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Abstract—Compilers are critical in development, but compiler
bugs can cause hidden and serious bugs in their compiled
code. To deepen the understanding of compiler bugs, in the
prior empirical studies, researchers read the bug reports and
patches of compilers, and analyze their causes, locations, and
patterns. Although they derive many interesting findings, their
studies are limited. First, as bug reports seldom explain which
projects encounter compiler bugs, it is infeasible to understand
the outreaching impact. Second, before compiler bugs are fixed,
programmers can bypass such bugs. The bug reports of compilers
do not introduce such workarounds. Finally, the distribution of
compiler bugs can be distorted, since researchers and compiler
developers also file bug reports.

In this paper, we propose a novel angle to analyze compiler
bugs. Instead of compiler bug reports, we collect compiler bugs
that are mentioned in real development. When programmers
encounter compiler bugs in real development, they can leave
traces in their commit messages. By searching such messages, we
collected 644 unique commits whose messages explicitly mention
the urls of compiler bugs. From this angle, in this paper, we
conduct the first empirical study to analyze compiler bugs in the
wild. We summarize our results into seven useful findings for
users, compiler developers, and researchers. For example, for
researchers, we find that some large workarounds of compiler
bugs involve repetitive and systematic changes, which indicates a
new research opportunity for code migration tools. Furthermore,
we attempt to apply our findings in real development, and we
obtain positive feedback.

I. INTRODUCTION

As the medium between programmers and machines, com-
pilers are critical and daily used in programming, but their
bugs can lead to hidden and serious consequences [55], [59].
For example, compilers can fail to identify invalid programs,
and compile valid programs to the wrong code. Both types of
compiler bugs can introduce silent bugs that are difficult to
detect [74], [92]. To deepen the knowledge of compiler bugs,
researchers have conducted various empirical studies that an-
alyze various compilers (e.g., C compilers [86], [105], Python
compilers [93], and deep learning compilers [85], [95]), and
their studies focus on different perspectives (e.g., buggy loca-
tions [93], repair patterns [93], [105], and causes [85], [93]).

All the prior studies analyze bug reports and patches of
compilers, from which it is feasible to understand the symp-
toms and repairs of compiler bugs. For example, the title of a
gcc report [17] is “_mm_loadu_si16 and _mm_loadu_si32

implemented incorrectly”. This title introduces the symptom.
A follow-up comment explains that this bug is caused by
parameter orders, and another comment points to the patch:

1 - return _mm_set_epi32(*(int *)__P, (int)0,(int)0,(int)0);
2 + return _mm_set_epi32(0, 0, 0, (*(__m32_u *)__P)[0]);

google / XNNPACK Public

Commit

Work around _mm_loadu_si32 broken on latest gcc
See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99754 for details 

 master (#3149)

Mar* authored and xnnpack-bot committed on Jun 15, 2022
1 parent 56ddd07 commit b627348

Code Issues 15 Pull requests 39 Actions Security Insights

Browse files

216 src/amalgam/avx.c

Large diffs are not rendered by default.

224 src/amalgam/avx2.c

Large diffs are not rendered by default.

8 src/amalgam/avx512skx.c

3511 3511 const __m512i vbias = _mm512_load_si512(params->avx512.bias);

3512 3512 const __m512i va_multiplier = _mm512_load_si512(params->avx512.a_multiplier);

3513 3513 const __m512i vb_multiplier = _mm512_load_si512(params->avx512.b_multiplier);

3514 const __m128i vshift = _mm_loadu_si32(params->avx512.shift);-
3514 const __m128i vshift = _mm_load_si128((const __m128i*) params->avx512.shift);+

Load diff

Load diff

Showing 343 changed files with 10,063 additions and 10,063 deletions. Split Unified

(a) a commit of XNNPACK

1 src/amalgam/avx2.c
2 @@ -3231,19 +3231,19 ...
3 -...= _mm_loadu_si32(w);
4 +...= _mm_cvtsi32_si128(((const int*) w)[0]);
5 src/amalgam/avx512skx.c
6 @@ -3511,7 +3511,7 ...
7 -...= _mm_loadu_si32(params->avx512.shift);
8 +...= _mm_load_si128((const __m128i*) params->avx512.shift);

(b) the patch of XNNPACK
Fig. 1: A workaround in XNNPACK

Compilers are employed to compile source files from real
projects in daily programming tasks. In this paper, we refer to
such scenarios as real development. It is interesting to explore
how compiler bugs affect real development, but compiler bug
reports and their patches provide no such information. For
example, which method will be called by real projects, and
how to bypass the wrongly implemented methods? This is
an inherent limitation of the prior studies. We notice that
the impact can be recorded in the revision history of open-
source projects. For example, we find that XNNPACK [49]
encountered and bypassed this gcc bug. Figure 1a shows that
the commit [48], and Figure 1b shows the workaround. In this
commit, _mm_loadu_si32 is intensively called. To bypass
this bug, 343 files are modified. Based on this observation,
compiler developers can put their effort in fixing the more fre-
quently called method. To bypass this compiler bug, the calls
of _mm_loadu_si32 are replaced with _mm_cvtsi32_si128

and _mm_load_si128. Programmers can learn the knowledge
and bypass the calls if they encounter the same compiler bug.

As illustrated in the above example, revision histories pro-
vide a new angle for analyzing compiler bugs. Motivated by
our example, we retrieve 644 unique commits whose messages
mention compiler bugs. With the commits, we can analyze
compiler bugs from the viewpoints of end users, programmers,
and compiler developers. In particular, RQ1 analyzes to what
degree compiler bugs affect end users and programmers. RQ2
analyzes compiler bugs from the viewpoint of programmers.
For example, we analyze how many code lines are modified



to implement workarounds for compiler bugs. RQ3 analyzes
compiler bugs from the viewpoints of compiler developers. For
example, we analyze bugs in which components are mentioned
in commits. Our explored research questions are as follows:

• RQ1. Can compiler bugs affect many (end) users?
Motivation. The result is useful to understand the out-
reaching influence of compiler bugs.
Protocol. In this research question, we analyze compiler
bugs from the viewpoint of users and end users. Here,
the users of compilers are programmers, and end users
are users of project whose source files trigger compiler
bugs. In GitHub, the watchers and forks of a project can
measure affected programmers and end users.
Result. Finding 1 shows that both well-known and less-
known projects can encounter compiler bugs. Most com-
piler bugs affect about ten programmers or end users.

• RQ2. How are compiler bugs bypassed?
Motivation. Programmers can bypass unfixed compiler
bugs, i.e., reducing their impact. The result is useful to
understand how programmers live with compiler bugs.
Protocol. In this research question, we analyze from the
perspective of compiler users, i.e., programmers. First, to
understand why programmers bypass compiler bugs, we
analyze how many mentioned compiler bugs are fixed.
For each fixed compiler bug, we further count the days
to fix the compiler bug. Second, we count the modified
lines to implement such a workaround.
Result. Finding 2 shows that fewer than half of the men-
tioned compiler bugs are fixed. Fixing most mentioned
compiler bugs takes months or even years. Although pro-
grammers often have to implement workarounds, Finding
3 shows that most workarounds of compiler bugs modify
only ten to twenty lines of code.

• RQ3. Which types of compiler bugs are bypassed?
Motivation. For the developers of compilers, the result is
useful to improve their compilers. For researchers, there
can be some research opportunities.
Protocol. In this research question, we analyze compiler
bugs from the perspective of compiler developers and
researchers. First, we count modifications to bypass com-
piler bugs by component. Second, for each component,
we analyze two sample workarounds, including a large-
scale modification and a small-scale modification. Finally,
we derive our findings after we analyze the samples.
Result. Finding 4 shows that the popularity of language
features and the symptoms of compiler bugs determine
the effort of implementing workarounds. Although most
workarounds modify only ten to twenty code lines (Find-
ing 3), some workarounds involve many repetitive and
systematical changes (Finding 6). In addition, if a com-
piler bug hinders the main purpose of a project, program-
mers will take much effort to implement its workarounds
(Finding 5). Meanwhile, Finding 7 shows that program-
mers and compiler developers can have different opinions
on bugs, especially for undefined behaviors.

