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Abstract—Prior studies showed that developers applied re-
peated bug fixes—similar or identical code changes—to multiple
locations. According to the observation, researchers built tools
to automatically generate candidate patches from the repeated
bug-fixing patterns. However, all such research focuses on the
recurring change patterns within single methods. We are curious
whether there are also repeated bug fixes that change multiple
program entities (e.g., classes, methods, and fields); and if
so, how we can leverage such recurring change patterns to
further help developers fix bugs. In this paper, we present
a comprehensive empirical study on multi-entity bug fixes in
terms of their frequency, composition, and semantic meanings.
Specifically for each bug fix, we first used our approach InterPart
to perform static inter-procedural analysis on partial programs
(i.e., the old and new versions of changed Java files), and to
extract change dependency graphs (CDGs)—graphs that connect
multiple changed entities based on their syntactic dependencies.
By extracting common subgraphs from the CDGs of different
fixes, we identified the recurring change patterns.

Our study on Aries, Cassandra, Derby, and Mahout shows
that (1) 52-58% of bug fixes involved multi-entity changes; (2) 6
recurring change patterns commonly exist in all projects; and (3)
19-210 entity pairs were repetitively co-changed mainly because
the pairs invoked the same methods, accessed the same fields,
or contained similar content. These results helped us better
understand the gap between the fixes generated by existing
automatic program repair (APR) approaches and the real fixes.
Our observations will shed light on the follow-up research of
automatic program comprehension and modification.

I. INTRODUCTION

Bug fixing is important for software maintenance, and
developers usually spend a lot of time and effort fixing bugs to
improve software quality. Prior studies showed that developers
applied repeated bug fixes—textually similar or identical code
edits—to multiple locations [40], [52], [75], [73]. For instance,
Kim et al. found that 19.3-40.3% of bugs appeared repeated-
ly [40]. Zhong and Meng observed that more than 50% of code
structure changes could be constructed from past fixes [75].
With these observations, researchers proposed various tools
to generate bug fixes or suggest customized edits based on
the fixes already applied by developers [48], [49], [38], [43].
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Specifically, Kim et al. identified 10 common fix patterns in
thousands of bug fixes, and developed PAR to automatically
create patches from the patterns [38]. Meng et al. built LASE,
a program transformation tool that generalizes a code change
pattern from multiple similar edits, and leverages the pattern
to suggest new edit locations together with one customized
edit for each suggested location [49].

Although the bug-fixing patterns are useful for existing
automated tools, the fixes that they focus on are limited to
code changes within single methods or edits solving single
software faults. A recent study by Zhong and Su [76] shows
that around 80% of real bugs are fixed when multiple program
locations are edited together, meaning that the majority of
real fixes solve multiple software faults together. However,
it is still unknown among the multi-fault fixes, whether there
is any repeated bug-fixing pattern that repetitively applies
similar sets of relevant edits to multiple program entities (e.g.,
classes, methods, and fields). If there are such patterns, perhaps
researchers can further build automatic tools to generate multi-
fault patches that change at least two entities each time.

To deepen our understanding of repeated bug fixes and
provide insights for automatic fix generation tools, in this
paper, we conduct a comprehensive study on 2,854 bug fixes
from 4 projects: Aries [2], Cassandra [3], Derby [4], and Ma-
hout [5]. Our research characterizes multi-entity fixes in terms
of their frequency, composition, and semantic meanings. Static
analysis tools typically require compilable code for advanced
analysis and a recent study shows that only 38% of commits
are compilable [64]. Thus, it is challenging to accomplish an
empirical study of multi-entity fixes through examination of
code commits. To handle this problem, we implemented a tool
called InterPart, based on prior work [77]. InterPart supports
interprocedural static analysis on bug-fixing commits even
though the commits are not compilable. To analyze a bug fix,
we first extended ChangeDistiller [34] to extract all changed
entities such as Deleted Classes (DC), Changed Methods
(CM), and Added Fields (AF). Next, we used InterPart to
identify the syntactic dependency relationships (e.g., method
invocation) between changed entities. If there exists any such
dependency between some changed entities, we further built
one or more Change Dependency Graphs (CDGs) to connect
the related entities. By extracting common subgraphs from
CDGs, we thus revealed the recurring change patterns that



involve multiple entities. Finally, we conducted two case
studies to understand (1) why certain types of entities were
usually changed together, and (2) why specific entities were
co-changed repetitively.

Although some prior empirical studies analyzed the co-
change relationship between source files, program entities,
or statements [78], [51], [46], [30], our research is unique
for two reasons. First, when developers change multiple code
locations in one bug-fixing commit, some of the changes can
be totally irrelevant to bug fixing [36]. Instead of blindly
assuming all changed entities to be relevant, we used InterPart
to identify related changes based on the syntactic dependency
or referencer-referencee relationship between entities. Conse-
quently, our investigation of recurring change patterns is more
precise. Second, our study is not limited to the phenomena
shown by automatic analysis, because we conducted case
studies to manually inspect co-changed entities for bug fixes,
to further explore the rationale underneath mined change
patterns.

In this study, our major research questions and interesting
findings are as follows:
• What is the frequency of the bug fixes involving mul-

tiple entity changes? If the majority of real fixes involve
multi-entity changes, it is important to explore any recur-
ring change pattern among such fixes and characterize the
co-changed entities. To answer this question, we extended
a program differencing tool—ChangeDistiller—to extract
eight types of changes involving either classes, methods,
or fields. We found that 55%, 52%, 58%, and 52% of
the examined bug fixes in Aries, Cassandra, Derby, and
Mahout changed multiple entities (Findings 2). Among
these multi-entity fixes, we created one or more CDGs
for 76%, 74%, 75%, and 66% of fixes (Finding 3).
Our observations indicate that developers usually change
multiple entities together to fix a bug, and many of such
co-applied changes are correlated.

