
The Symptoms, Causes, and Repairs of Workarounds in Apache
Issue Trackers

Aoyang Yan, Hao Zhong, Daohan Song, and Li Jia

Shanghai Jiao Tong University, China

{xiaoyan9894,zhonghao}@sjtu.edu.com,251287012@qq.com,insanelung@sjtu.edu.cn

ABSTRACT
In issue tracker systems, a bug report can be resolved asworkaround.
Since the definition of workarounds is vague, many research ques-

tions on workarounds are still open. For example, what are the

symptoms of bugs which are resolved as workarounds? Why do

a bug report have to be resolved as workarounds? What are the

repairs and impacts of workarounds? In this paper, we conduct an

empirical study to explore the above research questions. In particu-

lar, we analyzed 221 real workarounds that were collected from 88

Apache projects. Our results lead to ten findings and our answers

to all the above questions. Our findings are useful to understand

workarounds and to improve software projects and issue trackers.

1 INTRODUCTION
Issue tracker systems (e.g., JIRA [1]) are widely used to manage

bug reports. A bug report typically is resolved as fixed, invalid,
duplicated or won’t fix. The definitions of the above resolutions are
clear. For example, a fixed bug report denotes that the problem is

resolved. Users can make their choices based on these resolutions.

For example, if the problem of a bug report is serious and the bug

is fixed, users can update to a newer version to avoid the problem.

Although it is less known, a bug report can be resolved as a

workaround. By its literal definition, a workaround is a bypass

to solve or avoid a problem, when the most obvious solution is

not possible. After reading this definition, people may still raise

questions besides what are already reported in bug reports. For

example, are the problems actually fixed or not? If a problem is

literally avoided, does it become a technical debt [14]? What is the

trouble of directly resolving the problem? Indeed, even the very

definition of workarounds is unclear. When the prior studies (e.g.,
[9]) introduce the work flow of issue trackers, they did not mention

workarounds at all. The questions hinder users from making a good

decision, even if the user knows that a bug is fixed as workarounds.

To deepen the knowledge on workarounds, Song et al. [11] con-
duct the first empirical study on workarounds. Compared with

their study, we further refine the categories of workarounds, define

workarounds, and present the associations of the categories.

2 METHODOLOGY
Dataset. In total, we collected 221 workarounds, and to ensure the

diversity of the dataset, these workarounds were collected from

88 Apache projects. The size of our dataset is comparable to those

of other related empirical studies. For example, Zhang et al. [15]
analyzed 175 tensorflow [2] bugs.

Protocol. In our study, wemanually inspected all theworkarounds.