Compiler Project Commit Bug Fork
gcc 367 491 390 155,460
both 6 8 6 3

old llvm 91 109 75 21,940
llvm 31 36 37 8,609
total 495 644 508 186,012

TABLE I: Our dataset

Section II introduce our support tool and dataset. Section III
presents our empirical result. Section IV interprets our find-
ings, and a vision is to connect more roles. Section V provides
an example of this vision. Section VII concludes this paper.

II. METHODOLOGY

This section introduces our research methodology.

A. Tool Support

GitHub API [65] allows programmers to query the contents
of Github projects. By calling this API, our tool retrieves
commits whose messages mention gcc and llvm bugs. Ac-
cording to the formats of their bug reports, our gcc keyword is
https://gcc.gnu.org/bugzilla/show bug.cgi?id=, and our llvm keywords
are https://github.com/llvm/llvm-project/issues/ and https://bugs.llvm.org/
show bug.cgi?id=. GitHub API can retrieve irrelevant results.
First, some retrieved commits do not mention compiler bugs.
Our tool uses the above three keywords to match commit
messages. It collects a commit, only if its message contains
at least a keyword. Second, GitHub API retrieves duplicated
commits from forked projects. The duplicated commits are
harmful to our study, since they contain no new information.
Each commit is associated with a hash value. If commits
have identical hash values, our tool collects only the first
retrieved commit. Even if their hash values are different,
commits can be duplicated. For example, from two forked
Linux kernels, we find two commits such as 7157 [3] and
ef1c [4]. Although their hash values are different, the author
and the modifications of the two commits are identical. The
messages of the two commits explain that the commits intend
to fix an optimization issue of llvm. The only difference is
that the message of 7157 [3] has a hash value. We search with
the mentioned hash value, and GitHub API retrieves more than
three thousand duplicated commits. If we do not remove the
duplicated commits, our results will be seriously biased. To
handle this issue, if two commits have an identical author
and modifications, our tool compares their messages. If the
Levenshtein similarity between them is more than 0.8, our
tool considers that they are duplicated, and collects only the
first commit. gcc and llvm have projects on GitHub. Their
programmers can write the urls of compiler bugs in commit
messages to build the links from bug reports to their fixes.
As these commits are irrelevant to our study, our tool ignores
commits from the two compilers and their forked projects.
Some projects can add the source files of compilers to their
repositories. For example, PyOMP [35] adds the source files
of llvm to its code repository, and many of its commits are
inherited from llvm. We manually remove the projects if they
add the source files of compilers to their repositories.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
https://github.com/llvm/llvm-project/issues/
https://bugs.llvm.org/show_bug.cgi?id=
https://bugs.llvm.org/show_bug.cgi?id=
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Fig. 2: The distributions of watchers and forked projects

B. Dataset

Table I shows our dataset. Column “Compiler” lists the
compilers. Column “Project” lists the projects whose commit
messages mention compiler bugs. Column “Commit” lists our
collected commits. From each keyword, GitHub retrieves 100
pages of commits. After applying our filters, our tool collects
644 unique commits in total. Column “Bug” shows the number
of compiler bugs mentioned in commit messages. Column
“Fork” lists the forked projects of our subjects. On overage,
each project has about 62 forked projects. If we do not remove
forked projects, our collected dataset can be seriously polluted.

In Table I, Rows “gcc” and “llvm” list the results from the
active issue trackers of gcc and llvm, respectively. Row “old
llvm” lists the results from the archived llvm issue tracker.
Here, llvm can compile various programming languages, e.g.,
c++ and fortran. Row “both” lists the results when commit
messages mention bugs of both compilers.

III. EMPIRICAL RESULT

This section presents our results. More details are listed on
our project website: https://anonymous.4open.science/r/compilerbug

A. RQ1. Impact on (End) User

1) Protocol: Compiler bugs can silently affect end users
and programmers. When a project is updated, the users on the
watch list will be notified (e.g., security alerts). A member
on the watch list of a project can be an end user who
is interested in this project or a programmer who works
on this project. Programmers can fork projects for various
considerations. For example, a programmer plans to fix a bug
in a project, but this programmer has no right to modify the
project. The programmer can fork and become the owner of
the forked project. After the forked project is modified, it is
feasible to generate a pull request for the original project.
If a programmer forks a project, this user should have an
interest in the development of this project. End users may not
watch projects, and programmers can reuse the source files
of a project without forking the project. Empirical studies are
based on observations and naturally ignore instances that could
not be observed. Our observations are the lower bounds. For
each project in Table I, we calculate its watchers and forked
projects and draw box plots to show their distributions.

oblivioncth / Qx Public

Commit
Add workaround for GCC explicit template specialization bug

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85282

 master (#103)
 v0.5.0.1 …  latest

obl* committed on Feb 15

1 parent ae11021 commit 34ebd9a

Code Issues 3 Pull requests Discussions Actions Projects Security Insights

Browse files

13 comp/core/include/qx/core/qx-bytearray.h

28 28 else

29 29 primitive = qToBigEndian(primitive);

30 30

31 // Return QByteArray constucted from primitive viewed as a char array-
31 // Return QByteArray constructed from primitive viewed as a char array+

32 32 return QByteArray(reinterpret_cast<const char*>(&primitive), sizeof(T));

33 33     }

34 34

35 /*+
36 * This is valid C++17 syntax for explicit template specialization, but due to an outstanding+
37 * bug this won't compile with GCC: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85282+
38 *+
39 * The workaround is to fake partial template specialization using a dummy template parameter.+
40 */+
41 #if defined __GNUC__ && !defined __clang__ // If using G+++
42 template<typename>+
43 inline QByteArray fromPrimitive(bool primitive, QSysInfo::Endian endianness)+
44 #else+

35 45 template<>

36 46 inline QByteArray fromPrimitive<bool>(bool primitive, QSysInfo::Endian endianness)

47 #endif+
37 48     {

38 49 // Ensures true -> 0x01 and false -> 0x00

39 50 return primitive ? QByteArray(1, '\x01') : QByteArray(1, '\x00');

Showing 1 changed file with 12 additions and 1 deletion. Split UnifiedFig. 3: A compiler bug encountered by Qx
J-MR-T / blc Public

Commit
workaround issue in mlir with automatic malloc/free decls (llvm/llvm-…
…project#62376)

 master

J-M* committed on Apr 26 1 parent 18fa864 commit bf9a891

Code Issues Pull requests Actions Projects Security Insights

Browse files

4 src/main.cpp

2936 2936 if(!args.interpret() && !args.llvm() && !args.output())

2937 2937 owningModRef->print(llvmOut);

2938 2938

2939 +
2939 2940 // mlir mod -> llvm mod

2940 2941

2941 2942 mlir::registerLLVMDialectTranslation(mlirCtx);

2947 2948 goto continu;

2948 2949 }

2949 2950

2951 // At some point remove this, when the bug inserting malloc/free 

declarations automatically, is fixed
+

2952 Codegen::MLIR::workaroundAutomaticFreeMallocdecls(*owningModRef);+
2953 +

2950 2954 // llvm dialect mod -> llvm mod

2951 2955 llvm::LLVMContext llvmCtx;

2952 2956 auto llvmModUP = mlir::translateModuleToLLVMIR(*owningModRef, llvmCtx);

40 src/mlir.cpp

844 844     target.addLegalDialect<mlir::LLVM::LLVMDialect>();

845 845     target.addLegalOp<mlir::ModuleOp>();

846 846

847 // needed for other conversions for the pre-existing dialect, as well as for 

the b::PointerType
+

847 848     mlir::LLVMTypeConverter typeConverter(&ctx);

Showing 3 changed files with 44 additions and 1 deletion. Split Unified

(a) a commit of blc

1 // MLIR automatically inserts malloc/free declarations in
the llvmir dialect module -> LLVM IR module conversion.