• What patterns are contained by multi-entity fixes?
By identifying such patterns, we explore new research
directions for automatic program repair (APR) and coding
suggestion tools. We leveraged an off-the-shelf graph
comparison algorithm—VF2 [27]—to compare the CDGs
across commits within each project, acquiring six fre-
quent subgraphs or recurring change patterns (Finding
4). The three most frequent patterns change at least one
method to fix any bug (Finding 5).

• Why do programmers make multiple-entity changes,
when they repair real bugs? We conducted two case
studies to characterize co-changes. The first study exam-
ined 291 fixes that match any of the 3 most frequent
patterns to analyze how edits in different entities are
relevant. The second study examined 20 entity pairs
that were repetitively changed together to explore how
the entities in every pair are related to each other. For
the recurring change patterns, although we did not see
any two fixes that resolve the same bug by applying
textually similar edits, we saw that some fixes applied

related changes to caller and callee methods for consis-
tent semantic modification (Finding 6). Additionally, we
found that 16 of 20 inspected entity pairs had co-changed
methods that share field accesses, method invocations, or
program content (Finding 7).

Our findings provide three insights for future directions of
IDE support, APR, and automatic code change suggestion.
First, since many bug fixes may touch multiple entities in
one commit, it is important for IDE to explicitly visualize
the change type of each touched entity and the connections
between those entities. Such visualization will help developers
understand the layout of changed entities and the rationale
of a bug fix. Second, when developers apply independent
changes to multiple related methods, APR approaches may
be extended to suggest multi-entity fixes by simultaneously
applying the single-method patches generated for individual
methods. When developers apply dependent changes to re-
lated methods (e.g., modify callee methods to always return
non-null values and update caller methods to remove null-
checks), future change suggestion tools can check for such
change consistency and help automatically complete fixes.
Third, many repetitively co-changed entities have similar field
accesses or method invocations, so future change suggestion
tools can also suggest edits based on such similarities in
addition to the textual similarity. Our project and data are
available at https://github.com/yewang16/pattern-finder.

II. CONCEPTS

In this section, we define and explain the terminologies used
in our paper.

Similar to prior work [60], we use program entity to
represent a Java class, method, or field. To revise code,
developers may add, delete, or change one or more entities.
Therefore, we defined a set of atomic changes or changed
entities to represent any code revision with: Added Classes
(AC), Deleted Classes (DC), Added Methods (AM), Deleted
Methods (DM), Changed Methods (CM), Added Fields (AF),
Deleted Fields (DF), and Changed Fields (CF). For instance,
if developers create a new class with one field and one method
defined in the class, we represent the revision as one AC, one
AF, and one AM. As with prior work [76], we refer to a bug
fix as a code revision that repairs a bug. If a bug fix contains
multiple atomic changes, we name it a multi-entity (bug) fix.

If a multi-entity fix has relevant atomic changes co-applied,
we use one or more change dependency graphs (CDG) to
represent the related changes. In each CDG, a node represents
an atomic change and an edge represents the syntactic depen-
dency relationship between two entities. We say that an entity
E1 is syntactically dependent on another entity E2 if (1) E1

is contained by E2 (e.g., a field is contained by its declaring
class); (2) E1 overrides E2 (e.g., a sub-class’ method overrides
a method in the super class); or (3) E1 accesses E2 (e.g.,
a method accesses a field or invokes another method) [60].
CDG’s formal definition is as below:

Definition 1: CDG =< V,E >, where V is a set of
vertices representing changed entities, and E is a set of



directed edges between the vertices E ⊆ {V × V }. There
is a directed edge from changed entity u to changed entity v,
if and only if u is syntactically dependent on v.

Notice that there may be zero, one, or multiple CDGs
existing in a code revision. If there is no atomic change in
a revision or the atomic changes are totally irrelevant, we
consider that there is no CDG extractable from the revision.
CDGs are always extracted from multi-entity fixes.

A change pattern (cp) is a CDG or a CDG’s subgraph,
which includes changed entities and the directed connections
between entities. Formally,

Definition 2: Given CDG =< V,E >, cp =< V ′, E′ >,
where V ′ ⊆ V and E′ ⊆ E. A cp should contain at least two
nodes and one edge connecting the nodes.

A recurring change pattern (rcp) is a change pattern that
occurs in at least two program revisions. Formally,

Definition 3: Suppose that the CDGs of code revisions
r1 and r2 are GS1 = {cdg11, . . . , cdg1m} and GS2 =
{cdg21, . . . , cdg2n}. If a change pattern cp occurs in both cdg1i
and cdg2j (i ∈ [1,m] and j ∈ [1, n]), we say that the change
pattern is also an rcp.

Automatic program repair (APR) [70] executes a buggy
program P with a test suite T , and leverages bug localization
techniques [37], [50], [72], [29] to locate a buggy method.
APR then creates candidate patches to fix the bug, and
validates patches via compilation and testing until obtaining
a patched program that passes T . Different APR approaches
generate patches either by randomly mutating code [70],
creating edits from the recurring change patterns of past
fixes [38], or solving the constraints revealed by passed and
failed tests [47]. However, each fix suggested by current APR
approaches only modifies a single method.

III. RESEARCH QUESTIONS

This study aims to address the following research questions:
RQ1: What is the frequency of multi-entity bug fixes?

Prior studies show that developers modified multiple files or
entities in one code revision [78], [51], [46], [76], [36], [30].
However, it is still unclear what percentage of bug fixes change
multiple entities in single commits, and how such co-changed
entities are related to each other. With the understanding of
how frequently developers change multiple entities to fix bugs,
we can estimate the gap between the fixes output by existing
APR approaches and the real fixes, and assess the necessity
of exploring recurring change patterns in multi-entity fixes.

RQ2: What patterns are contained by multi-entity fixes?
In bug fixes, certain atomic co-changes may be more closely
related than the others, and may occur repetitively in multiple
commits of the same or different projects. Such repetitively
co-changed entities form the recurring change patterns (rcp)
in our research. Identifying such patterns can deepen our
understanding on how to repair multi-fault programs. Notice
that our definition of rcp is different from prior work [40], [54],
[58], [73], which defined repeated change patterns as similarly
added or deleted lines in single methods. In our research, by
clustering changes based on their entity-level change types

and connections, we identified repetitiveness at the syntactic
instead of textual level.

