (cs + sl)/vs · vd, vd = nm/nc (1)

The support cs is the occurrence number of a constraint in the
client code, which indicates the correctness of the constraint.
The sl denotes the initial weight of constraints comes that are
inferred from a library. After trials, we set the weight sl as
one. If a constraint is only mined from client code, sl is set
to zero. The violation support vs is the occurrence number of
a violation, which indicates the rareness of the violation. The
vd measures the distance between a violation and the violated
constraint, and is calculated through the number of missing
nodes from the violated constraint nm divided by the total
number of nodes in the violated constraint nc.

To accurately detect violations of constraints, we integrate
fine semantic details of constraints from library, including



precede/follow type of call orders and alternative relations
between condition checkings and exception handlings. A target
AUG is not a violation of a()

precede−−−−−→b() when it only calls
a() without calling b(), and is not a violation of a() follow−−−−−→b()

when it only calls b() without calling a(). A target AUG is
violation of a condition checking constraint but is not regarded
as a misuse when it matches one of alternative constraints like
a exception handling constraint.

V. EXPERIMENT

We have implemented an API constraint miner and an API
misuse detector upon MuDetect [47] and the Eclipse JDT
toolkit [48]. With our detector, we conduct several experiments
with the aims of investigating three research questions:

• RQ1: How effectively does our approach perform com-
pared with the state-of-the-art detector MuDetect [20]?

• RQ2: How is the quality of constraints inferred from
library source code?

• RQ3: How do the constraints mined from library and
client contribute to the effectiveness of our approach?

Dataset. We reuse the API misuse dataset, MuBench [49],
to evaluate the effectiveness of our API misuse detection.
MuBench is a state-of-the-art benchmark, and it is actively
maintained. It is widely used by other API misuse detection
studies [12], [20], [37], [50]. After removing some projects
without available urls, the latest version of MuBench contains
223 API misuses in 57 software projects, involving the usage
of 65 APIs. These misuses in MuBench consist of 110 missing
condition checking, 26 missing exception handling, 81 missing
call and 6 having redundant elements. In our evaluation, we
select 106 Java APIs as our subjects, including the 65 APIs
used in MuBench and 68 Java APIs that are analyzed in a
recent study [46]. For each target API, we collect top 20 client
projects that used the certain class the most on GitHub through
Boa tool [51]. By employing our miner, we have mined 1,092
constraints from client code and 12,538 constraints from library
code, which consist of 712 condition checking, 3,432 exception
handling and 8,394 call order constraints.

A. RQ1: The Effectiveness of API Misuse Detection

Experimental Setup. We compare our API misuse detector
against the state-of-the-art detection approach, MuDetect [20],
on its MuBench [23] dataset. The latest version of MuBench
contains 223 API misuse instances in 57 software projects
after removing some projects with unavailable urls. We set the
frequency threshold σ as five.

We evaluate MuDetect in its cross-project setting, which
mines patterns from multiple client projects we collect. To mine
constraints across projects, we extract client code from multiple
projects that frequently call our target APIs. In particular, for
each target API, we collect API usage code snippets from the
top 20 Github projects that call our target APIs most frequently
with the Boa tool [51]. We use the recall, precision and F1
score to measure the effectiveness of our approach, where
F1 score is the harmonic mean between recall and precision.

TABLE I: Effectiveness of Detectors

Detectors Recall Precision F1
Pre1 Pre2 PreF Kap.

MuDetect 39.5% 28.6% 32.7% 30.6% 0.90 34.5%

Our detector 50.2% 40.0% 44.3% 41.7% 0.88 45.6%

* Pre1 and Pre2 are the precision values by the two annotators independently;
PreF is the final precision value after resolving inconsistent decisions; and
Kap. is the Kappa value of inter-rater agreement.

These metrics are commonly used in software bug detection
researches.

The recall examines how many ground-truth misuses in
MuBench are correctly detected by the detector. We manually
judge whether detected ground-truth misuses are caused by
violation of the mined constraints, guided by descriptions of
misuses. If confirmed, these ground-truth misuses are correctly
detected. The precision measures how many true positive
misuses are among top-ranked detected misuses. We need
to manually review all detected misuses to determine whether
they are true positive, because these projects may exist other
API misuses in addition to ground-truth misuses in MuBench.
Reviewing all detected misuses on all projects in MuBench is
practically infeasible. Therefore, we calculate the precision on
the ten projects sampled by Amann et al. [20]. We manually
examine top-20 detected misuses for each project. The ground-
truth misuses in MuBench have proven to be true positive
misuses with no need for manual inspection. In this experiment,
all manual annotation or checking is conducted by two of
authors independently, with their inconsistent results discussed
to reach a consensus. We employ Cohen’s Kappa [52] to
measure the inter-rater agreement.