Our analysis protocol is as follows: First, for each bug report, We

read the website of the project to understand its overall function-

ality and users (e.g., programmers or end users). This analysis is

R1.1 Modifying API calls

R1.2 Modifying the settings of libraries

R1.3 Switching to newer versions

R1.4 Switching to other libraries

R1.5 Switching to older versions

R1.6 Deep copying

R1.7 Bypassing APIs with bugs

R1.8 Implementing wrappers

R1.9 Modifying input formats

R1.10 Modifying input values

R1.11 Overridden APIs

R2.1 Modifying my settings

R2.2 Modifying build files or options

R2.3 Repairing as technical debts

R2.4 Modifying documents

R3.1 Switching to other techniques

R3.2 Modifying operating systems

R3.3 Deleting temporary files

R4.1 Fixed problems

R4.2 Unfixed problems

C1.1 Problems in my libraries

C1.2 Problems in my clients

C2.1 Problems in settings

C2.2 Flawed repairs

C2.3 Incompatible issues

C2.4 Borderline cases

C2.5 Flaky problems

C2.6 Outside contributors

C3.1 Problems in operating systems

C3.2 Incorrect techniques

C3.3 Unavailable resources

C3.4 Problems in languages

C3.5 Problems in the network

C4.1 Fixed by newer versions

C4.2 Fixed by related issues

Causes Repairs

S1. Crash

S2. Unexpected 
behavior

S3. Build and 
testing error

S4. Hang

S5. Security threat

S6. Performance 
issue

S7. Errors in 
warning messages

Symptoms

Figure 1: The overall results

useful to understand the scope of bug reports. Second, we read the

title, description and discussions of a bug report to understand its

symptoms. Third, we read the discussions of a bug report to under-

stand its causes and repairs. A programmer marks a bug report as

a workaround, and the comments from this program are typically

useful to understand why a bug is resolved as a workaround. If bug

reports have related issue reports and pull requests, we further read

their related issue reports and pull requests. For each bug report,

we checked its code from its github repository and searched for

commits that resolve a bug with its issue number. If such commits

are found, we read their code changes to determine their types

of causes and repairs. The categories of symptoms are predefined

by prior studies [10, 12, 13, 15], but the categories of causes and

repairs are defined by ourselves, since no prior study has built such

taxonomy for workarounds. Following this protocol, we inspected

the bugs independently, and compared the results for differences.

In this study, we tried to resolve all inconsistencies. If we could not

come to an agreement, we contacted their programmers by sending

emails or directly discussing on its bug report.

3 EMPIRICAL RESULT
Our study answers the following research questions:

RQ1. Which symptoms are resolved as workarounds?
Most workarounds fix crashes (41.63%) and unexpected behav-

iors (32.58%). For example, a workaround [3] describes a crash:

“DNS Packets with dns.flags.rcode=1 cause ml_ops.sh to crash”. In

the standard process, programmers determine that a crash [4] is

caused by a wrong way to retrieve values from a table, and fix the

code to retrieve the correct values.

RQ2. Why are workarounds introduced?



Conference’17, July 2017, Washington, DC, USA Aoyang Yan, Hao Zhong, Daohan Song, and Li Jia

Open Assign Resolved Closed

Invalid
Duplicated

Fixed

Worksforme
Wontfix

Reopen

Verified

Invalid

Duplicated
if resolution is fixed

Workaround

Workaround

Figure 2: The life cycle of a bug report with workarounds

In total, 34.84%workarounds fixed problems on their own projects,

but their repairs are imperfect (e.g., flawed repairs 5.88%), difficult to

reproduce (e.g., flaky problems 1.36%), modifications on non-source

code (e.g., settings 19.46%), or solved by outside contributors. The

problems of about half workarounds are across projects (38.01%)

or reside in environments (21.27%). In a few cases, a bug report is

marked as workaround, because its problem is already fixed (9.50%).

RQ3. How do workarounds repair bugs?
In most cases, libraries cannot be modified to repair problems. As

workarounds, programmers can switch whole libraries (e.g., with
a newer version 7.24%), switch APIs with problems (e.g., overrid-
den 0.90%), or switch the way to call APIs (8.60%). When repairs

happen in a project where a bug is reported, they often modify

settings (21.72%), build files (9.95%), and documents (2.71%). Mean-

while, the repairs on source files are technical debts (3.62%). As

workarounds, programmers can recommend switching to other

techniques (7.69%), modifying their own operation systems (4.07%),

or deleting temporary files (1.36%). A workaround can have no

repairs due to two different reasons: (1) some bugs are already

fixed (6.33%) and (2) some cannot be repaired at present (3.17%).

For example, a bug report [5] of Zeppelin [6] complains a hang. To

resolve the problem, a programmer submits a pull request [7], and

proposes to change the default input of a method. However, the pull

request is not approved, because the problem already disappears

in a newer version. As a result, the pull request is deleted, and no

repairs are applied.

RQ4. What are the associations among the symptoms,
causes and repairs of workarounds?

Figure 1 shows the associations of symptoms, causes, and repairs.

In this Figure, each column denotes one of the above three dimen-

sions, and a node of a dimension denotes a category of the dimen-

sion. An edge between two nodes denotes a association between the

two corresponding categories, and a thicker edge denotes a stronger

association. We find that most associations between causes and

repairs are straightforward. For example, if the operating system

causes a bug, a typical workaround is to select alternative operating

systems. Crashes are fixed as workarounds, often because they are

fixed problems or their problems reside in environments. Unex-

pected behaviors are fixed as workarounds, often because their

repairs have flaws.

