
SLAMPA: Recommending Code Snippets with
Statistical Language Model

Shufan Zhou, Hao Zhong, Beijun Shen*
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

{sfzhou567, zhonghao, bjshen}@sjtu.edu.cn

Abstract—Programming is typically a difficult and repetitive
task. Programmers will encounter endless problems during
programming, and they often need to write similar code
over and over again. Over the years, many tools have been
proposed to support programming. However, to the best of
our knowledge, these approaches require high-quality queries
or programming contexts, which are often difficult to be built
or even unavailable.

To address this challenge, we propose SLAMPA, a novel
tool which takes advantage of statistical language model and
clone detection techniques to recommend code snippets during
programming. Given a piece of incomplete code, SLAMPA first
infers its intention using a neural language model. Then it
retrieves code snippets from codebase with the support of an
efficient clone detection technology Hybrid-CD we proposed.
Finally, it recommends the most similar code snippets to
programmers.

Our evaluation results demonstrate that Hybrid-CD pre-
cisely detects similar code snippets and it outperforms previous
techniques. Our results also show that the snippets recom-
mended by SLAMPA catch the intention of programmers
and SLAMPA is capable of finding potential code reuse
opportunities during programming.

Index Terms—code snippets recommendation, code reuse,
statistical language model, clone detection

I. INTRODUCTION

In software development activities, programmers may

encounter endless problems and they may search for source

code examples for help. Source code examples are criti-

cal for understanding concepts, applying fixes, improving

performance, and extending software functionalities [1][2].

With the development of code repositories such as Github1,

SourceForge2, millions of high-quality code snippets become

available.

Unfortunately, finding appropriate code examples to cope

with the problems encountered during programming is still

a serious challenge for programmers. Although some exist-

ing works have investigated using free-form query (i.e., a

query written in natural language, or a list of keywords) to

search relevant code snippets [3][4], it can be difficult to

construct proper queries, especially for those novices. For

example, giving a incomplete code shown in Figure 1, it is

hard to accurately depict this piece of code using natural

language. Some publicly available code search engines take

as input the entire code snippet [5][6], but these code search

*Corresponding author.
1https://github.com
2https://sourceforge.net

public ImageData getJPEGDiagram() {
Shell shell = new Shell();
GraphicalViewer viewer=new ScrollingGraphicalViewer();
viewer.createControl(shell);
LayerManager lm = (LayerManager) viewer.

getEditPartRegistry().get(LayerManager.ID);
IFigure fig = lm.getLayer(LayerConstants.

PRINTABLE_LAYERS);
...

}

Fig. 1. A piece of incomplete code (id=16163062 in BigCloneBench)

engines are only able to identify identical code fragments

[7]. Furthermore, since it is impossible for programmers

to be aware of all the relevant code snippets in code

repositories, programmers may miss the potential code reuse

opportunities of the incomplete code and reinvent wheels

during programming [8].

To handle these challenges, we propose a novel code

snippets recommendation tool named SLAMPA (Statistical

LAnguage Model based Programming Assistant). The rec-

ommended code snippets by SLAMPA can be used for

understanding concepts, extending software functionalities,

etc. For novices, SLAMPA is useful, since it presents code

samples to better understand what to do next. Even for

expedience programmers, SLAMPA can identify potential

code reuse opportunities and thus increase their productivity.

SLAMPA works by a combination of statistical language

model and clone detection techniques. As Hindle et al.

reported that programs, as a natural product of human effort,

exhibit a good level of repetition [9]. SLAMPA captures

the repetition of programs with a deep neural network-

based statistical language model, which detects long-range

functional features in a context-dependent way. With the

language model, SLAMPA can predict the intention of a

piece of incompletely written code and further infers the

next tokens. SLAMPA then implicitly expands the given

incomplete code with the inferred tokens and uses Hybrid-

CD (Hybrid-Clone Detector), an efficient clone detection

technology we proposed, to retrieve similar code snippets

of such tokens. Finally, the most relevant code snippets are

recommended to programmers.

We evaluate the effectiveness of Hybrid-CD and SLAMPA

on BigCloneBench [10], a large scale inter-project repos-

itory with manually labeled clone pairs. Our evaluation

results demonstrate that Hybrid-CD outperforms previous

79

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00022



techniques. Hybrid-CD is able to detect almost all the T1-

ST3 clones (94% - 100%) and more than half of the MT3

clones (51%). Our experiments also show that SLAMPA

can indeed capture the intention of programmers via the

statistical language model and find code reuse opportunities.

For 68.2% of the queries, the relevant snippets can be found

within the top 10 recommended results.

In summary, the contributions of this paper lie in:

• We propose SLAMPA, a novel code recommendation

tool that makes it possible to automatically and accu-

rately recommend code snippets during programming.

To the best of our knowledge, we are the first to

propose a combination of language model and code

clone detection to recommend code snippets.