Results. Table I shows the effectiveness evaluation results of
our detector and MuDetect. Our detector achieves 45.6% in
F1 score, and our result is higher than 34.5% of MuDetect.

Recall Result: From 223 API misuse instances in MuBench
(including 110 missing condition checking, 26 missing excep-
tion handling and 81 missing call), our detector detects 112 API
misuse instances, including 36 missing condition checking, 21
missing exception handling and 55 missing call. Our detector
achieves 50.2% in recall, higher than 39.5% of MuDetect. The
result shows that our constraints mined from both client and
library are more comprehensive than only one source. Their
contributions will be analyzed in RQ3.

Those misuses in MuBench undetected by our detector can
be attributed to two reasons. First, there are some misuses due
to having redundant elements should be removed, but only
misuses missing elements might be detected by our detector.
For example, the misuse #2 of project “drftpd3-extended” in
MuBench incorrectly uses javax.crypto.Cipher API owing
to multiple calls of method init(). Hence, how to improve
misuse detection algorithm to detect redundant elements is still
a problem worth to explore. Second, rest undetected misuses
are due to that corresponding violated constraints can not be
mined by our approach. For example, the misuse #1 of project
“yapps” in MuBench is considered a bad practice owing to



using “AES” as the actual parameter of getInstance(String)
method of java.crypto.Cipher API. This constraint cannot
be mined because it is not defined directly in library code.

Precision Result: The Cohen’s Kappa values of two an-
notators are all above 0.60, which indicates that they reach
substantial agreement. Our detection approach achieves 41.7%
in precision, higher than 30.6% of MuDetect. The result shows
that our constraints inferred from both client and library are
more effective for accurate detection than only from one
source, because our constraints are informative and have fine
semantic details, like the precede or follow attribute of call
order. For example, in project “lucene”, there are some code
snippets calling only hasNext() without calling next(). They
are falsely regarded as misuses by MuDetect, due to violating
the pattern hasNext()→ next(). With the precede attribute in the
corresponding constraint hasNext()

precede−−−−−→ next() of Iterator
API, our detector would not regard them as misuses.

There are some false positive misuses roughly caused by
two reasons. First, some false positive misuses are due to lack
of inter-procedural analysis. The missing elements of these
false positive misuses occur in other methods that target code
snippets calls. For example, in project “lucene”, a code snippet
is falsely regarded as a violation of the call order constraint
read()

follow−−−−−→ close() of java.io.FileInputStream API, and
close() method is called in another method the code snippet
calls. Future work can explore how to introduce inter-procedural
analysis in misuse detection process to balance the performance
and computational cost. Second, some false positive misuses
are due to incorrect or incomplete constraints. Some condi-
tion checking constraints and their alternative relations with
exception handling constraints cannot be inferred. For example,
in project “itext”, some code snippets are falsely regarded as
misuses owing to violating a exception handling constraint
about NoSuchElementException in method nextToken() of
java.util.StringTokenizer API. They actually match its
alternative condition checking constraint hasMoreElements()
which could not be inferred, because the corresponding
exception trigger condition has private fields difficult to convert.
In future work, we will extend our strategies for a lower rate
of false positive misuses.
Answer to RQ1. Our detector is more effective than MuDetect.
With relatively more comprehensive and accurate API con-
straints mined from both client and library, it finds more API
misuses and reduces wrongly identified misuses.

B. RQ2: The Quality of Constraints Inferred from Library

Experimental Setup. We evaluate the quality of constraints in-
ferred from library source code, which reflects the effectiveness
of constraint inferring strategies and affects the performance of
API misuse detection using them. Due to the large number of
constraints, we randomly sample API methods and manually
examine their inferred constraints. We invite two programmers
who have more than 3 years of Java development experience
to independently examine the quality of constraints mined
from library. We employ Cohen’s Kappa [52] to measure the
inter-rater agreement. When the two annotators’ decisions are

TABLE II: The Quality of Constraints Inferred from Library

Type Recall Accuracy

Rec1 Rec2 RecF Kap. Acc1 Acc2 AccF Kap.

Con. 60.9% 63.8% 61.9% 0.89 92.3% 95.4% 92.3% 0.73

Exp. 100.0% 100.0% 100.0% 1.00 100.0% 100.0% 100.0% 1.00

Call. - - - - 66.7% 69.3% 68.7% 0.84

Avg. 80.5% 81.9% 81.0% 0.95 86.3% 88.2% 87.0% 0.86

* Con. refers to condition checking; Exp. refers to exception handling; Call.
refers to call order.