RQ3: Why do programmers make multiple-entity changes,
when they repair real bugs? Several existing tools suggest
code changes or bug fixes based on textual or syntactic
similarity [48], [49], [38], [43]. We further explored why
the above-observed multi-entity change patterns happened and
how they revised program semantics. To the best of our
knowledge, no prior work identifies or examines such patterns.
The answers to this question are important to characterize the
scenarios where new tools may suggest nontrivial edits based
on semantic similarity to further help developers fix bugs.

IV. METHODOLOGY

This section first explains how we created CDGs (Sec-
tion IV-A) with our newly built tool InterPart (Section IV-B).
It then describes how we extracted recurring change patterns
from CDGs across commits (Section IV-C).

A. CDG Construction

To construct CDG(s) for a given bug fix, we first extracted
the atomic changes, and then connected the identified changes
based on their syntactic dependence relations.

Step 1: Extracting Changed Entities. Given a bug fix,
we extended ChangeDistiller to identify all atomic changes
or changed entities. ChangeDistiller is a tree differencing
tool for fine-grained source code change extraction. Given
two versions of a changed Java file, ChangeDistiller first
creates an Abstract Syntax Tree (AST) for each version,
and then compares the ASTs to generate an edit script
consisting of node insertion(s), deletion(s), update(s), and
move(s). ChangeDistiller can report method-level, field-level,
and statement-level changes; nevertheless, it does not report
class-level changes like Added Classes and Deleted Classes.
Therefore, we modified ChangeDistiller also to detect these
two types of changes. Our research leverages the entity-level
changes reported by ChangeDistiller.

Step 2: Correlating Changed Entities. To determine
whether two changed entities (E1 and E2) are syntactically
dependent, we check whether there is any containment, over-
riding, or access relationship between the entities.
• Containment checks for any overlap between code re-

gions. If E1’s code region is fully covered by E2’s region,
we conclude that E1 is contained by E2.

• Overriding checks for any polymorphic implementation
of methods. If E1 in a Java class redefines the implemen-
tation of E2—another method defined in the class’ super
type, we conclude that E1 overrides E2.

• Access checks for any field or method reference by an
edited method. If E1’s implementation refers to E2, we
conclude that E1 accesses E2.

With ChangeDistiller’s output, we can easily identify the
containment relationship. However, to check for the overriding
or access relationship, we must resolve the binding information
of field and method references in changed entities, and then
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Fig. 1: InterPart takes in both the old and new versions of
Java files edited for a bug fix, and uses GRAPA, WALA, as
well as PPA to resolve bindings in separate versions.

precisely decide which entity overrides or accesses what other
entities. Thus, we built InterPart to resolve bindings.

B. Design and Implementation of InterPart

When designing InterPart, we went through two comparison
phases to decide our implementation strategy.

1) Dynamic vs. Static Analysis: It is feasible to resolve
bindings of field and method references in a dynamic or
static way. With program dynamic analysis, we can execute
both the old and new versions of a changed program, and
gather the binding information at runtime. However, manually
configuring the execution environment to run multiple versions
of a program is time-consuming and error-prone. Although a
few recent approaches [65], [35] can automatically configure
the environment to execute different versions of a program,
these approaches only work for certain scenarios. Additionally,
dynamic analysis requires for high-quality test cases to execute
every changed entity for each commit, which requirement is
usually not met in reality. In contrast, static analysis does not
require us to execute programs, neither do we need to ensure
that a changed entity is covered by one or more test runs. Only
Class Hierarchy Analysis (CHA) [31], a well-defined inter-
procedural analysis technique, is needed to statically infer the
binding information of field or method references. Therefore,
we chose static analysis.

2) Complete vs. Incomplete Static Analysis: Inter-
procedural program analysis [61] is typically applied to
a complete compilable program, including all source files
and library dependencies. For example, WALA [22]—a
popularly used static analysis framework—requires users to
provide all program files and dependencies as inputs for
static analysis. Nevertheless, such whole-program analysis
may be inapplicable to bug fixes or code revisions. Tufano
et al. analyzed the commits of 100 Apache projects, finding
that only 38% of commits were compilable [68]. This means
that the majority of commits are uncompilable, and we
have to manually solve all compilation errors before doing
whole-program analysis. In addition, an empirical study [76]
shows that a bug fix rarely edits many source files. If we
analyze the whole program for a bug fix, the majority of
our analysis is wasted on unchanged code. To efficiently
resolve bindings in changed files, we chose to conduct
inter-procedural analysis on incomplete programs.

There was no ready-to-use tool performing inter-procedural
analysis on partial or incomplete programs when we conducted

1 p u b l i c c l a s s A {
2 . . .
3 + p u b l i c vo id foo { . . . } / / An added method
4 }
5 p u b l i c c l a s s B ex tends A { . . . } / / An unchanged c l a s s
6 p u b l i c c l a s s C ex tends B {
7 . . .
8 / / An added method o v e r r i d i n g A . f o o ( )
9 + p u b l i c vo id foo { . . . }

10 }

Fig. 2: A scenario where InterPart can miss syntactic depen-
dency information

this research, so we built InterPart based on WALA, Partial
Program Analysis (PPA) [28], and GRAPA [77] (see Fig. 1).

For any bug fix, InterPart takes in the old and new versions
of edited source files, and mainly relies on WALA to resolve
bindings in both versions. When WALA takes in a Java file for
analysis, it uses Eclipse ASTParser [21] to parse an AST, and
includes as much binding information as possible in the AST.
If a Java file comes from an incomplete program, ASTParser
may resolve so few bindings successfully that the resulting
AST cannot be processed by WALA. As a solution, we lever-
aged PPA—a tool to heuristically recover binding information
by applying various inference strategies to an Eclipse AST.
We extended PPA to correct the inference strategy dealing
with local variables and fields. We also extended WALA to
(1) take in PPA’s AST output, and (2) properly handle null-
bindings instead of simply throwing runtime errors. In this
way, we enabled InterPart to conduct inter-procedural analysis
on incomplete programs.