2 // This is annoying, because it doesn’t regard custom
declarations for malloc/free

3 +void workaroundAutomaticFreeMallocdecls(mlir::ModuleOp mod
) noexcept{...

4 +}

(b) the patch of blc.
llvm / llvm-project Public

[MLIR] Custom malloc / free functions with signatures differing from libc and private 
symbol visibility cause llvmir dialect module -> llvm IR conversion to fail #62376

Open J-MR-T opened this issue on Apr 26 · 1 comment

Assignees

No one assigned

Labels

mlir

Projects

None yet

Milestone

No milestone

Development

No branches or pull requests

Code Issues 5k+ Pull requests Actions Security Insights

New issue

J-M* commented on Apr 26 •  

Commit: 1f1fea6

Steps to reproduce:

1. Take this file:

2. And run it through e.g. mlir-translate : mlir-translate --mlir-to-llvmir test.mlir

This results in this assertion failure:

edited by VoltrexKeyva 

module {
  llvm.func @free(i64) -> i64 attributes {sym_visibility = "private"}
  llvm.func @foo() -> i64 attributes {sym_visibility = "private"} {

%0 = llvm.mlir.constant(0 : i64) : i64
%1 = llvm.call @free(%0) : (i64) -> i64

    llvm.return %0 : i64
  }
}

(c) llvm 62376
Fig. 4: A compiler bug reported by blc

2) Result: Compiler bugs affect many (end) users, since
some projects have many watchers and forks. For gcc, the
Linux kernel [23] has the most watchers and forked projects.
For example, a bug report complains that the Linux kernel
fails to build due to a bug of gcc11 [16], and in a commit [24],
they disable some compilation flags to bypass this gcc bug.
For llvm, .NET Runtime [31] has the most watchers and
forked projects. In 2023, the programmers of .NET Runtime

submitted a commit [7]. According to its commit message,
the programmers bypassed a crash that was caused by a llvm

bug [27]. This llvm bug was reported in 2021, but was not
fixed. As the .NET Runtime programmers encountered the
bug two years later, they are unlikely to report this llvm bug.
Both projects are well-known and their bugs affect many end
users and programmers.

Figure 2 shows the distributions of the watchers and forks.
The vertical axes list the commits that mention gcc and llvm

bugs, and the horizontal axes list the number of watchers and
forked projects, respectively. Although famous projects like
the Linux kernel and .NET Runtime have many watchers
and forked projects, the results show that most of our subject
projects have few watchers and forked projects. For example,

https://anonymous.4open.science/r/compilerbug


Qx [36] is C++ UI library. It has only three watchers and
two programmers. Its issue tracker has only three bug reports.
Although this project is less popular, we find that compiler
bugs indirectly influence its users. As shown in Figure 3,
this project encounters a compiler bug, and its programmer
implements a workaround. This compiler bug was reported in
2018, but is still open. From the viewpoint of users, compiler
bugs can influence them even if they use less-known software.
The above observations lead to a finding:

Finding 1. Besides famous projects, compiler bugs can
affect many regular projects.

Although many programmers never notice compiler bugs,
our results show that compiler bugs can affect many projects.

B. RQ2. Repair and Workaround for Compiler bug

1) Protocol: In this research question, we analyze compiler
bugs from the viewpoint of programmers. When programmers
encounter compiler bugs, they can be curious about whether
these compiler bugs will be fixed. We first present the dis-
tributions of fixed and open compiler bugs. If a compiler
bug is fixed, we further count the days to fix compiler bugs.
Compiler bugs can hinder the compilation and even cause
crashes. Before a compiler bug is fixed, programmers can
implement its workarounds. After a compiler bug is fixed,
programmers can remove its workarounds. In both cases, the
efforts are recorded in the modifications of handling commits.
We count the modification of a commit as the sum of its added
and deleted code lines.

2) Result: Programmers can report their encountered com-
piler bugs. For example, blc [8] is a compiler for a B-
like language. As shown in Figure 4a, a programmer of blc
encounters a llvm bug, and this bug automatically inserts
unnecessary malloc/free declarations. Although as shown
in Figure 4b, a workaround is implemented, on the same day,
the blc programmer reports this bug to llvm [28]. This bug is
still open, 60 days after it was reported. From the viewpoint of
programmers, it is interesting to know whether their reported
bugs will be fixed and how long it will take to fix their bugs.

Our tool extracts whether the mentioned compiler bugs are
fixed. Figure 5a shows the results of the top components. In
this figure, we group bug reports by components and merge
the bug reports of similar components. For example, we merge
tree-optimization and rtl-optimization of gcc into
the optimization category. When they cannot determine the
components, gcc developers put them in the other category,
and llvm developers put them in the -newbug category. We
ignore the two categories. In the new issue tracker of llvm,
developers do not mark whether a bug is fixed. We ignore
the bug reports from this tracker. As shown in Table I, only
75 bugs come from the old issue tracker, and the bugs from
each component are even fewer. The result of gcc is more
meaningful. It shows that in total, less than half of compiler
bugs are fixed. In particular, compiler developers fix more bugs
in c++, c, and target than other components.

0 0.2 0.4 0.6 0.8 1

gcc.optimization 
gcc.c++ 

gcc.middle-end 
gcc.c 

gcc.target 
llvm.optimization 

llvm.c++ 
llvm.c

fixed
open

(a) status

0 1000 2000 3000 4000 5000

gcc.optimization

gcc.c++

gcc.middle-end

gcc.c

gcc.target

llvm.c++

(b) fix time (days)
Fig. 5: The distributions of bugs

For the fixed compiler bugs, our tool extracts its reported
date and fixed date. Figure 5b shows the results. The horizontal
axes list the days of fixing compiler bugs. We ignore two
components of llvm, since they have too few fixed bugs. The
result shows that it takes more days to fix bugs in c and c++. It
takes more than 2,500 days to fix most c bugs. Still, compiler
developers fix more c and c++ bugs. The results highlight the
importance of the two components.

For both gcc and llvm, several outliers take much more
time to be fixed. For gcc, LibYUi is a Widget library, and
a commit [5] disabled over-sensitive warnings of gcc on
February 17, 2023. This gcc bug [11] was reported in 2005
and was fixed in 2022. For llvm, on January 25, 2023, a
commit of the Linux kernel [6] enables a warning check,
since llvm fixed a bug [25]. This llvm bug was reported in
2013, and was fixed in 2021. Fixing the above outliers takes
much more than 4,000 days. The above observations lead to
a finding:

Finding 2. Less than half of the mentioned compiler
bugs are fixed. If they are fixed, fixing c and c++ bugs
takes more days than other components.

As introduced by Marcozzi et al. [76], some programmers
(e.g., [1]) criticize that it is not worth fixing compiler bugs
reported by researchers. In our study, we find that even if they
appear in real development, many compiler bugs are unfixed.
If affected projects are actively recommended, compiler de-
velopers may repair bugs more effectively.