* Rec1 and Rec2 are the recall by the two annotators independently; RecF
is the final recall after resolving inconsistent decisions; and Kap. is the
Kappa value of inter-rater agreement. Acc1, Acc2 and AccF of accuracy
have similar meanings.

inconsistent, they will discuss and reach a consensus to make
final decisions. The two annotators determine a constraint is
true, if it appears in library code or API documentation. For
example, as shown in Section III, it is feasible to determine
whether a constraint is correct according to API documents
and their code.

We select recall and accuracy to measure the quality of
constraints. The recall examines how many actual constraints
are inferred among all actual constraints. We only calculate
recall of two types of constraints except call order, because all
actual call-order constraints of complicated classes are difficult
to determine even by manually analyzing library code. The
accuracy measures how many actual constraints are inferred
among all inferred constraints. We calculate recall and accuracy
of each type of constraints and take the average.
Results. We evaluate 360 constraints of 100 randomly sampled
API methods, including 65 condition checking, 145 exception
handling and 150 out of total 324 call order constraints. Table
II shows the recall and accuracy results of these constraints.
The Cohen’s Kappa values are all above 0.60, which indicates
that two annotators reach substantial agreement. The results
demonstrate that constraints inferred from library achieve high
accuracy of 87.0% in average (92.3% for condition checking,
100.0% for exception handling and 68.7% for call order) and
high recall of 81.0% in average (61.9% for condition checking
and 100% for exception handling). However, our constraint
inferring strategies still has potential for improvement to infer
more comprehensive and accurate constraints.

Recall Result: Exception handling constraints achieve a
perfect recall of 100%, because the exception implementation
is relatively distinguishable and easy to identify, such as
through throw statements, throws keywords and annotations
like @throw in Javadoc. On the contrary, the recall of condition
checking constraints is lower due to the complexity and
diversity of condition checking implementation. There are
some complicated cases of condition checking, like that
condition expressions might include externally inaccessible
elements (private fields, private methods, or local variables)
that hard to convert. For example, for method writeUTF(String

str, DataOutput out) in DataOutputStream API, we cannot
convert the local variable utflen in the precondition utflen

<= 65535, because utflen, the length of utf-8 encoded string,



TABLE III: The Contributions of Constraints

Con. Exp. Call. Total Recall Drops by

All 36 21 55 112 50.2% -

All - L-Extractor 31 9 48 88 39.5% -

All - C-Extractor 18 19 47 84 37.7% -
- Strategy 1 15 19 47 81 36.3% 3.7%
- Strategy 2 5 19 47 71 31.8% 15.6%
- Strategy 3 16 19 47 82 36.7% 2.7%
- Strategy 4 9 19 47 75 33.6% 8.2%
- Strategy 5 18 0 47 65 29.1% 22.8%
- Strategy 6 18 19 47 84 37.7% 0%
- Strategy 7 18 19 21 58 26.0% 31.0%
- Strategy 8 18 19 36 73 32.7% 13.3%

* Con. refers to condition checking; Exp. refers to exception handling;
Call. refers to call order.

is obtained by the complicated calculation of traversing all
characters of the parameter str. Although the recall of call
order constraints is not evaluated, we inspect a small amount
of APIs and find the main reason for undiscovered call orders.
These call orders are only defined by the responsibilities
or functions of APIs, and they do not necessarily have
the identified forms like the objects to be used must be
created first. For example, in the description of the misuse
#475 of project “tbuktu-ntru” in MuBench, it violates a call
order without the identified forms: DataOutputStream.close()
precede−−−−−→ ByteArrayOutputStream.toByteArray().

Accuracy Result: Exception handling constraints achieve
a perfect accuracy of 100%, because the exception imple-
mentation is relatively distinguishable and hence easy to
accurately identify. Condition checking constraints also achieve
a high accuracy of 92.3%, since our condition inferring
strategies try to ensure the accuracy and filter out constraints
unable to meet the specifications like existing tricky externally
inaccessible elements in condition expressions. There are a
few incorrect condition checking constraints owing to the
simple extraction from Javadoc. For example, for method
removeAll(Collection<?> c) in ArrayList API, we falsely
extract a nullcheck of the parameter c from the sentence in
Javadoc @throws “if this list contains a null element”. However,
the 68.7% accuracy of call order constraints is lower due to
some complicated situations difficult to identify and handle. The
identified order form (the objects to be used must be created
first) might be invalid when the objects are checked before used,
and this case is difficult to identify. For example, in LinkedList

API the inferred call order offer(e)
precede−−−−−→peekLast() is

incorrect, because in peekLast() it returns null when the last

field is checked to be null.
Answer to RQ2. Our strategies infer relatively comprehensive
and accurate constraints of high quality from library code,
which are significant for API misuse detection.