To improve WALA’s analysis precision, we also need to
provide a program’s library dependencies as input when an-
alyzing either the old or new version of edited files. Such
dependency information is usually not included in a bug fix,
and different bug fixes of the same project may depend on
different libraries or on the same libraries’ different versions.
To quickly locate a fix’s library dependencies, we used GRA-
PA [77] to precompute and record the mapping between each
fix and the library-version pairs it depends on. Based on such
mappings, each time when InterPart analyzes a fix, it can
query the mappings and locate the relevant library data to
load to WALA.

Notice that InterPart may miss some syntactic dependencies
due to its examination of only changed code—a part of the
entire program. As shown in Fig. 2, class C extends B, while
B extends A. C and A are separately changed to declare a new
method foo() (two AMs). Ideally, these two changed entities
should be related because one overrides the other. However,
since B is not changed and thus not provided as input, InterPart
cannot identify the overriding relationship between these AMs.
Our study may underestimate the dependency relationship
between co-applied atomic changes.

C. Recurring Change Pattern Extraction

To investigate what kind of changes are co-applied and how
atomic changes are usually related, we extracted recurring
change patterns across the CDGs of different commits.



Given two commits’ CDGs: GS1 = {cdg11, . . . , cdg1m}
and GS2 = {cdg21, . . . , cdg2n}, we compard every pair
of CDGs across commits (e.g., < cdg11, cdg21 >) in an
enumerative way. The comparison of each pair starts with
matching individual nodes based on their atomic change labels
(e.g., CM), and proceeds with edge matching. If two edges
(e.g., e1 and e2) have identical source changes, target changes,
and edge directions, we consider them as matched.

Based on such node and edge matches, we identified the
largest common subgraph between two CDGs with an off-the-
shelf subgraph isomorphism algorithm VF2 [27]. Our imple-
mentation used JGraphT [19], a Java graph library with a built-
in implementation of VF2. Intuitively, VF2 treats the known
node matches as initially identified common subgraphs. It
then iteratively expands the subgraphs by incrementally adding
node or edge matches that do not conflict with the existing
match(es). This process continues until no extra match can be
added. When VF2 recognized multiple common subgraphs,
we recorded the one covering the largest number of nodes,
considering it as a recurring change pattern.

V. EMPIRICAL RESULT

In this section, we first introduce the subject projects used
in our study (Section V-A), and then discuss our findings for
each research question (Sections V-B, V-C, and V-D).

A. Subject Projects

In our study, we analyzed the bug fixes of four open
source projects: Aries, Cassandra, Derby, and Mahout. We
chose these projects for three reasons. First, they are from
different application domains. Aries [2] supports the OSGi
application programming model. Mahout [5] is a library of
scalable machine-learning algorithms. Although both Cassan-
dra [3] and Derby [4] are databases, Cassandra is a NoSQL
database, while Derby is a relational database. Second, these
projects have well-maintained issue tracking systems and ver-
sion control systems. Developers usually check in high-quality
commits with good commit messages to describe the changes.
Third, many bug-fixing commits refer to the corresponding
bug reports via issue IDs. We downloaded and reused the
bug-fixing data of a prior study [76], [10]. In this data set,
bug fixes are collected based on the issue IDs of bug reports
and commit messages referring to those IDs. An issue ID may
correspond to multiple duplicated commits, so we only picked
one of those duplicates to avoid bias in the data set.

TABLE I presents more information about these projects.
KLOC shows the code size of each project. # of Fixes shows
each project’s total number of bug fixes contained by the
original data set [76]. Although we tried our best to perform
incomplete program analysis on every bug fix, there are still
fixes that cannot be processed due to the limitation of PPA
or WALA. When either PPA or WALA throws any runtime
error for a bug fix, we excluded the fix from our study.
Therefore, # of Fixes Studied counts the number of fixes in
each project that were successfully processed by InterPart. All
our following investigations are based on these 2,854 fixes. #

TABLE I: Subject projects

Property Aries Cassandra Derby Mahout
KLOC 288 410 1,174 186

# of Fixes 621 3,492 1,591 467

# of Fixes Studied 247 1,515 824 268
# of Entity Changes 1,104 6,739 4,244 1,462
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Fig. 3: Change distribution among different change types

of Entity Changes reports the number of atomic changes we
extracted from these fixes.

B. RQ1: What is the frequency of multi-entity bug fixes?

This research question examines the prevalence of multi-
entity changes in real fixes, and explores the syntactic depen-
dence relations between co-changed entities.

As shown in Fig. 3, the extracted changes distribute un-
evenly among the eight predefined change types. Interestingly,
although different developers fix distinct bugs, the relative
distributions of different typed changes are very similar across
projects. For instance, all the projects have over 50% of atomic
changes (i.e., 51-58%) as CMs, meaning that developers
mainly change existing methods to fix bugs. Over 20% of
atomic changes (i.e., 21-24%) are AMs. 9-15% of the changes
are AFs. These observations indicate that in addition to CMs,
developers also frequently applied AMs and AFs to fix bugs.
Current APR approaches only suggest CM patches.

Finding 1: Similar to the fixes generated by APR
approaches, real bug fixes also mainly consist of CMs.
However, real fixes usually involve a much more diverse
set of entities and change types, such as AMs and AFs.