As many compiler bugs are unfixed, programmers have to
bypass them. For each workaround, we calculate its modi-
fications. Figure 6 shows the result of the top components.
The vertical axes list components, and the horizontal axes
list the number of modified code lines. The optimization

component of llvm has the largest median, but all the medians
are below 60. We find that several outliers modify many lines
of code. For example, XNNPACK [49] is a library that imple-
ments optimized floating-point neural network operators. It is
a popular project, and it has 1.4k stars on Github. As shown in
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Fig. 6: The distributions of modifications

Figure 1a, a commit [48] modifies 343 files to bypass a gcc

bug [17]. Despite the outliers, the medians of gcc and llvm

are around 10 and 20, respectively. Programmers often apply
two strategies to bypass compiler bugs. First, programmers
can disable some compilation flags that cause compiler bugs.
The modifications on build configuration files are typically
minor. Second, as shown in Figure 4, programmers can modify
their source code to bypass compiler bugs. The modifications
depend on how frequently the buggy behaviors are used.

We notice that the workarounds on source files can involve
systematic and repetitive changes, and such changes can be
reduced. For example, bypassing the gcc bug in Figure 1
modifies many code lines of XNNPACK, but the modification of
only two code lines in another project called SIMDe [37]. The
programmers of SIMDe may already know the gcc bug. They
implement two methods to handle the buggy gcc methods,
and the method for _mm_loadu_si32 is as follows:

1 simde_mm_loadu_si32 (void const* mem_addr) {
2 #if defined(SIMDE_X86_SSE2_NATIVE) && ( \
3 SIMDE_DETECT_CLANG_VERSION_CHECK(8,0,0) || \
4 - HEDLEY_GCC_VERSION_CHECK(11,0,0) || \
5 HEDLEY_INTEL_VERSION_CHECK(20,21,1))
6 return _mm_loadu_si32(mem_addr);
7 #else
8 return ...;
9 #endif

Line 4 of the above code checks whether the version of
gcc, and it ensures that _mm_loadu_si32 is called only
when gcc is not the buggy version. The other code loca-
tions call simde_mm_loadu_si32, when they need to call
_mm_loadu_si32. After the gcc bug is fixed, in a SIMDe

commit [38], Line 4 of the above code is deleted. The above
observations lead to a finding:

Finding 3. Most workarounds modify 10 to 20 code
lines, but in a few extreme cases, programmers modify
many lines of code to bypass compiler bugs.

In summary, less than half of the compiler bugs are fixed.
Even if they are fixed, repairing compiler bugs takes months or
even years. In most cases, it needs to modify only ten to twenty
lines of code to bypass a compiler bug. Still, the impacts of
compiler bugs shall not be underestimated. It can need much
expertise to implement such workarounds.

amery / rocklinux Public

Commit
Hotfixes needed for newer binutils, the bug itself is in gcc
(see http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16625 for details) 
Fixes: firefox, mozilla, thunderbird, vice, ardour, kdegames ...

Code Pull requests Actions Security Insights

20 package/kde/kdegames/hotfix-binutils-gcc.patch

... ... @@ -0,0 +1,20 @@

1 Hotfix needed for new binutils (bug is in gcc)+
2 (see http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16625)+
3 +
4 --- ./libkdegames/kgrid2d.h.orig 2004-08-13 13:52:56.000000000 +0200+
5 +++ ./libkdegames/kgrid2d.h 2004-08-13 13:54:02.000000000 +0200+
6 @@ -291,10 +291,14 @@+
7 case Right:     return c + Coord( 1,  0);+
8 case Up: return c + Coord( 0, -1);+
9 case Down:      return c + Coord( 0,  1);+
10 + }+
11 + switch (n) {+
12 case LeftUp:    return c + Coord(-1, -1);+
13 case LeftDown:  return c + Coord(-1,  1);+
14 case RightUp:   return c + Coord( 1, -1);+
15 case RightDown: return c + Coord( 1,  1);+
16 + }+
17 +        switch (n) {+

        clif* committed on Aug 17, 2004 1 parent 7b23dac commit 010a1ad

Showing 7 changed files with 313 additions and 0 deletions. Split 

Unified

(a) a workaround for gcc 16625
modm-io / modm Public

Commit
[rp2040] Fix compilation of SPI DMA driver with GCC 11+

GCC prior to 11 allowed accessing private member variables of template base classes from sub-classes:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58993

chr* committed on Jul 13, 2022 1 parent 62d3655 commit eaed5c6

0 comments on commit eaed5c6

Code Issues 21 Pull requests 34 Discussions Actions Security Insights
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2 src/modm/platform/spi/rp/spi_master.hpp.in

27 27  */

28 28 class SpiMaster{{ id }} : public modm::SpiMaster

29 29 {

30 protected:+
30 31 // Bit0: single transfer state

31 32 // Bit1: block transfer state

32 33 static inline uint8_t state{0};

34 private:+
33 35 static inline uint8_t count{0};

34 36 static inline void *context{nullptr};

35 37 static inline ConfigurationHandler configuration{nullptr};

Showing 1 changed file with 2 additions and 0 deletions.

Split Unified

(b) a workaround for gcc 58993
Fig. 7: The C++ bugs

C. RQ3. Compiler Bug Category in Real Development

1) Protocol: Finding 2 shows that compiler developers fix
only less than half of the mentioned compiler bugs. Due to
the heavy workload, developers may not have time to fix
all reported bugs. In this research question, we analyze the
impact of different compiler bugs. Although researchers [81]
proposed various taxonomies for compiler bugs, to assist
compiler developers, we use their practical taxonomies. As the
component of a bug report is the major factor in assigning the
bug report [73], we classify our results by the components. The
old llvm issue tracker records components of bug reports, and
the current llvm issue tracker does not record components. As
a result, for llvm, we analyze only the bug reports from its
old issue tracker.

The impact of a compiler bug can be estimated by the
number of its mentioned commits and the modifications of its
workarounds. We find that in our dataset, 79.9% of gcc bugs
and 76.1% of llvm bugs are mentioned only once in commits.
As a result, it is infeasible for most compiler bugs to learn
their importance from the first measure. Instead, we calculate
the modifications of their workarounds as our measure. To
present a full perspective, we introduce examples of both
heavy modifications and light modifications.

2) Result: For each compiler, we present the distributions
of its top five components. Although we select only five com-
ponents for each compiler, these components are mentioned
in 82.5% of gcc bugs and 73.1% of llvm bugs in our dataset.
The percentage of a category is calculated as the commits in
this category over all commits. If a category appears in both
compilers, we merge their commits before our calculation. If
a commit is mentioned in two compiler bugs, we count the
commit for each bug once.

1. C++ (24.5%). This category includes the bugs with the
C++ compiler front end and its libraries. Both gcc and llvm

have this category of bugs. For gcc, we merge the bugs from
c++ (the front end) and libstdc++ (the library). For example,
a gcc bug of libstdc++ [15] complains that std::fabsf
and std::fabsl are missing from <cmath>. For llvm, we



PixelOS-Devices / kernel_xiaomi_sm6115 Public

Commit
fortify: Explicitly disable Clang support
Clang has never correctly compiled the FORTIFY_SOURCE defenses due to a couple bugs:

Eliding inlines with matching __builtin_* names 
https://bugs.llvm.org/show_bug.cgi?id=50322

Incorrect __builtin_constant_p() of some globals 
https://bugs.llvm.org/show_bug.cgi?id=41459

In the process of making improvements to the FORTIFY_SOURCE defenses, the
first (silent) bug (coincidentally) becomes worked around...