RQ5. How to define workarounds?
Figure 2 presents the work flowwith workarounds. The problems

of 90.50% workarounds are not fixed when they are reported, and

their definition is as follows:

Definition 1. A workaround is a type of bug reports, whose prob-
lems are bypassed, because their problems are infeasible or difficult to
be handled in the standard process.

The problems of 9.50% workarounds are already fixed when they

are reported, and the definition of these workarounds is as follows:

Definition 2. A workaround is a type of bug reports, whose
problems are already fixed in new versions or related issues.

Herzig et al. [8] find that researchers and programmers have

different definitions on the types of issue reports. We find that even

programmers themselves have different definitions onworkarounds.

The inconsistencies can be confusing, and some workarounds can

be better marked as a different type of transitions. The problem can

be resolved, if issue trackers define finer status. For example, if the

problem of a bug report is fixed in new versions or related issues, it

can be better marked as fixed in other locations than workarounds.

More details are presented on our website:

https://github.com/tetradecane/Workaround_poster_website

4 CONCLUSION AND FUTUREWORK
Our future work plan is as follows:

1. Presenting more examples and details. Due to space limit,

we present limited examples and brief analysis protocol in this

paper. When extending our poster to a full paper, we will present

more illustrative examples, and write detailed protocols.

2. Cleansing workarounds. We find that programmers can

mark two different types of issue reports as workarounds. In our

rejected submissions, some researchers criticize that the second

definition is inconsistent with what researchers anticipate, and

they suggest that we shall remove them to avoid the pollution from

such so-called workarounds. In future work, we plan to follow their

advices, and present the results after cleansing workarounds.

3. Interpreting our findings. We will present actionable ad-

vises based on our findings.

ACKNOWLEDGEMENT
We appreciate the reviewers for their comments. This work is spon-

sored by a CCF-Huawei Innovation Research Plan (No. CCF202

l-admin-270-202111). Hao Zhong is the corresponding author.

REFERENCES
[1] 2020. https://issues.apache.org/jira. (2020).

[2] 2020. https://github.com/tensorflow/. (2020).

[3] 2020. https://issues.apache.org/jira/browse/SPOT-26. (2020).

[4] 2020. https://issues.apache.org/jira/browse/SPOT-238. (2020).

[5] 2020. https://issues.apache.org/jira/browse/ZEPPELIN-3175. (2020).

[6] 2020. http://zeppelin.apache.org/. (2020).

[7] 2020. https://github.com/apache/zeppelin/pull/2733. (2020).

[8] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature:

how misclassification impacts bug prediction. In Proc. ICSE. 392–401.
[9] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving bug

triage with bug tossing graphs. In Proc. ESEC/FSE. 111–120.
[10] Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2020. An

Empirical Study on Bugs inside TensorFlows. In Proc. DASFAA. to appear.

[11] Daohan Song, Hao Zhong, and Li Jia. 2020. The Symptom, Cause and Repair of

Workaround. In Proc. ASE. 1264–1266.
[12] Lin Tan, Chen Liu, Zhenmin Li, XuanhuiWang, Yuanyuan Zhou, and ChengXiang

Zhai. 2014. Bug characteristics in open source software. Empirical Software
Engineering 19, 6 (2014), 1665–1705.

[13] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An Empirical

Study of Bugs in Machine Learning Systems. In Proc. ISSRE. 271–280.
[14] Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and Xiaohu Yang.

2018. Automating change-level self-admitted technical debt determination. IEEE
Transactions on Software Engineering 45, 12 (2018), 1211–1229.

[15] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.

An empirical study on TensorFlow program bugs. In Proc. ISSTA. 129–140.

https://github.com/tetradecane/Workaround_poster_website
https://issues.apache.org/jira
https://github.com/tensorflow/
https://issues.apache.org/jira/browse/SPOT-26
https://issues.apache.org/jira/browse/SPOT-238
https://issues.apache.org/jira/browse/ZEPPELIN-3175
http://zeppelin.apache.org/
https://github.com/apache/zeppelin/pull/2733

	Abstract
	1 Introduction
	2 Methodology
	3 Empirical Result
	4 Conclusion and Future Work
	References