We then clustered bug fixes according to the numbers of
changed entities they contain, and present the results in Fig. 4.
Among the four projects, 42-48% of the fixes contain single
changed entities, which means that over 50% of the fixes
involve multi-entity changes. Specifically, 15-16% of the fixes
include two-entity changes, and 8-9% of the fixes involve
three-entity changes. As the number of changed entities in-
creases, the number of fixes decreases in all projects. The
maximum number of changed entities appears in Cassandra,
where a single fix modifies 240 entities. We manually checked
the commit on GitHub [9], and found that it modified 9 files
with 4,174 line-additions and 1,048 line-deletions. Existing
APR techniques are restricted to proposing single-entity edits.



%	of	fixes	 Aries	 %	of	fixes	 Cassandra	 %	of	fixes	 Derby	 %	of	fixes	 Mahout	

0	

10	

20	

30	

40	

50	

0	 40	 80	 120	 160	 200	 240	
0	

10	

20	

30	

40	

50	

0	 40	 80	 120	 160	 200	 240	
0	

10	

20	

30	

40	

50	

0	 40	 80	 120	 160	 200	 240	
0	

10	

20	

30	

40	

50	

0	 40	 80	 120	 160	 200	 240	

Fig. 4: Bug fix distribution based on the number of included changed entities

%	of	fixes	with	CDG(s)	
Aries	

%	of	fixes	with	CDG(s)	
Cassandra	

%	of	fixes	with	CDG(s)	
Derby	

%	of	fixes	with	CDG(s)	
Mahout	

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	
0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	
0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	
0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	

Fig. 5: The distribution of fixes with CDG(s) based on the number of extracted CDGs

Zhong and Su conducted a similar experiment on real bug
fixes, and found that as the number of repair actions (e.g.,
inserting, deleting, or modifying a statement) increased, the
number of fixes decreased [76]. We observed a similar trend
but at the entity instead of statement level.

Finding 2: Differing from the fixes generated by APR
approaches, over half of the real fixes mainly involve multi-
entity instead of single-method changes.

Among the fixes with multi-entity changes, we further
established CDG(s) and clustered these fixes based on the
number of CDGs built for them. As shown in TABLE II, # of
Fixes with Multi-Entity Changes shows the number of fixes
that contain at least two atomic changes. # of Fixes with
CDG(s) Extracted presents the number of fixes for which
we built at least one CDG based on the analyzed syntactic
dependence relationship between atomic changes. % of Fixes
with CDG(s) Extracted measures the percentage of fixes with
CDG(s) among all multi-entity fixes. We found that 66-76% of
the multi-entity fixes contain at least one CDG, which indicates
that developers usually change related entities together to fix
bugs. Because our incomplete program analysis may miss
some dependencies between co-changed entities due to the
limited analysis scope (i.e., changed source files only), the
actual percentages of related co-changes may be even higher
than our measured percentages.

TABLE II: Bug fixes with multi-entity changes

Aries Cassandra Derby Mahout
# of Fixes with Multi-
Entity Changes

135 794 479 139

# of Fixes with
CDG(s) Extracted

102 588 357 92

% of Fixes with
CDG(s) Extracted

76% 74% 75% 66%

For the fixes containing at least one CDG, we further clus-
tered them based on the number of CDGs extracted. As shown
in Fig. 5, 76-83% of such fixes contain single CDGs, which

means that the co-changed entities are usually relevant to each
other. 12-15% of the fixes contain two CDGs, while 1-5% of
the fixes have three CDGs. As the number of CDGs increases,
the number of fixes goes down. The fix containing the largest
number of CDGs (i.e., 9) is also from CASSANDRA, which
involves 19 changed files, 1,367 line-additions, and 239 line-
deletions [20]. Prior studies show that developers apply tangled
changes or independent groups of changes in one commit [25],
[36]. Our observations corroborate that finding.

Current diff tools compare code by text (e.g., UNIX d-
iff [1]), ASTs (e.g., [34] and [33]), and graphs (e.g., [23],
[75]). None of these tools visualize any relationship between
changes across entities, although developers usually go file
by file and context switch to comprehend code changes [66].
Based on our observations of the fixes with multiple related
co-changed entities, we think new diff tools based on InterPart
might better help developers understand changes.

Finding 3: Among the fixes with multi-entity changes, 66-
76% of the fixes contain related changed entities, and 76-
83% of such fixes have entities connected in one or more
CDGs. This indicates that comparison/recommendation
tools that relate co-applied changes will be valuable.

C. RQ2: What patterns are contained by multi-entity fixes?

This research question explores the recurring co-change
patterns in real fixes, and investigates the most frequent
patterns among all projects.

As mentioned in Section IV-C, to identify the recurring
change patterns, we compared CDGs pair-by-pair across com-
mits and identified the largest common subgraph of each pair
(see Section IV-C). Suppose the identified patterns can be
represented as RCP = {rcp1, rcp2, . . . , rcps}. To investigate
these patterns’ frequency, we further matched each pattern
rcpi(i ∈ [1, s]) with all commits’ CDGs to check whether a
CDG contains one or more subgraphs matching the pattern; if
so, the pattern is considered to occur once in the CDG. Notice
that if two patterns (e.g., rcpp and rcpq) find matches in the



TABLE III: Recurring change patterns and their matches

Aries Cassandra Derby Mahout
# of Patterns 26 125 87 24
# of Fixes Matching
the Patterns

97 585 352 87

# of Subgraphs
Matching the Patterns

267 1,883 1,270 239

Pattern 
Index

P1 P2 P3 P4 P5 P6

Pattern 
Shape

AM1

AM0

CM1

CM0

Method	invocation	
m	

Field	access	
f	

Method	overriding	

*CM:	One	or	more	changed	methods	

Fig. 6: Six recurring change patterns existing in all projects.

same CDG, and one pattern is a subgraph of the other (e.g.,
rcpp is contained in rcpq), we will only count the occurrence
of the larger pattern (e.g., rcpq) to avoid double counting
overlapped patterns.