C. RQ3: The Contributions of Constraints

Experimental Setup. To explore the contributions of our com-
ponents, we conduct an ablation study. In particular, we disable
our components, and calculate the recall values of the following
settings: All - L-Extractor (omit the L-Extractor component),
All - C-Extractor (omit the C-Extractor component), and All -

C-Extractor- Strategy * (omit the C-Extractor component and a
certain strategy). In this study, we analyze how many real API
misuses are detected when a specific component is missing.

Results. Table III shows the contribution result of each critical
component. Our detector achieves the recall values of 50.2%,
39.5% and 37.7% using all components, omitting L-Extractor
and omitting C-Extractor, respectively. The result shows that
C-Extractor and L-Extractor make non-negligible contributions.
There are 28 and 24 API misuses in MuBench that could be
detected by only client-based constraints from C-Extractor or
library-based constraints from L-Extractor. The result shows
that the complements complement each other. Compared with
C-Extractor, L-Extractor helps detect more missing-exception-
handling misuses but fewer missing-condition-checking mis-
uses, owing to the high recall of exception handling constraints
and the relatively lower recall of condition checking constraints
in RQ2. Compared with other strategies, omitting Strategies
7, 5 and 2 produces poorer recall values. This result indicates
that these strategies are more important and find more misuses
in MuBench than other strategies.

For those misuses only detected by library-based constraints,
they are violations of uncommon constraints which cannot
be obtained by mining frequent usage patterns from client
code. We can infer comprehensive constraints from library
code no matter if they frequent occur. For example, the misuse
#1 of project “itext” in MuBench is only detected by library-
based constraints. It violates the exception handling constraint
that usages have to handle InvalidKeyException when using
init() method of javax.crypto.Cipher API.

For those misuses only detected by client-based constraints,
they violate constraints that can be mined expediently from
many client code snippets. These client-based constraints
are difficult to infer as library-based constraints due to their
sophisticated implementation in library code. For example, the
misuse #361 of project “jodatime” in MuBench is only detected
by client-based constraints. It lacks of the condition check-
ing countTokens()>0 before calling nextToken() method of
java.util.StringTokenizer API. In the implementation of
nextToken(), the corresponding condition contains private
fields difficult to convert and thus our strategies can not infer.

Answer to RQ3. The effectiveness of our detector is attributed
to both the accuracy of client-based constraints and the compre-
hensiveness and informativeness of library-based constraints.

D. Threats to Validity

Internal Validity. The library-based constraints may be in
danger of overfitting to the target APIs. To mitigate this threat,
the target APIs are commonly used and hence are sufficiently
representative. Besides, we collect some strategies adopted by
other studies [21], [22], [42] and summarize common strategies
that are applicable to most APIs. The accuracy of manual
evaluation results may be limited by the ability of annotators.
To mitigate this threat, two annotators with more than 3 years
of Java development experience are invited to make decisions
independently and reach a consensus for inconsistencies.



External Validity. The dataset of API misuses used for
evaluation may not be representative. To mitigate this threat, we
use the latest version of the state-of-the-art dataset MuBench
which is widely used by API misuse studies [12], [20], [37],
[50]. More misuses from real projects will be taken to confirm
the capability of our approach in the future.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a bi-source approach which mines
API constraints from both client and library for API misuse
detection. Using both-side constraints, it accurately detects
various types of API misuses such as missing call, missing con-
dition checking and missing exception handling. The evaluation
results show that our approach significantly outperforms the
state-of-the-art detector, MuDetect. The quality of constraints
inferred from library is high, and their contribution has also
been demonstrated to be significant. We have open-sourced
our API constraint miner and API misuse detector to benefit
both the user and research communities.

In the future, we will improve mining technique for more
comprehensive API constraints, like introducing Stack Overflow
posts as a new source and raising new constraint inferring
strategies. We will explore inter-procedural analysis to enhance
our misuse detection algorithm. It is also necessary to evaluate
the capability of our detector on more real-world projects. In
addition, although our implementation analyzes only Java code,
our strategies shall work on other languages. We leave the
extensions to more languages to our future work.
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