Code Pull requests Actions Projects Security Insights

Browse files

3 security/Kconfig

191 191 config FORTIFY_SOURCE

192 192 bool "Harden common str/mem functions against buffer overflows"

193 193 depends on ARCH_HAS_FORTIFY_SOURCE

kee* authored and herobuxx committed on Apr 6 1 parent 1109982 commit 

1b022b5 Showing 1 changed file with 3 additions and 0 deletions. Split Unified

Fig. 8: A target bug (llvm 41459)

merge the bugs from c++, c++11, and c++17.
As an example of C++ bugs, the title of a bug report [10]

is “Discarded Linkonce sections in .rodata”, and a comment
of this bug report provides a sample code. As shown in this
sample, when compiling a switch statement, gcc crashes:

/path/to/i686-unknown-linux-gnu/bin/ld: ‘.gnu.linkonce.t. ZN3Foo1fEi’ referenced in

section ‘.rodata’ of lib2.o: defined in discarded section ‘.gnu.linkonce.t. ZN3Foo1fEi’ of

lib2.o ... and so on

Figure 7a shows a workaround for this bug. In this com-
mit [42], programmers systematically replace switch with if

statements, if they cause crashes:
1 package/sirkull/ardour/hotfix-binutils-gcc.patch
2 @@ -0,0 +1,49 @@
3 - switch (c) {
4 - case ’0’: return 0;...
5 - default: return -1000;
6 - }
7 + if ( c >= ’0’ && c <= ’9’ ) return c - ’0’;
8 + return -1000;

In total, as shown in Figure 7a, this commit modifies the
switch statements in 7 source files.

As another example of C++ bugs, a bug report [13] com-
plains that even if the base member is declared as protected,
the primary template can still access it. A commit provides the
following sample program:

1 class base {
2 private: int foo() { }
3 };
4 template <typename T>
5 struct bar : public base {
6 void test() {
7 &base::foo; // should be rejected
8 }
9 };

Due to this bug, gcc does not identify the illegal access of
Line 7. To bypass this bug, a commit [41] changes a modifier
from protected to private. As the situation is rare, this
commit modifies only a line of code.

2. Target (16.5%). This category includes compiler bugs
that occur in specific platforms. Both gcc and llvm have this
category of bugs. gcc puts these bugs into target.

As an example of target bugs, a bug report [26] is specific
to x-86 platforms, since _mm_loadu_si32 is defined in Intel
Intrinsics Guide [22]. A comment complains that this bug
hinders llvm from working with the Linux kernel:

This misbehavior of builtin constant p() is blocking getting the kernel’s FOR-

TIFY SOURCE working with Clang...

In the Linux kernel, the FORTIFY_SOURCE macro [9] pro-
vides support for detecting buffer overflows. As a result, this

h0tc0d3 / arch-packages Public archive

Commit

Performance optimization. Bug fix https://bugs.llvm.org/show_bug.cgi?…
…id=51193

h0t* committed on Dec 8, 2021

This repository has been archived by the owner on Nov 17, 2022. It is now read-only.
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9 llvm/PKGBUILD

3 3 pkgname=llvm+clang

4 4 pkgdesc="LLVM Toolchain with clang, clang-tools-extra, compiler-rt, openmp, polly, 

lldb, lld"

5 5 pkgver=13.0.1

6 pkgrel=8-
6 pkgrel=9+

7 7 arch=('x86_64')

8 8 url="https://llvm.org/"

9 9 license=('custom:Apache 2.0 with LLVM Exception')

27 27   llvm-disable-bswap-for-spir.patch

28 28   llvm-fix-scan-build-py-executable-lookup-path.patch

29 29   llvm-don-t-accept-nullptr-as-GEP-element-type.patch

30 llvm-Hoist-LOAD-without-sinking-the-STORE.patch+
30 31 )

31 32

32 33 sha256sums=('SKIP'

33 34 '597dc5968c695bbdbb0eac9e8eb5117fcd2773bc91edf5ec103ecffffab8bc48'

34 35 'd1eff24508e35aae6c26a943dbaa3ef5acb60a145b008fd1ef9ac6f6c4faa662'

35 36 'af163392fbc19d65d11ab4b1510a2eae39b417d6228023b3ba5395b138bb41f5'

36 37 '578b960121c42b8db80566dcb51558409d04455b618cdd608e41b35ded36c13e'

37 'a7e902a7612d0fdabe436a917468b043cc296bc89d8954bfc3126f737beb9ac4')-
38 'a7e902a7612d0fdabe436a917468b043cc296bc89d8954bfc3126f737beb9ac4'+
39 '531d1deb5d37f1f24b3936d88b2c9ed90e8670705d7251c130d924c2c4c05a12')+

38 40

39 41 options=('staticlibs')

Showing 2 changed files with 187 additions and 2 deletions. Split Unified

1 parent cc2757b commit 1df9113

(a) a workaround for llvm 51193
Latimeriidae / coelacanth Public

Commit
Fix flags to workaround nasty GCC warning

see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102151
see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101436 and so on...

til* committed on Jul 27, 2022 1 parent f00d86d commit dcd3611

0 comments on commit dcd3611
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Browse files

1 cmake/build-flags.cmake

18 18 message(STATUS "Configuring for Unix or MinGW")

19 19 add_compile_options(-Wall -Wextra -Werror -Wfatal-errors)

20 20 add_compile_options(-Wno-deprecated-copy) # workaround for boost 1.70 with gcc 9.2

21 add_compile_options(-Wno-array-bounds)    # workaround for GCC madness+
21 22 elseif (DEFINED MSVC)

22 23 message(STATUS "Configuring for Visual Studio")

23 24 add_compile_options(-W4 -EHsc)

Showing 1 changed file with 1 addition and 0 deletions. Split Unified

(b) a workaround for gcc 102151
Fig. 9: The optimization bugs

bug is specific to Linux kernels. Figure 8 shows a workaround.
In this commit [46], programmers also complain that clang
does compile FORTIFY_SOURCE defenses. Here, clang is the
c and c++ frontends of llvm. To bypass the problem, this
commit makes the following modification:

1 security/Kconfig
2 @@ -191,6 +191,9 @@ config HARDENED_USERCOPY_PAGESPAN
3 + # https://bugs.llvm.org/show_bug.cgi?id=50322
4 + # https://bugs.llvm.org/show_bug.cgi?id=41459
5 + depends on !CC_IS_CLANG

Line 5 of the above code checks whether the compiler
is set as clang before it compiles the source files that are
related to FORTIFY_SOURCE. The workarounds have many
modifications, when compiler bugs involve frequent code
structures (e.g., Figure 7a) or frequent methods (e.g., Figure 1).
The above observations lead to a finding:

Finding 4. If a compiler bug involves popular language
features and causes serious symptoms, its workarounds
can have many modifications.

3. Optimization (14.7%). Both gcc and llvm have bugs in
this category. In gcc, a tree-optimization bug is related
to the tree-ssa optimizers, and a rtl-optimization bug is
a problem in a low-level intermediate representation called
the register transfer language. We merge them to this cate-
gory. The optimization bugs of llvm all come from scalar

optimizations, and these bugs are related to the libraries
and scalar transforms. Our collected commits do not mention
other types of optimization bugs.