As shown in TABLE III, there are 26, 125, 87, and 24
recurring change patterns separately identified in 4 projects.
These patterns find matches in 97, 585, 352, and 87 fixes,
respectively. If we compare these numbers against the # of
Fixes with CDG(s) Extracted in TABLE II, it seems that
almost every fix with CDG(s) extracted contains at least one
subgraph matching a pattern. In total, there are 267, 1,883,
1,270, and 239 matched subgraphs, respectively. There are
many more matched subgraphs than matched fixes, indicating
that many fixes contain multiple matched subgraphs.

Some APR approaches (e.g., PAR [38]) suggest single-
method fixes based on the common patterns of past fixes. The
prevalence of multi-entity recurring change patterns indicates
that it is promising to extend these APR approaches and
generate multi-entity changes from past fixes.

Finding 4: The fix patterns of multi-entity changes com-
monly exist in all the investigated projects. This indicates
that such patterns may be usable to guide APR approaches
and to generate patches changing multiple entities.

By comparing the extracted patterns from different projects,
we further identified six recurring change patterns that com-
monly exist in all projects, as shown in Fig. 6.
P1: A callee method experiences a CM change, while one or

more of its caller methods also experience CM changes.
Intuitively, developers usually change one callee method
together with the method’s caller(s) to fix bugs. This
pattern’s visual representation contains (1) one *CM-node
to generally represent one or more caller methods, (2) one
CM-node to represent the callee method, and (3) an m-
annotated edge to show the caller-callee relationship. The
edit’s direction presents the invocation direction.

P2: A callee class experiences an AM change, while one or
more of its caller methods go through CM changes. Intu-
itively, when developers add a new method to fix a bug,

they usually modify existing method(s) to invoke the new
method. This pattern’s visual representation is similar to
P1’s. The *CM-node still represents one or more changed
methods; the AM-node represents one added method; and
the m-annotated edge shows the caller-callee relationship
between co-changed entities.

P3: A field experiences an AF change, while one or more
methods accessing the field experience CM changes. In-
tuitively, when developers add a field for bug fixing, they
also modify existing method(s) to access the added field.
This pattern’s representation is similar to above patterns.
However, the f -annotated edge shows the field-access
relationship between co-changed methods and fields.

P4: A field experiences an AF change, one method undergoes
an AM change, and another method undergoes a CM
change. Intuitively, when developers add a field to fix
a bug, they may also add a new method and change a
current method to access the field.

P5: A method experiences an AM change (e.g., m0 is added),
while another method overriding m0 also undergoes an
AM change. Intuitively, when developers declare a new
method to fix a bug, they may also define a new method
to override the declared method. Different from above
patterns, the edge has a dashed line to indicate the
overriding relationship between methods.

P6: A method experiences a CM change (e.g., m0 is changed),
while another method overriding m0 also undergoes
a CM change. Intuitively, when developers modify a
method to fix a bug, they may also modify another
method that overrides the method.

To further understand the frequency of the six common
patterns, we counted the fixes that match any of these patterns.
As shown in Fig 7, the first three patterns (P1-P3) are more
frequent than the last three patterns, and P1-P3 all require
to apply at least one CM-change. Especially, P1 exists in
41, 166, 136, and 39 fixes of separate projects, meaning
that 21-30% of the multi-entity fixes co-change the methods
with caller-callee relationship. Additionally, we also ranked all
patterns mentioned in TABLE III for individual projects based
on the number of fixes they match. Interestingly, we found
that P1-P3 were also the top three most frequent patterns in
Aries, Cassandra, and Derby. In Mahout, P1, P2, and P3 were
separately ranked as 1st, 2nd, and 4th.

Although existing APR approaches locate single methods
to fix bugs, these approaches can be enhanced to (1) locate
multiple methods that are correlated via the caller-callee or
common field-access dependencies, and (2) generate patches
to change those methods simultaneously.

Finding 5: Four out of the six most frequent fix patterns
apply multiple CM changes. It indicates that existing APR
approaches can be extensible to generate multi-entity fixes
by modifying several methods that call the same changed
method or access the same added field.
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TABLE IV: The scenarios where the most frequent three
recurring change patterns occur

Pattern
Index Scenario

% of
examined

fixes
P1 1. Consistent changes between the callee and

callers
23%

2. Signature change of the callee method 17%
3. Add, delete, or update the caller-callee
relationship

17%

4. Not closely related changes 43%
P2 1. Add a method for refactoring 28%

2. Add extra logic or data processing 72%
P3 1. Add a field for refactoring 9%

2. Partially replace an existing entity 25%
3. Add extra logic or data processing 66%

D. RQ3: Why do programmers make multiple-entity changes,
when they repair real bugs?

This question checks for the content and context of recurring
change patterns. We conducted two case studies to analyze
some fixes matching the patterns. In the first case study, we
manually examined 291 fixes that contained any of P1-P3, and
explored why and how the multi-entity changes were applied.
In the second case study, we further extracted the entity
pairs that were repetitively co-changed in version history, and
inspected 20 of such pairs to investigate any characteristics.

a) Case Study I—Exploration of Recurring Change Pat-
terns: To investigate the concrete scenarios where the most
frequent three recurring change patterns (P1, P2, and P3)
occur, we examined 100 bug fixes for P1 by sampling 25
matched subgraphs in every project. Similarly, we inspected
another 100 sampled bug fixes for P2. We sampled 91 bug
fixes for P3 inspection, because Mahout only has 16 subgraphs
matching P3. All our observations listed in TABLE IV are
based on these 291 sampled fixes.
• Scenarios for P1 (*CMm→CM). We identified four sce-

narios when both callee and caller methods experienced
CM changes. First, in 23% of the cases, developers
applied consistent changes to these methods. Among
these cases, sometimes caller methods were adapted to
the changes in the callee methods. For instance, when a
callee method was changed to always return non-null

values, caller methods were also changed to remove any
null-check for those returned values. In other cases, both

the caller and callee methods were modified to access the
same field or invoke the same method. Additionally, in
17% of the 100 cases, developers changed caller methods
because the callees’ method signatures were changed.
In another 17% of the cases, developers changed the
implementation logic of callees, and also modified callers
to add or delete invocations to the callees, or to change
the logic before invoking callees. In 43% of the cases,
it seems that there is no obvious relationship between
the edits in co-changed methods. Developers might apply
independent changes to fix multiple faults simultaneously.