• We propose Hybrid-CD, a novel clone detection tech-

nology leveraging deep learning. Hybrid-CD combines

automatically extracted high-level features (by a deep

neural network) and handcrafted low-level features.

Hybrid-CD can effectively detect clones in real-world

repositories.

• We implement a prototype of SLAMPA and evaluate

it on real-world repositories. Our results show that

SLAMPA is of potential use in software development.

II. BACKGROUND

Our approach combines recent advanced techniques from

programming language processing and deep learning. We

will introduce the background of these techniques in this

section.

A. Code Clones

There are four main types of code clones: Type-1 (T1),

Type-2 (T2), Type-3 (T3), and Type-4 (T4) [11]. T1 clones

are the exact copies of each other except whitespaces, blanks

and comments. T2 clones are similar code fragments except

for names of variables, types, literals and functions. T3

clones allow extra modifications such as added, or removed

statements. T4 clones further include semantically equivalent

but syntactically different code fragments. T3 clones are

divided into Strongly T3 (ST3), Moderately T3 (MT3) and

Weakly T3/T4 (WT3/T4) according to syntax similarities in

BigCloneBench [10].

B. Statistical Language Model

Hindle et al. have introduced the naturalness of software

in [9]. The naturalness of software shows that source code,

just like many other forms of culturally contextualized

and stylized natural language expression, tend to be well-

structured and repetitive. We can capture the naturalness of

software by using statistical language models. A statistical

language model learns to estimate the distribution of code

from large code corpus and essentially assigns a probability

to programs.

Given a token sequence S = t1, t2, ..., tm of a program,

the statistical language model estimates the joint probability

Source Code Analyzer

Training
instances

Manually labeled 
clone pairs

Code
corpus

Class/method
names

Token
sequence

Offline Training

Source Code Analyzer

Class/method
names

Token
sequence

Online Recommending

Query (Partially 
written Code)

Intention Analyzer

 Code Snippet 
Retriever

Recommend the 
most similar 
code snippets

Training

Fig. 2. The overall of SLAMPA

Pr(S) = Pr(t1, t2, ..., tm) as how likely this sequence

would occur in a programming language. Formally:

Pr(S) = Pr(t1, t2, ..., tm) =

n∏

i=1

Pr(ti|t1, ..., ti−1) (1)

where Pr(ti|t1, ..., ti−1) is the probability of each token in

the programming language given its preceding words. With

the ability to calculate such a distribution, we will be able

to predict with high confidence of what follows the given

code.

1) Neural Language Model: The neural language models

are language models based on neural networks. Neural lan-

guage models capture the information under the preceding

words with longer distance to predict the following word.

A typical neural language model reads one token from the

input sentence at each time step and predicts the next token.

At time step j, a neural language model reads the input

token tj , embeds it into word embedding ej and updates the

current hidden state of network according to the previous

hidden state hj−1 and the current embedding ej . Finally, the

neural language model uses a result predicting function g to

predict Pr(tj+1|t1, ..., tj) according to the current hidden

state hj . Formally:

ej = input(tj) (2)

hj = f(hj−1, ej) (3)

Pr(tj+1|t1, ..., tj) = g(hj) (4)

The neural language model repeatedly reads, embeds, and

updates until it meets the end of the token sequence.

C. Embedding Techniques

Embedding (also called distributed representation) is a

technique for learning vector representations of entities in

a continuous space where linguistic contexts of words can

be observed [12][4].

We use fastText [13] in this paper. This approach tries to

learn representations for character n-grams, and represents

words as the sum of the n-gram vectors. The fastText takes

into account subword information (morphology), so it allevi-

ates the out-of-vocabulary (OOV) problem in programming

80



class
name

h1

method
name

h2

token

h3

token inferred
token

h1' h2' h3'

x1 x2 x3

Reading Inferring

Names and tokens in source code Inferred tokens

inferred
token

inferred
token

Fig. 3. An illustration of our RNN-based Intention Analyzer, where h and
h′ are the hidden state of neural network, and x means the input.

language (e.g. FileReader is likely to has similar word

embedding with StreamReader in fastText, fastTest can

understand the meaning of unseen words to a certain degree).

III. APPROACH

In this section, we describe SLAMPA, a code snippet

recommendation tool based on the statistical language model

and the proposed clone detection technology.

Figure 2 shows the overview of SLAMPA. The source

code analyzer tokenizes the incomplete code into token

sequence {t1, t2, · · · , tm}. Then the intention analyzer

infers a sequence of tokens {p1, p2, · · · , pn} and uses

them to expand the given token sequence. Finally, the

code snippet retriever takes the expanded token sequence

{t1, t2, · · · , tm, p1, p2, · · · , pn} as input to retrieve similar

code snippets, and recommend them to the programmer.

We use propose a novel clone detection technology called

Hybrid-CD as our code snippet retriever.