A llvm bug report [30] complains that register promotions
are not optimized. Although this bug is confirmed and as-
signed, it is not fixed. Figure 9a shows a workaround for
arch-packages. The purpose of arch-packages [2] is to
optimize the packages of Arch Linux. Although the llvm

bug is not fixed, the programmers of arch-packages find a
way to bypass the problem. In particular, the code message of
a commit [47] explains the details:

1 Please consider this small example:
2 loop {



ac000 / mtd-cli Public

Commit
Use an empty terminating initialiser in the endpoints[]
In the various endpoints[] array of structures use an empty struct initialiser as the array terminator...We 
add a check to the Makefile for GCC older than 5.1.1 (which looks like when = {} stopped being complained 
about[0][1])...
[0]: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61489 
[1]: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=36750
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Browse files

ac0* committed on Feb 12, 2021 1 parent b686fa9 commit 4075dc1

Showing 14 changed files with 46 additions and 22 deletions. Split Unified

(a) a workaround for gcc 36750
tanz3 / kernel_xiaomi_sm8350-miui Public

Commit
...GCC will then complain (with an error) about modification of these fields 
after they have been initialised, although LLVM currently allows them without 
even a warning: 
https://bugs.llvm.org/show_bug.cgi?id=48755
Hopefully, future versions of LLVM will emit a warning.

wil* authored and tanz3 committed on Mar 28 1 parent 33ead71 commit 6fe3f95

Code Issues 1 Pull requests Actions Projects Security Insights

Browse files

2 include/linux/mm.h

493 493 unsigned int sequence;

494 494 pmd_t orig_pmd; /* value of PMD at the time of fault */

495 495 #endif

496 struct {-
496 const struct {+

497 497 struct vm_area_struct *vma; /* Target VMA */

498 498 gfp_t gfp_mask; /* gfp mask to be used for 

allocations */

Showing 1 changed file with 1 addition and 1 deletion. Split Unified

(b) a workaround for gcc 48755
Fig. 10: The C bugs

3 var = *ptr;
4 if (var) break;
5 *ptr= var + 1;
6 }
7 After this patch, it will be:
8 var0 = *ptr;
9 loop {

10 var1 = phi (var0, var2);
11 if (var1) break;
12 var2 = var1 + 1;
13 *ptr = var2;
14 }
15 This addresses some problems from [0].
16 [0] https://bugs.llvm.org/show_bug.cgi?id=51193

As shown in Figure 9a, the commit modifies two files,
involving 187 additions and 2 deletions. As another example,
a gcc bug report [19] complains spurious warnings when the
-Warray-bounds flag is set, but gcc developers determine
that this bug report is invalid. Still, programmers can encounter
this problem. For example, as shown in Figure 9b, a commit
of coelacanth [43] implements a workaround:

1 cmake/build-flags.cmake
2 @@ -18,6 +18,7 @@ if (DEFINED UNIX OR DEFINED MINGW)
3 + add_compile_options(-Wno-array-bounds)# workaround
4 for GCC madness

The above workaround adds the -Wno-array-bounds, and
it disables all warnings of -Warray-bounds. As the llvm

bug [30] touches the core function of arch-packages, its
workaround causes heavy modifications. Meanwhile, the gcc

bug [19] produces spurious warnings that can be ignored with
corresponding flags. The observations lead to another finding:

Finding 5. If compiler bugs affect the core functions,
their workarounds can cause heavy modifications.

4. C (12.7%). This category includes the problems with the
C frontend. Both gcc and llvm have this category of bugs,
and both compilers mark the components of these bugs as c.

As an example of C bugs, a gcc bug report [20] complains
about spurious warnings with a flag. Figure 10a shows a
workaround for this bug. As mentioned in Figure 10a, this
commit modifies the compiler-configuration file:

w1ldptr / linux Public

Commit
Merge tag 'flexible-array-transformations-UAPI-6.0-rc1' of git://git.…
...A treewide patch that replaces zero-length arrays with flexible-array members 
in UAPI. This has been baking in linux-next for 5 weeks now...
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
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4 arch/m68k/include/uapi/asm/bootinfo.h

34 34 struct bi_record {

35 35 __be16 tag; /* tag ID */

36 36 __be16 size; /* size of record (in bytes) */

37 __be32 data[0]; /* data */-
37 __be32 data[]; /* data */+

38 38 };

39 39

tor* committed on Aug 3, 2022 2 parents e05d5b9 + 94dfc73 commit e2b5421 

Showing 82 changed files with 216 additions and 216 deletions. Split Unified

(a) a workaround for gcc 101836
spiderworthy / linux Public

Commit
mips/gup: Replace ACCESS_ONCE with READ_ONCE
ACCESS_ONCE does not work reliably on non-scalar types. For example gcc 4.6 and 4.7 might remove the 
volatile tag for such accesses during the SRA (scalar replacement of aggregates) step https://
gcc.gnu.org/bugzilla/show_bug.cgi?id=58145)

Change the gup code to replace ACCESS_ONCE with READ_ONCE.

1 parent 0d2bdac commit b0f7cca

0 comments on commit b0f7cca
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2 arch/mips/mm/gup.c

30 30

31 31 return pte;

32 32 #else

33 return ACCESS_ONCE(*ptep);-
33 return READ_ONCE(*ptep);+

34 34 #endif

35 35 }

36 36

spi* committed on Feb 4, 2003

Showing 1 changed file with 1 addition and 1 deletion. Split Unified

(b) a workaround for gcc 58145
Fig. 11: The middle end bugs

1 src/Makefile
2 @@ -15,6 +15,17 @@...
3 +ifneq "$(GCC_VER_OK)" "1"
4 + # For GCC < 5.1.1
5 + CFLAGS += -Wno-missing-field-initializers
6 +endif

Line 5 of the above code disables the warnings. As de-
scribed by the bug report, gcc produces these warnings when
it checks the initializers of struct. Besides the configuration
file, this commit modifies many affected initializers, and an
example is as follows:

1 src/mtd-cli-biss.c
2 @@ -45,7 +45,8 @@...
3 static const struct endpoint endpoints[] = {...
4 - { NULL, { NULL }, 0, 0, NULL}
5 + { }

The initializers appear in multiple files, and in total, this
commit modifies 14 files.

As another example of C bugs, a llvm bug [44] complains
that the constant members of a struct can still be modified.
Figure 10b shows a workaround for this bug. As shown
in Figure 10b, a programmer mentions that gcc produces
warnings for such accesses. After llvm programmers list
several items of the C standards, they argue that llvm is
correct, and the bug report is not fixed. Still, this behavior is
strange for some programmers. In this workaround, instead of
specific members, programmers add const to struct. This
compiler bug affects only a struct datum, and the commit
modifies only a code line:

1 include/linux/mm.h
2 @@ -493,7 +493,7 @@ struct vm_fault {
3 - struct {
4 + const struct {

The modification patterns of C are similar to those of C++,
since their bugs are often shared. Indeed, Figure 10a mentions
two gcc bugs. The two gcc bugs have identical symptoms,
but the other bug report [45] is triggered by C++ programs.

Besides C++ and C, our commits involve other program-
ming languages, e.g., Fortran. We do not present their results,
since they are not among the top five categories.



5. Middle end (9.4%). This category includes bugs in the
middle end. Only gcc defines this component, and llvm puts
this type of bugs in other components. The middle end of a
compiler typically handles both the analysis (e.g., data-flow
analysis) and the optimization, but gcc put the problems of
optimization into a separate component. A gcc report [18]
complains that __builtin_object_size(P->M, 1) fails
to calculate the size of a struct if this struct declares a
fixed-length array at its end. A sample program is as follows:

1 struct trailing_array {
2 int a;
3 int b;
4 unsigned char c[16];//wrong size
5 };

If broken is a struct whose type is trailing_array,
the calls of __builtin_object_size(broken, 1) will
return -1, but the correct result is 16. Figure 11a shows a
workaround, and its strategy is to replace fixed-length arrays
with flexible arrays. For example, a modification is as follows:

1 arch/m68k/include/uapi/asm/bootinfo.h
2 @@ -34,7 +34,7 @@
3 struct bi_record {...
4 - __be32 data[0];
5 + __be32 data[];
6 }

Similar modifications appear in other code locations:
1 arch/s390/include/uapi/asm/hwctrset.h
2 @@ -30,18 +30,18 @@ ...
3 struct s390_ctrset_setdata {/* Counter set data */...
4 - __u64 cv[0]; /* Counter values (variable length) */
5 + __u64 cv[]; /* Counter values (variable length) */
6 }

In total, as shown in Figure 11a, this workaround modifies
82 files. Besides this compiler bug, we find repetitive edits in
many workarounds. For example, as shown in Figure 1, when
bypassing the target bug, the workaround includes repetitive
replacements of _mm_loadu_si32. The observations lead to
another finding:

Finding 6. Bypassing some compiler bugs needs repet-
itive and systematic changes.