• Scenarios for P2 (*CMm→AM). We found two scenarios
when a callee method was added, and one or more current
methods were changed to invoke the added method.
First, in 28% cases, developers added the new method
for refactoring purposes such as extracting a method
or moving a method between classes. Correspondingly,
the caller methods were changed to replace some code
with the callee method invocation. Second, in 72% cases,
developers added a method to implement new logic, and
changed current methods to invoke the added method.

• Scenarios for P3 (*CM f→AF). We found three scenarios
when a field was added, and one or more current methods
were changed to access the added field. First, in 9%
of the cases, developers added a field for refactoring,
such as declaring a field for an expression or a constant.
Correspondingly, methods were changed to replace some
expressions or constants with the field access. Second, in
25% of the cases, developers applied changes to enhance
existing features. They declared a new field to partially
replace the usage of an existing field or method invocation
in certain methods. Third, in 66% of the cases, developers
applied changes to add new features, such as adding extra
condition checks or data processing.

Prior user studies revealed that developers refactored code
when fixing bugs [39], [63]. Our analysis of P2 and P3
corroborate this finding with empirical evidences from real
fixes. Among all examined fixes, we did not see any two
identical or textually similar fixes. It means that multi-entity
fixes seldom overlap in textual content. Even though an APR
tool like PAR [38] can fix new bugs based on past fixes,
extra domain knowledge is required for such tools to generate
a correct multi-entity fix completely. For P1, we saw both
seemingly irrelevant changes and consistent changes applied to
caller and callee methods. Therefore, in addition to extending
current APR approaches to simultaneously change related
methods and fix multi-fault programs, future research may also
automatically check for the change consistency across entities
or suggest consistent changes.

Finding 6: Among P1-P3, we did not see any identical
fixes. It means that APR approaches are unlikely to inde-
pendently suggest a correct multi-entity fix purely based
on past fixes, although it is still feasible for new tools to
help complete developers’ fixes.



b) Case Study II—Examination of Repetitively Co-
Changed Entities: To explore whether there is any charac-
teristic of entities that induces co-changes, among the fixes
with CDG(s) extracted, we automatically extracted the entity
pairs that were co-changed in at least two fixes. As shown in
TABLE V, the majority of repetitively co-changed pairs are
methods. Suppose that a pair of entities (e.g., < E1, E2 >)
are co-changed in two fixes (e.g., f1, f2). If the change type
of each entity remains the same in both fixes, we conclude
that the pair’s change types are preserved. Among the 344
pairs, 260 pairs have their change types preserved across fixes.
We randomly selected 5 entity pairs from each project whose
change types were preserved, obtaining 20 pairs for further
manual inspection. All these entity pairs are CM changes. As
some pairs of entities were co-changed in 2, 3, or 6 fixes; we
checked 54 fixes to characterize the 20 pairs (see TABLE VI).

TABLE V: The repetitively co-changed entity pairs

Co-Changed Entities Aries Cassandra Derby Mahout
Two fields 3 6 0 0
Two methods 16 203 93 22
One class and one field 0 1 0 0

TABLE VI: Characteristics of repetitively co-changed pairs

Characteristics # of Pairs Similar statement change?
Similar statements 7 3
Relevant usage of fields 5 7
Commonly invoked methods 4 3
Unknown 4 7

Seven method pairs contain similar statements, and thus
the two methods of each pair were usually changed sim-
ilarly together. For example, EmbedResultSet.insertRow()

and EmbedResultSet.deleteRow() were co-changed in six
examined fixes of Derby. Four of these fixes contain identical
statement-level changes [14], [16], [13], [15], while one fix
has partially identical changes [12].

Five pairs contain similar or relevant usage of fields. For
instance, Activator.start(...) and Activator.stop(...)

were found in three fixes [7], [8], [6]. Both methods accessed
the same fields. Although the program context was different
and statement-level changes were usually dissimilar, both
methods were repetitively changed together to access the
same newly added fields (e.g., registrations, ofBuilder, and
environmentUnaugmentors).

Four pairs invoke the same sets of methods. For example,
DeleteResultSet.setup() and DeleteVTIResultSet.open-

Core() were observed to co-change three times [18], [11],
[17]. Both methods invoked the same methods. Although their
method bodies were different, the two methods were repeti-
tively changed identically to update same method invocations
(e.g., new TemporaryRowHolderImpl(...)).

Four method pairs were co-changed for some unknown
reasons. We could not find any commonality in the program
context or textual edits.

Several tools were built to suggest similar statement-level
edits to similar code snippets [55], [48], [49]. Our observations
demonstrate that such tools can effectively help developers
precisely locate and apply edits. More importantly, we found
that similarly used fields or methods can also indicate what
methods should be co-changed or even what edits should be
similarly applied. However, we have not seen any research
done to automate such suggestion.

Finding 7: The repetitively co-changed entities usually
share common characteristics like similar content, relevant
field usage, or identical method invocations, among which
the similar usage of fields or methods has not been
leveraged to automatically complete developers’ fixes.

VI. THREATS TO VALIDITY

Threat to External Validity: Our observations are based on
the empirical results from four open source projects. Although
we analyzed thousands of bug fixes, our observations may not
generalize to other projects. Tian et al. [67] and Wu et al. [71]
propose approaches to identify bug fixes even when commit
messages do not refer to issue IDs. In the future, we plan to
collect more projects with the above approaches.

Threat to Construct Validity: Our manual inspection
explores the rationale behind recurring change patterns and
repetitively co-changed entities. Although this approach re-
veals some deep insights, it is not scalable and may be
subject to human bias. In the future, we will also design new
approaches to automate the inspection process and to uncover
more insights in an efficient way.