A. Source Code Analyzer

Source code contains a lot of semantic information. We

especially focus on API invocations and the corresponding

structural information in source code in this work. We have

implemented a source code analyzer based on Eclipse JDT

compiler [14] to extract both structural information and API

invocations as follows:

1) Token Extraction: For every parameter declara-

tion in abstract syntax trees (ASTs), the code ana-

lyzer records its name and type. Then it visits each

method declaration in AST and traverses the method

body to extract structural information and API invoca-

tions. To capture the structural information, the code

analyzer adds METHOD BEGIN and METHOD END

around the token sequence of each method. It then

records control-dependency-relevant reserved words includ-

ing if, else, for, while, continue, break, try and catch to

each structural code blocks. Take while for example, the

code analyzer will add a WHILE BEGIN token to the token

sequence before traversing the body of the while node and

append a WHILE END token to the token sequence after

visiting the node. We call these BEGIN and END tokens as

structural brackets in the rest of this paper.

The code analyzer applies following rules to extract API

invocations: (1) For a constructor invocation new ClassA(),

we append a token ClassA.<init> to the token sequence.

(2) For a method invocation o.method(), where o is an

instance of ClassA, we append a token ClassA.method() to

the token sequence. (3) For some complicated expressions

such as o.m1(o.m2(),o.m3()), where o is an instance of

ClassA, we generate three tokens ClassA.m2(), ClassA.m3(),

ClassA.m1() and append them to the token sequence that

we have made. (4) For some sequential API call such as

o.m1().m2(), we mark it as token *.m2() if we fail to get the

return type of o.m1(), where * serves as a wildcard character

and it can match with any other types.

2) Token Filtering: As discussed above that we retain

the structural information of source code by adding

structural bracket around the API invocations. We mainly

focus on the API level information during tokenization,

but sometimes there is no API invocation in the certain

structural code blocks. For example, we might obtain

[METHOD BEGIN, FileWriter.<init>, FOR BEGIN

IF BEGIN, IF END, FOR END, FileWriter.close(),

METHOD END] after tokenizing some code fragment. It

is obvious that the empty structural brackets [FOR BEGIN

IF BEGIN, IF END, FOR END] bring no benefit for code

snippets recommendation, so we additionally take a process

to remove these redundant tokens.

B. Intention Analyzer

We implement our intention analyzer upon a deep neural

network called Recurrent Neural Network (RNN) [15]. As

shown in Figure 3, when a recommendation is requested,

RNN analyzes the names and tokens that are already written

in the incomplete code. Then it infers an ordered sequence

of tokens which are likely to be used.

1) RNN-based Language Model: We adopt Long Short-

Term Memory (LSTM) [16], a specific type of RNN, to

model the sequence of tokens. The LSTM structure has

explicit memory cells to store information for long periods

of time, and it can memorize information for an extended

number of time steps. LSTM has been widely used for

modeling sequential data in recent researches [17][18].

LSTM processes one word at each time step. The hidden

states of LSTM are updated as follows:

fj = sigm(Wfej + Ufhj−1 + bf )

ij = sigm(Wiej + Uihj−1 + bi)

oj = sigm(Woej + Uohj−1 + bo)

cj = fj · cj−1 + ij · tanh(Wcej + Uchj−1 + bc)

hj = oj · tanh(cj)

(5)

where ej represents the input vector at time step j, symbols

f, i, o stand for the forget gate, the input gate and the output

gate in LSTM, cj and hj mean the hidden states of LSTM

at time step j. We adopt the softmax function on the state

and take it as the probability distribution of the predicted

tokens.

81



Given names and token sequence {t1, t2, · · · , tm}
for a piece of incomplete, where m is the num-

ber of tokens in source code, LSTM infers a se-

quence of token {p1, p2, · · · , pn} and appends it to the

end of {t1, t2, · · · , tm} to generate the new sequence

{t1, t2, · · · , tm, p1, p2, · · · , pn}. This new sequence will be

further used for code recommendation.

2) Language Model Enhancement: We use focal loss and

beam search to enhance our language model.

Focal Loss. In a programming language, different tokens

appear at different frequencies, and the amount of informa-

tion they carried is also different. The token prediction is

obviously an imbalanced problem. The basic LSTM model

does not consider this problem and still uses the traditional

balanced cross entropy, which causes the model to easily

generate high-frequency, low-information tokens.

We augment the LSTM model by using focal loss. Focal

loss proposed by Lin et al. [19] is a new loss function that

addresses the imbalance problem. It reshapes the standard

cross entropy loss such that it reduces the weights by

assigning a loss to well-classified examples. As a result, our

loss function is:

FL(p) = −(1− p)γ log(p) (6)

where p ∈ (0, 1) is the model’s estimated probability for

the class of ground truth, and γ is a hyperparameter. We set

γ = 2, which is the recommended value in the origin paper

[19].

Beam Search. Using beam search, the intention analyzer

can select w best candidates at each time step, where w
stands for beam width. Then our intention analyzer prunes

off the remaining branches and continues selecting the

possible tokens that follow on. We set w to 5 in this work.