As another example of middle-end bugs, a bug report [12]
complains that ACCESS_ONCE is not reliable to ensure, and
a variable protected by it can be accessed more than once.
Figure 11b shows a workaround. It replaces ACCESS_ONCE

with READ_ONCE.
6. Frontend (2.0%). This category includes bugs in the

frontend (e.g., the lexer and the parser). Only llvm defines
this component, and gcc puts this type of bugs in specific
frontends (e.g., C and C++). For example, a gcc bug [15]
complains that the macros defined in an asm block cannot
be used in other asm blocks. This bug report is marked as
“won’t fix”, since llvm developers consider that this is a
feature of llvm. Figure 12a shows a workaround for this bug.
This workaround comes from a customized Linux kernel. Its
programmers mention the feature of llvm, but point out that
binutils does not allow macros to be redefined. As a result,
they have to define two macros:

Rombuilding-X00TD / android_kernel_asus_sdm660 Public

Commit
arm64: sysreg: Make mrs_s and msr_s macros work with Clang and LTO
Clang's integrated assembler does not allow assembly macros defined in one inline asm block 
using the .macro directive to be used across separate asm blocks. LLVM developers consider 
this a feature and not a bug, recommending code refactoring:
  https://bugs.llvm.org/show_bug.cgi?id=19749
As binutils doesn't allow macros to be redefined, this change uses UNDEFINE_MRS_S and 
UNDEFINE_MSR_S to define corresponding macros in-place and workaround gcc and clang 
limitations on redefining macros across different assembler blocks...
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kee* authored and STRK-ND committed on Nov 1, 2022 1 parent d75d4d0 commit 2d2cf09

(a) a workaround for llvm 19749
evadot / drm-subtree Public

Commit
drm/edid: Distribute switch variables for initialization
Variables declared in a switch statement before any case statements cannot be automatically 
initialized with compiler instrumentation (as they are not part of any execution flow). With GCC's 
proposed automatic stack variable initialization feature, this triggers a warning (and they don't 
get initialized). Clang's automatic stack variable initialization (via CONFIG_INIT_STACK_ALL=y) 
doesn't throw a warning, but it also doesn't initialize such variables[1]...

[1] https://bugs.llvm.org/show_bug.cgi?id=44916

Code Issues 2 Pull requests 3 Actions Projects Security Insights
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3 core/drm_edid.c

4438 4438

4439 4439 if (cea_revision(cea) >= 3) {

4440 4440 int i, start, end;

4441 int sad_count;+

kee* authored and evadot committed on Feb 23, 2022 1 parent 882c939 commit 

f908d02 Showing 1 changed file with 1 addition and 2 deletions. Split Unified

(b) a workaround for llvm 44916
Fig. 12: The frontend bugs

1 arch/arm64/include/asm/sysreg.h
2 @@ -232,29 +232,44 @@
3 + #define DEFINE_MRS_S ...
4 + #define UNDEFINE_MRS_S ...

As llvm does not allow to use macros in other asm
blocks, programmers have to define DEFINE_MRS_S inside
asm blocks. Meanwhile, as binutils does not allow rede-
fined macros, they have to undefine with UNDEFINE_MRS_S.
An example is as follows:

1 arch/arm64/include/asm/cputype.h
2 @@ -119,7 +119,10 @@...
3 - asm("mrs_s %0, " __stringify(reg) : "=r" (__val));
4 + asm(DEFINE_MRS_S
5 "mrs_s %0, " __stringify(reg) "\n"
6 UNDEFINE_MRS_S...)

We find similar modifications in other code locations. This
observation further confirms Finding 6, i.e., bypassing com-
piler bugs involves repetitive edits.

Another llvm bug [29] complains that llvm fails to initial-
ize a variable if it is defined in switch statements. Figure 12b
shows a workaround for this bug. Its programmer mentions
that this bug is shared by gcc, and proposes a workaround:

1 core/drm_edid.c
2 @@ -4438,6 +4438,7 @@ ...
3 + int sad_count;
4 switch (cea_db_tag(db)) {
5 - int sad_count;...

In the above code, the sad_count variable is moved outside
of the switch statement. Many researchers are interested in
only fixed bugs. In this section, we introduce 11 compiler
bugs, but only 5 of them are resolved as fixed. The ratio is
consistent with that of Figure 5a. Meanwhile, the bug report
mentioned in Figure 9b is resolved as invalid, and the bug
report mentioned in Figure 12a is resolved as won’t fix. Many
researchers believe that only fixed bug reports are useful, our
observations lead to another finding:



Finding 7. Invalid and unfixed bug reports can still be
useful to understand compiler bugs.

In summary, although the components have a minor impact
on the modifications of workarounds, their instances provide
insights into compiler bugs. We summarize them into several
findings, and will interpret our findings in the next section.

D. Threat to Validity

The internal threat to validity includes our underlying Gith-
hub API. It retrieves only a subset of all matches. In addition,
its retrieved results can be irrelevant and duplicated. To
reduce the threat, our tool checks whether compiler bugs are
truly mentioned in retrieved commits and removes duplicated
commits. The internal threat to validity also includes the wrong
status of bug reports, since some bug reports can be still open
after their bugs are already fixed. The prior studies [86], [93],
[105] calculate the time of fixing compiler bugs as we did,
and they also suffer from this threat. As compiler bug reports
are strictly managed, such cases should be rare.

The external threat of our study is shared by all empirical
studies. Our study is a bite of the time, and our study needs
to be replicated as time goes by. For example, when we start
to write the paper, we rerun our tool, and it retrieves new
commits that do not appear in our dataset. The new commits
can illustrate new patterns for handling compiler bugs. As
another example, future compilers can have better channels to
collect bugs, and large teams to repair bugs. They can leave
fewer unfixed bugs, and fix compiler bugs in a shorter time.

IV. INTERPRETATION

This section interprets our findings.
Connecting more roles. The prior studies analyze compiler

bugs from only the viewpoint of compiler developers. We
find that programmers and compiler developers can have
different opinions on bugs, but their communication is not
smooth. For example, the bug report mentioned in Figure 9b is
marked as invalid. Although they are not compiler developers,
some programmers have rich knowledge of languages and
compilers. For example, the commit in Figure 9a implements a
workaround to enable the optimization of compilers. If more
roles are actively connected in developing compiler bugs, it
could be easier to understand the significance of compiler
bugs. In addition, Zhong [102] mentions that the confusion
about compiler bugs can be caused by undefined behaviors.
If more roles are invited to draft language standards, it could
resolve such undefined behaviors.

Learning from workarounds for other programmers. As
shown in Figure 1, some workarounds modify thousands of
lines of code. The huge effort can be reduced, since Finding
6 shows that workarounds of compiler bugs often contain
repetitive and systematic changes. Researchers [50], [77], [83]
have proposed various approaches that learn edit scripts from
given change examples. Still, their approaches are insufficient.
They are designed for handling API breaking changes in Java.

In contrast, the workarounds for compiler bugs are written in
C or C++ and contain more code structure changes than API
changes. In addition, even if the workarounds in Figures 11a
and 12a involve heavy modifications, the corresponding com-
piler bugs are not fixed. The symptoms of some compiler bugs
are difficult to notice. For example, the llvm bug mentioned
in Figure 10b can cause illegal access to sensitive data, but
such vulnerability issues can be hard to detect. As a result,
a project can suffer from compiler bugs, but its programmers
are not aware of such bugs. A tool can be useful, if it can
determine whether a project can be affected by compiler bugs.