Threats to Internal Validity: InterPart may miss some
dependency relations between co-applied changes, due to the
limited analysis scope and static analysis nature. For example,
InterPart only analyzes edited source files, while some real
fixes also involve modifications to configurations or metadata
(e.g., code annotations and XML deployment descriptors). In
the future, we will also extend InterPart to also correlate the
edits in source code and other types of files. The actual relevant
co-changes may be more frequent, showing a stronger need for
future tools to facilitate change dependency comprehension.

As with prior work [60], we leveraged the syntactic de-
pendence relationship to link relevant changes. It is possible
that developers may correlate changes based on other kinds
of dependencies. In the future, we also plan to conduct a
user study with developers to investigate (1) how syntactic
dependence relationship is helpful, and (2) what other relations
developers consider when grouping relevant changes. Such
investigation will help us better design program differencing
tools to facilitate change comprehension.

VII. RELATED WORK

The related work includes empirical studies on code
changes, change impact analysis, and APR.

A. Empirical Studies on Code Changes

Researchers showed that developers applied repeated code
changes [40], [54], [58], [73]. For instance, Yue et al. found



that 15-20% of bugs were fixed with code changes involving
repetitive edits [73]. Nguyen et al. reported that 17%-45%
of bug fixes were recurring [54]. However, these studies
treated co-changed entities independently while ignoring any
relationship between those entities. They identified recurring
change patterns either based on the string similarity of edited
lines or API usage’s exact match. In comparison, InterPart
links changed entities based on their syntactic dependencies,
and reveals the recurring co-change relationship between
related entities. For our case studies, we further examined
reasons to explain the co-changed related entities. Our study
complements all prior work.

Other researchers observed and predicated the co-change
relationship between multiple program files or entities in one
commit [78], [26], [51], [46], [30]. For instance, Mcintosh et
al. mined co-changed source files and build files from version
control repositories to characterize the co-change relationship
between both types of files [46]. Zimmerman et al. mined co-
changed rules between software entities, and then predicted
changes based on the mined rules [78]. Herzig et al. found
that a non-trivial portion of program commits contained more
than one bug fix, feature, or refactoring. [36]. Barnett et
al. correlated one program commit’s edited lines based on
the def-use relationship of types, fields, methods, and local
variables; and reported that a significant fraction of commits
included multiple groups of correlated changes [25]. Our
findings are largely consistent with the above studies but more
accurate, as we performed more advanced analysis. More
importantly, we manually inspected co-changed entities to
understand why they were co-changed in certain ways, and
how to automatically locate or apply part of the edits.

B. Change Impact Analysis

Change impact analysis identifies the potential conse-
quences of a change, or estimates what needs to be modified
to accomplish a change [24]. A collection of dynamic or static
techniques were built to determine the effects of source code
modifications, which help developers decide how to augment
test suites, which regression tests to select, and what program
changes introduce bugs [62], [56], [57], [60], [74], [64]. For
instance, Chianti analyzes two versions of a program and
decomposes their difference into a set of atomic changes such
as CM and AF [60]. By building a call graph for each test case,
Chianti decides (1) which test cases are potentially affected by
a given set of atomic changes; and (2) what atomic changes
may affect the behavior of a particular test case.

Similar to Chianti, we also defined a set of atomic changes
roughly at the method level, and analyzed change dependen-
cies to construct CDGs. However, our research is different in
two ways. First, our goal is not to explore how code changes
affect the unchanged portion’s program behaviors. Instead, we
explored the recurring patterns of co-applied atomic changes,
and further investigated the rationale behind those co-changes.
Second, Chianti uses dynamic analysis to reason about change
impacts, and requires the full coverage of test cases on edited
code; while our approach conducts static analysis on partial

code to flexibly characterize change dependencies, without
being limited by any test case’s coverage on edited code.

C. Automatic Program Repair (APR)

APR tools generate candidate patches for a given buggy
program, and automatically check the correctness of each
patch using compilation and testing [42], [41], [38], [53], [69],
[59], [32], [44], [45], [47]. Specifically, GenProg generates
candidate patches by replicating, mutating, or deleting single-
line code randomly in the existing program [42]. Prophet
trains a machine learning model with successfully applied
human patches obtained from open source repositories, and
then generates a space of candidate patches to fix bugs [45].
Genesis generates program transformations (e.g., wrapping
existing code with a try-catch construct) from past fixes,
and then uses the transformations to guide automatic patch
creation [43]. Angelix leverages constraint solving to synthe-
size multi-line patches to correct multiple if-condition checks
in one fix [47]. To the best of our knowledge, all the above
approaches modify only single method bodies.

Our study quantitatively investigates the distribution of real
bug fixes across different program entities and change types.
It not only shows the significant gap between APR fixes and
real fixes, but also identifies potential ways to close the gap by
enhancing APR approaches for more general program repair
and by proposing new tools for coding completion.

VIII. CONCLUSION

Our work was intended to exploring the frequency, content,
and semantic meanings of multi-entity bug fixes. We built
InterPart that supports inter-procedural analysis on changed
source files, and precisely identifies the syntactic dependencies
between co-changed entities. With InterPart, we analyzed
thousands of bug fixes and revealed various novel findings.

• Multi-entity fixes are frequently applied by developers.
In 66-76% of such fixes, the co-changed entities in a
bug fix are closely related to each other via syntactic
dependencies, which indicates a strong need for program
diff tools that visualize the relationship.

• There are three major recurring patterns that frequently
connect relevant co-changed entities. As multiple entities
are usually co-changed in bug fixes, it is worthwhile ex-
ploring how to synthesize fixes that can change multiple
syntactically related entities together.

• Although a multi-entity fix is never identical to other
fixes, the fix may apply similar or divergent edits to
the entities with similar textual content, field usage, or
method invocations. This indicates that future tools can
suggest missing changes based on the similar content
of edited locations, similar usage of fields, or common
method invocations between software entities.

We provided actionable advice based on our observations.
Our future work is on building automatic tools for change
comprehension, program repair, and fix completion.
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