This generation procedure repeats n times, where n is the

number of tokens to be generated.

3) Language Model Training: We train our language

model under two configurations, LSTM-Base and LSTM-

FL, where FL is shorthand for focal loss. The difference

between the two configurations lies in that LSTM-Base uses

the balanced cross entropy as its loss function, while LSTM-

FL adopts focal loss. We build our models with TensorFlow

[20]. We initialize the hidden states of neural network to

zero, and use the final hidden states of the current minibatch

as the initial hidden state of the subsequent minibatch in the

training process. There are 650 units per layer in LSTM and

its parameters are initialized uniformly in [-0,05, 0.05]. We

also apply 50% dropout on the non-recurrent connections as

recommended in [15].

C. Code Snippet Retriever

Given two code snippets sA, sB , we believe that the sim-

ilarity between the class/method names, and the similarity

between the token sequences should reflect the similarity

between these two code snippets. Thus, finding similar code

snippets can be reduced to a cloned code detection problem.

We propose Hybrid-CD (Hybrid Clone Detection), a novel

Fig. 4. The workflow of Hybrid-CD

clone detection technology, as our code snippet retriever.

Figure 4 shows the overview of Hybrid-CD, which consists

of two main components: High-Level Similarity Measurer
and Low-Level Similarity Measurer. Hybrid-CD combines

the high-level similarity and the low-level similarity to get

the final similarity:

Simfinal(sA, sB) =0.5 ∗ Simhigh(sA, sB)

+ 0.5 ∗ Simlow(sA, sB)
(7)

For each query and the corresponding augmented token se-

quence {t1, t2, · · · , tm, p1, p2, · · · , pn}, we retrieve the most

similar code snippets and recommend them to programmers.

1) High-Level Similarity Measurer: Intuitively, when two

snippets have similar class/method names and token se-

quence, they exhibit a similar usage [2]. This component

consists of a feature embedding network and a similarity

measuring network. The workflow of this component is

shown in Figure 5.

The feature embedding network embeds class name,

method name as well as the token sequence into a fixed-

length vector. We split names into words according to capital

letters in the names and transform them into embeddings

by using fastTest. We transform names into embeddings by

using fastText [13] as we described in Section II-C.

For tokens, we use bi-directional LSTM (BiLSTM) [21]

to embed the entire token sequence into a fixed-size embed-

ding. As shown in Figure 6, the BiLSTM reads the given

tokens in both forward and backward directions, and then

the final states of two directions are combined by a max

pooling layer. Finally, the class/method embeddings and the

token embedding are concatenated into a larger embedding

called snippet embedding.

The similarity measuring network takes two snippet em-

beddings as input and calculates the similarity between them.

It contains three fully connected layers. The first two layers

reconstruct the input features, and the third layer serves as

a classification layer to estimate the probabilities of clone

or non-clone (1 and 0) for the given embeddings. Then the

similarity is calculated as follows:

82



fastText

class
name

name embeddings

token

token sequence

token embedding

concatenate

snippet embedding A

fastText

BiLSTM

method
name

names

Code snippet A Code snippet B

Feature Embedding
Network

Feature
Embedding

Network

snippet embedding B

concatenate

Fully Connected Layers

Similarity Measuring Network

High-level similarity

token…

Fig. 5. The workflow of High-Level Similarity Measurer

Fig. 6. An illustration of the BiLSTM we used in Feature Embedding
Network. fw is shorthand for forward and bw is shorthand for backward.

Simhigh(sA, sB) =
exp(l1)∑1
i=0 exp(li)

(8)

where li ∈ R is the value of clone or non-clone predicted

by neural netowrk. The high-level similarity is calculated via

the softmax value of l1 (clone).

2) Low-Level Similarity Measurer: The frequencies of

tokens contain some information to locate clones. For an

extracted token sequence, we follow [22] to record the

frequency of each token and convert the token sequence

into a token-frequency dictionary D. We then calculate the

similarity score as follows:

Simlow(sA, sB) = 1−
∑

x |freq(DA, x)− freq(DB , x)|∑
x |freq(DA, x) + freq(DB , x)|
x ∈ tokens(DA) ∪ tokens(DB)

(9)

where freq(D,x) is a function which returns the frequency

of token x in the token-frequency dictionary D. Note that

if two sequences have no overlapped tokens, we set the

corresponding similarity score as 0.5 by default.

3) Hybrid-CD Model Training: The goal of Hybrid-CD

is: given two code snippets (including their class name,

method name and the code), Hybrid-CD should be able to

predict a high similarity if these two snippets are clones, and

a low similarity otherwise.