Learning workarounds for compiler developers. Finding
2 shows that less than half of mentioned compiler bugs are
fixed. If critical bugs are ignored, programmers can switch
compilers as the programmers of OpenMandriva did [14].
Compiler developers may not have sufficient resources to fix
all reported bugs, and they have to be focused. To identify
critical bugs, compiler developers should check both popu-
lar and regular projects, since Finding 1 shows that many
compiler bugs are mentioned in regular projects. Finding 4
shows that their popularity of language features is useful in
determining the impact of compiler bugs. Dyer et al. [63]
conduct a large-scale study to understand the popularity of
language features. With the rapid development of languages,
languages present many new features, and the popularity can
change over time. It can be a timely request to replicate their
study. In Section III-C, we report how compiler bugs hamper
real development. Even if compiler bugs are bypassed, their
workarounds may still introduce hidden bugs. For example,
in Figure 1, the workaround involves many cast statements,
which can cause precision-related bugs. After compiler de-
velopers fix bugs, a tool can actively notify programmers to
avoid such hidden bugs. Finding 7 highlights the importance of
controversial compiler bugs. Compiler developers can rethink
their decisions and resolve the issues raised by programmers
in their real development.

V. THE STORY OF WEBPP

The interpretations in Section IV are actionable. For exam-
ple, we advocate connecting more roles in testing compilers.
In this section, we introduce our story of fulfilling this vision.
webpp [39] is a C++ web framework. This project has
more than four thousand commits. Among them, we notice
a commit [40], whose message is “fixed a clang bug”. All
the modifications of this commit are related to templates. For
example, a modification is as follows:

1 - template <template <typename> typename Concept,
2 + template <template <typename...> typename Concept,

We suspect that this compiler bug is related to templates,
but the message does not describe the symptom or the steps
to trigger the bug. In addition, many commits do not compile
when they are checked out [91]. To fix the problem, we must
modify build files and even source files. The modifications
make it more difficult to reproduce compiler bugs, since they
can accidentally ignore compiler bugs that reject valid code.
As outsiders, we failed to reproduce the compiler bug.



As researchers, we failed determine this compiler bug, so
we reported the problem to both webpp [34] and llvm [33].
The webpp programmer submitted this commit in 2021, but
we submitted the webpp bug report in 2022. As the commit
was submitted a year ago, it took some time for the webpp

programmer to recall the details. Still, this programmer was
able to produce the compilation output:

1 FAILED: tests/CMakeFiles/test-cookies.dir/cookies_test.cpp.o
2 template <typename... T>
3 ˆ

It looks like a reject-valid bug, since Clang 14 failed to
build a legal template. The programmer reduced the program:

1 template <template <typename> typename T>
2 struct one {
3 using type = T<int>;
4 };
5 template <typename...T>
6 struct two {
7 };
8 auto main() -> int {
9 using type = one<two>;

10 return 0;
11 }

The programmer even built a godbolt link [21]. According
to this link, clang rejects the above program but gcc accepts
it. Although he identified the bug, this programmer is confused
about whether it is a gcc or clang bug, and left a message:

It seems like it’s a GCC bug that it’s a bit more permissive than mavc and clang.

To resolve the confusion, in our llvm bug report, we added
a link to our webpp bug report. After llvm developers checked
the reduced program written by the webpp programmer and
other details of this bug, they confirmed that this is a tough
bug. In particular, a llvm programmer explained that he tried
to repair this bug, but his initial repair was reverted. He is still
working on this problem.

Our webpp story illustrates the benefits of connecting pro-
grammers, compiler developers, and researchers. Although the
webpp programmer identified the bug, he was unsure whether
this was a clang bug or a gcc bug. As researchers, although
we found this commit, we could not reproduce the mentioned
bug since this commit provided insufficient details. Although
this bug was known, only after we reported this issue, llvm
developers could learn its impact on real development, since
the webpp project provided a concrete example to trigger
this bug. Indeed, as our report highlighted this bug, a llvm

developer added our bug report to C++ 20 in Clang [32],
and its repairing process could be checked.

VI. RELATED WORK

Compiler testing. Random-based approaches generate ran-
dom programs for compiler testing. Early approaches can be
traced back to 1970s [67], [84]. Yang et al. [99] propose
CSmith that generates random C programs. Nagai et al. [78]
generate random C arithmetic expressions to detect arithmetic
optimization bugs. Zhang et al. [100] propose an approach
to identify those equivalent compiler test programs. Chen et
al. [60], [61] propose approaches to tune CSmith automat-
ically. Even-Mendoza et al. [64] loosen the restrictions of

CSmith to detect more bugs. Mutation-based approaches mod-
ify given programs to generate compiler more test programs.
Sun et al. [86] mutate variable and function names to generate
programs. Holler et al. [68] mutate programs by traversing
their syntax trees. Given a program, Le et al. [71], [72]
compile the program, and execute the compiled code to collect
its executed source lines. After that, their approach removes
unexecuted source lines, and recompiles the remaining code.
As test programs can be large, researchers have proposed
approaches to narrow down code snippets that trigger compiler
bugs by delta debugging [82], mutation testing [58], and
coverage [56]. Researchers combine the reduction and the rank
of test programs [62] and conduct empirical studies to compare
existing approaches [57]. Zhong [102] proposes to extract test
programs from bug reports of similar compilers. Marcozzi et
al. [76] compare existing compiler fuzzing tools. Our study
shows that commits can be another source to extract real test
programs for compiler testing.

Analyzing bug reports and related software artifacts. Xu
et al. [96] analyze which bugs will be introduced if compiler
bugs are not fixed. Bettenburg et al. [54] analyze factors that
contribute to a good bug report. A hot research line is to
identify duplicate bug reports [79], [87], [89], and the other
hot research line is to assign bug reports [51], [52], [97]. Tian
et al. [90] build the priority list of bug reports. Bachmann
et al. [53] and Wu et al. [94] build the links between bug
reports and bug fixes. Zhou et al. [104] locate buggy files of
a given bug report. COMBUG extracts test inputs from bug
reports, complementing these approaches. Researchers [51],
[66] conducted various empirical studies to understand the
characteristics of bug reports. Besides bug reports themselves,
by linking bug reports with their fixes, researchers analyze
the characteristics of bugs [69], [101], flaky tests [75], [88],
and bug fixes [80], [103]. Our study analyzes compiler bugs,
complementing the above studies. Lamothe et al. [70] analyze
API workarounds, but the workarounds for compiler bugs are
unrelated to APIs. Yan et al. [98] analyze workarounds in
general, and they mention compiler bugs. We conduct a more
comprehensive study on compiler bugs.

VII. CONCLUSION

Although researchers have conducted various studies to
analyze compiler bugs, their studies do not touch on the impact
or the handling strategies of compiler bugs. Previous studies
analyze compiler bug reports and their modifications, but these
sources are insufficient to answer the new questions. In this
study, we analyze compiler bugs from an unvisited source. We
use the url of compiler bugs to search Githbub, and retrieve
the commits whose messages mention compiler bugs. In this
way, we collect compiler bugs that programmers encountered
in their real development, and conduct the first empirical
study on compiler bugs in the wild. Our study deepens the
knowledge about compiler bugs from a new angle, and we
identify several promising research opportunities. For example,
we find that the workarounds of compiler bugs can contain
repetitive and systematical changes. Existing tools can learn



how to edit scripts from these workarounds. Leaned scripts
can be systematically applied to all feasible code locations.
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