During the training phase, we construct each training

instance as a triple < sA, sB , label >: the necessary infor-

mation of two code snippets and the corresponding label (1

or 0, means clone or non-clone). Since these names used in

code are close to natural language, we directly use fastTest

embeddings that are pre-trained on natural language corpus3

for class/method name embedding. We further use fastText4

on the token sequences to obtain the embedding for each

token. The dimension of the pre-trained name embeddings

are 300 and we set the dimension of token embeddings to

650. The number of hidden units used in BiLSTM is set as

200.

The similarity measuring network contains three fully

connected layers. We separately set the number of hidden

units as 200 and 100 for the first two layers. We apply 50%

dropout on both of these two fully connected layers. The

third layer serves as a classification layer so we set its hidden

units as 2 and apply no dropout on it.

We build our model in TensorFlow. The Hybrid-CD model

is trained via the mini-batch Adam algorithm [23]. We set

the batch size as 64, the max length of token sequence as

80. The learning rate was set as 0.01.

IV. EVALUATION

In this section, we describe the design of different assess-

ment scenarios for SLAMPA and report on the evaluation

results. Specifically, our experiments aim to address the

following research questions:

• RQ1: Is Hybrid-CD able to identify similar code snip-

pets?

• RQ2: Given incomplete codes, is SLAMPA able to

accurately recommend code snippets?

A. Data Set

This subsection introduces the data set of our evalu-

ation. We download BigCloneBench from its website 5.

BigCloneBench is one of the largest code clone benchmarks

3https://fasttext.cc/docs/en/english-vectors.html
4https://github.com/facebookresearch/fastText
5https://github.com/clonebench/BigCloneBench

83



publicly available. This benchmark is built by manually la-

beling clone or non-clone pairs of code snippets on the large

scale inter-project repository IJaDataset 2.0 (approximately

25,000 open-source Java projects with 365 millions of lines

of code). The true clones in BigCloneBench are tagged as

T1, T2 , ST3, MT3, WT3/T4 as we described in Section

II-A.

1) Data Set for Clone Detection: We leverage the tagged

clone pairs in BigCloneBench to train Hybrid-CD model.

We observed that the semantically-similar snippets (WT3 or

T4 clones) could have totally different implementations even

if their functionalities are identical [7]. Since Hybrid-CD

model is built to retrieve code snippets for recommendation

and code reuse, syntax clones are more useful than semantic

clones. To build a appropriate data set, we only consider

syntax clones such as T1, T2, ST3 and MT3 clone pairs

in the BigCloneBench during our training. We also took

the method-filtering process proposed in [22], which filters

methods containing fewer than six lines of code to avoid

noises caused by small clone methods.

Finally, We get 79,563 pairs of true clones. In addition,

a good clone detection tool should be able to accurately

distinguish whether two snippets are clones or not, so we

randomly choose false clone pairs from the BigCloneBench

to construct a equal-sized negative data set. This negative

data set is used to control the false positive ratio of our

clone detection tool.

After that, we randomly extract 20% of these clone pairs

as a training data set. It should be noted that the entire

79,563 clone pairs involve 36,736 unique methods, while

the training set only contains 9,685 unique methods, which

means that most of the methods in BigCloneBench are not

used to train our tool. We only use a very small amount of

data for training in order to demonstrate the generalization

capability of our model. The details of the data sets for clone

detection are reported in Table I.

2) Data Set for Statistical Language Model: One of

the most important step during the process of SLAMPA

recommending is our statistical language model. Since we

use a deep neural language model as the intention analyzer in

this work, we need an appropriate training corpus to train the

language model. Unlike clone detection, a neural language

model can be trained in an un-supervised way, i.e., we can

use the input of the next time step as the target of the current

time step. So we can leverage almost all the code snippets

in IJaDataset excluding those used in clone detection to

build the language model. There are 545,665 complete code

snippets in our downloaded data, and we filter out methods

containing less than six lines and get 283,867 code snippets.

We further remove the snippets used in clone detection to

prevent our language model from learning those snippets in

advance. Finally we obtain 247,131 code snippets.

After that, we randomly extract 80% of these code snip-

pets as a training set and leave the rest 20% of them as a

testing set, which is used for neural language model tuning.

B. RQ1: Finding similar code snippets

1) Setup: Since the ability of identifying code clones

reflects the ability of finding similar code snippets, we focus

on assessing whether our Hybrid-CD can effectively identify

clones in the BigCloneBench in this subsection.

We feed each code snippet referenced in the Big-

CloneBench to models in order to detect its clones in

the benchmark. To quantify Hybrid-CD’s performance, we

compared our approach with four popular clone detection

tools: Deckard [24], NiCad [25], SourcererCC [26], and

CCLearner [22]. It should be noted that neural network-

based models (including Hybrid-CD and CCLearner) need a

little amount of data for training, which means these models

have learned some answers in advance. For a fair compar-

ison, the tagged clone pairs used for training are excluded

from the evaluation. All the four tools were executed with

the default parameter configuration. We set the threshold of

Hybrid-CD as 0.7, i.e., two code snippets are reported as a

clone if the similarity between them is greater than 0.7.

2) Evaluation Metrics: We define Recall to measure how

many tagged true clone pairs in the benchmark are detected

by a clone detection approach, and define Precision to

measure how many of the clone pairs reported by a clone

detector are actually true clone pairs. Formally:

RecallCD =
|Dexclusive ∩GTexclusive|

|GTexclusive| (10)

PrecisionCD =
|Dexclusive ∩GTexclusive|

|Dexclusive| (11)

where Dexclusive is the true clone pairs detected by a clone

detector, and GTexclusive is the tagged true clone pairs

(Ground Truth) in the benchmark excluding the clone pairs

used for training.

3) Result: Table II shows the recall scores among models.

For T1 and T2 clones, all the approaches have excellent

recall (≥ 95%) except for Deckard, which has about 85%

recall on T2 clones. For ST3 clones, the two neural-network

tools such as CCLearner and Hybrid-CD detected more than

90% of the clones, while the other three tools have only

about 80% of the clones. What makes Hybrid-CD stands

out is the capability of detecting MT3 clones, which are the

most common in our data set. Most compared approaches

in our experiment fail to detect such clones or have low

detection ratios. On the contrary, Hybrid-CD detects more

than half of the MT3 clones.

We further explore the precision of Hybrid-CD. We are

surprised to find that even though Hybrid-CD is trained

via T1, T2, ST3 and MT3 clone pairs, it has a strong

generalization capability and is able to precisely detect

WT3/T4 clones. We set different thresholds to Hybrid-CD

and measure the precision. Table III shows the result. We

found that the most of reported clones are true clones in

BigCloneBench. If we set the threshold to an appropriate

value, Hybrid-CD is capable of detecting almost all the T1-

MT3 clones and detecting a large amount of WT3/T4 clones

at the same time.

84



TABLE I
OVERVIEW OF THE DATA SETS.

Data set # of Snippets
# of True Clone Pairs

# of False Clone Pairs
T1 T2 ST3 MT3 WT3/T4

Raw Data 545,665 16,185 3,787 12,114 55,106 6,158,975 262,465
Filtered 36,736 16,090 3,757 11,313 48,403 0 79,563
Training 9,685 3,218 751 2,262 9,680 0 15,912

TABLE II
RECALL SCORES COMPARISON AMONG MODELS

Model
Clone Types

Total(%)
T1(%) T2(%) ST3(%) MT3(%)

Deckard 95 85 80 22 48
NiCad 100 99 81 1 37

SourcererCC 100 97 77 6 39
CCLearner 100 98 92 30 56
Hybrid-CD 100 99 94 51 69

TABLE III
PRECISION SCORES OF HYBRID-CD WITH DIFFERENT THRESHOLDS

Threshold
# of # of true # of true Total

reported T1-MT3 WT3/T4 Precision
clones clones clones (%)

0.5 710,517 53,443 615,833 94
0.6 450,637 49,737 392,465 98
0.7 261,525 44,103 213,260 98
0.8 137,908 36,037 100,815 99

As Hybrid-CD is built to retrieve code snippets for rec-

ommendation and reuse, the main responsibility of Hybrid-

CD is detecting T1-MT3 clones. Although the number of

reported WT3/T4 clones rapidly declines but the number of

detected T1-MT3 clones remains large.

Our results show that Hybrid-CD is an effective code

detection approach. There are two reasons to explain Hybrid-

CD’s effectiveness. First, Hybrid-CD leverages the state-

of-the-art embedding technique fastText and the state-of-

the-art deep neural network BiLSTM to model the source

code. It measures similarity between code snippets through

the joint embedding and deep learning. Second, Hybrid-

CD takes advantage of combining automatically extracted

high level features and handcrafted low level features, which

helps Hybrid-CD fully understand the code from different

perspectives.

TABLE IV
OVERALL RESULTS OF SLAMPAS

Model HR@1 HR@5 HR@10 MRR

SLAMPA-NoLM 0.263 0.416 0.494 0.343
SLAMPA-Base 0.362 0.547 0.654 0.459
SLAMPA-FL 0.384 0.596 0.682 0.481

Abs. Improv.* 0.121 0.18 0.188 0.116
Rel. Improv. 46.0% 43.2% 38.1% 33.5%

* The value of improvement is calculated according to
SLAMPA-NoLM and SLAMPA-FL.

Fig. 7. The influence of the number of generated tokens n on SLAMPA.
We adjust n and observe the HR@5. Since the adjustment of n has no
effect on SLAMPA-NoLM, so it always has the same value and appears as
a straight line.

C. RQ2: Recommending code snippets during programming

1) Setup: The high-level goal of SLAMPA is recom-

mending appropriate code snippets to prevent programmers

from reinventing wheels without knowing the potential reuse

opportunities. SLAMPA combines statistical language model

and code clone detection techniques to identify similar

snippets to the current incomplete code in the process of

programming.

We use BigCloneBench in another way to evaluate the

performance of SLAMPA. We tokenize each method in

test set into a token sequence by our code analyzer and

take the first third of the tokens as an incomplete program.

If SLAMPA finds its original cloned code snippets with

the statistical language model, we can mark it as an ef-

fective recommendation. The greatest advantage of using

BigCloneBench is that we can automatically verify the

quality of recommendation via the manually labeled clone

pairs in this benchmark: Given a complete code snippet, its

cloned code snippets are literally similar to it (T1, T2, ST3,

MT3 clone) or have implemented the same functionality in

an alternative way (WT3/T4 clone).

The data used for evaluating SLAMPA are almost the

same as the data used for evaluating Hybrid-CD, except that

the given snippet is cut to construct incomplete code.

2) Evaluation Metrics: In order to automatically evaluate

the effectiveness of SLAMPA and taking the reliability of

the results into account at the same time, we use two

metrics which are widely used in information retrieval to

evaluate the results, namely, HitRate@k (HR@k) and

Mean Reciprocal Rank (MRR).

85



The HitRate@k measures the percentage of queries for

which more than one correct results exist in the top k ranked

results. Formally:

HitRate@k =
1

|Q|
∑

q∈Q
ξ(R(q), k) (12)

where Q is a set of queries (in our case, incomplete codes),

R(q) is the set of recommended code snippets of query q,

and ξ(·) is a function which returns 1 if the rank of the first

hit result is no greater than k and 0 otherwise.

The MRR measures the inverse of the first hit rank. The

higher the MRR value is, the better the SLAMPA performs.

MRR is calculated as follows:

MRR =
1

|Q|
∑

q∈Q

1

First hit rank of R(q)
(13)

3) Result: We implement SLAMPA with a LSTM model

and a focal-loss-based LSTM model inside separately, which

are denoted as SLAMPA-Base and SLAMPA-FL. SLAMPA

targets at predicting and recommending code snippets ac-

cording to a piece of incomplete during the process of pro-

gramming. To the best of our knowledge, there are no other

tools that handles this problem (will be further discussed

in Section V). In order to properly evaluate the impact of

language model on the recommendation quality, we conduct

a controlled experiment by removing the language model

from SLAMPA. The prototype without language model is

called SLAMPA-NoLM.

When a recommendation is required, SLAMPA firstly

tokenizes each given snippet into a token sequence by our

code analyzer. Then, for SLAMPAs with language model,

the first third of tokens are fed into the intention ana-

lyzer. The intention analyzer reads the tokens and further

generates the next tokens as the intention. Finally, code

snippet retriever (Hybrid-CD) retrieves and recommends

code snippets. For fairness, SLAMPA-NoLM recommends

k most similar snippets to the input query, while SLAMPAs

generate k expanded queries using beam search and then

recommend the most similar snippet to each expanded query.

Table IV shows the results of our experiments. The

columns HR@1, HR@5 and HR@10 show the results of

HitRate@k when k is 1, 5 and 10 respectively. The column

MRR shows the MRR values of SLAMPAs.

Language models bring improvements: The results

show that SLAMPAs work better than SLAMPA-NoLM.

For example, HR@5 value of SLAMPA-FL is 0.596, which

means that for 59.6% of the queries, the relevant code snip-

pets can be found within the top 5 recommended snippets.

For the HitRate@k, the improvements from SLAMPA-FL to

SLAMPA-NoLM are 46.0%, 43.2% and 38.1% respectively.

Besides, the MRR value of SLAMPA-FL is 0.481 while

the MRR value of SLAMPA-NoLM is only 0.343. The

improvement of SLAMPA-FL beyond SLAMPA-NoLM in

MRR is 33.5%. The results also show that both SLAMPAs

have significantly better performance than SLAMPA-NoLM.

We can therefore say that the intention inferred by statistical

public void update() {
String passwordMD5 = new String();
if (this.password!= null && this.password.length()>0){

MessageDigest md = MessageDigest.getInstance("md5");
-----------------------cut at here-----------------------

md.update(this.password.getBytes());
byte[] digest = md.digest();
for (int i = 0; i < digest.length; i++) {

passwordMD5 +=
Integer.toHexString((digest[i] >> 4) & 0xf);

passwordMD5 +=
Integer.toHexString((digest[i] & 0xf));

}
}
...
}

Fig. 8. A snippet (id=15821341 in BigCloneBench, located in project
“lmsfm”) is cut into two disjoint parts, and the first part is fed into SLAMPA
as a query.

public static String hash(String toEncripty) {
MessageDigest md = MessageDigest.getInstance("MD5");
md.update(toEncripty.getBytes());
byte[] hash = md.digest();
StringBuffer hexString = new StringBuffer();
for (int i = 0; i < hash.length; i++) {

if ((0xff & hash[i]) < 0x10) hexString.append("0" +
Integer.toHexString((0xFF & hash[i])));

else hexString.append(Integer.toHexString(0xFF &
hash[i]));

}
...
}

Fig. 9. A snippet (id=16502662 in BigCloneBench, located in project
“logicash”) recommended by SLAMPA, which is tagged as a MT3 clone
of the snippet shown in Figure 8.

language model can indeed hit the demands of programmers

and the recommended code snippets are effective for code

reuse.

The quality of language models affect the perfor-
mance: By comparing the results of SLAMPA-Base model

and SLAMPA-FL model, we can easily see that although

both language models promote the quality of recommenda-

tion, the enhanced SLAMPA-FL model works better than

SLAMPA-Base. SLAMPA-FL outperforms SLAMPA-Base

4% - 9% in HitRate and MRR. This result demonstrates

that we can further promote the performance of SLAMPA

by upgrading the language model inside.

The number of generated tokens affects the perfor-
mance: Since SLAMPA relies on its language model, the

number of tokens to be generated n has an impact on the

performance of SLAMPA. Figure 7 shows that only adding

2-3 referred tokens to the query can significantly improve

the recommendation quality. We can further get a better

performance by generating a little more tokens (4-6). When

n keeps increasing, the recommendation quality goes down

slightly.

D. Example of Code Snippets Recommendation

This subsection illustrates an example of SLAMPA’s

recommendation. We cut the snippet in Figure 8 into two

disjoint parts, and feed the first part as the incomplete

code (i.e., query) into SLAMPA. SLAMPA analyzes the

86



intention of the query and successfully predicts tokens

[MessageDigest.update(), MessageDigest.digest(), ...]. The

generated tokens help SLAMPA retrieve the snippet shows

in Figure 9, which is tagged as a MT3 clone of the original

snippet. This result demonstrates that SLAMPA is able to

find the potential reuse opportunities and further recom-

mends appropriate code snippets to programmers during

programming.

V. RELATED WORK

Currently, there are two strategies for code recommenda-

tions: recommendation by generation and recommendation

by search. In this section, we will present related works

about code generation and code search.

A. Code Generation

In recent years, researchers try to adopt deep learning

techniques for code generation. Balog et al. proposed Deep-

Coder [27] to generate code. DeepCoder leverages Domain

Specific Language (DSL) and program synthesis techniques

to search and combine DSL into simple programs. Gu et al.

[28] apply deep learning techniques for API learning and

proposed DeepAPI. DeepAPI semantically generates API

usage sequences for a given natural language query using

RNNs.

A potential problem of these approaches is that the auto-

matically generated code may not meet the requirements, or

even impossible to be compiled.

SLAMPA evades this problem via the combination of

intention analyzing and similar snippets retrieving. SLAMPA

implicitly generates tokens according to the given incom-

plete code and finally recommends compilable code snippets

from high-quality code repository to programmers.

B. Code Search

In code search, there are many approaches proposed.

Much of the existing works focus on free-form query

searching. CodeHow proposed by Lv et al. [3] and DeepCS

proposed by Gu et al. [4] aim to find code snippets relevant

to a user query written in natural language. DeepCS [4]

incorporates an extended Boolean model and explores API

documents to identify relationships between query terms

and APIs. DeepCS measures the similarity between code

snippets and user queries through joint embedding and deep

learning.

Some publicly available code search engines [5][6] iden-

tify key words in the given code to find snippets. Unfortu-

nately, these code search engines appear to be able to identify

only identical code fragments [7].

There are a few other researches attempting to tackle the

code-to-code searching problem. FaCoY proposed by Kim et

al. [7] takes a completed code fragment of some functionality

as input, and finds semantically similar code fragments to the

given fragment. It is used to find alternative implementations

of some functionalities.

SLAMPA differs from these existing code search tech-

niques in the following aspects: (1) SLAMPA takes a incom-

plete code as input, instead of free-form query, keywords or

completed code snippet. (2) SLAMPA focuses on mining the

intention under the given incomplete code for code recom-

mendation. (3) SLAMPA recommends code snippets during

the process of programming, neither before programming

(free-form query) nor after programming (completed code).

C. Code Completion

Recently, researchers have investigated possible appli-

cations of statistical language model to code completion.

Hindle et al. [9] applied a N-gram model to complete code,

and Nguyen et al. [29] extended N-gram model by taking

semantic information of source code into consideration.

Nowadays, neural network techniques such as RNNs have

achieved the state-of-the-art results in code completion tasks.

Liu et al. [30] proposed a code completion model based on

LSTM network and Li et al. [31] extended it with a pointer

mixture network.

Most of the existing works focus on next-token suggestion

and come in the form of code completion plugins integrated

with IDEs. These approaches cannot find completed code

snippets.

SLAMPA adopts a simple neural language model and

slightly adjusts it to repeatly generate tokens. It leverages the

language model and the Hybrid-CD we proposed to retrieve

compilable code snippets from high-quality code repository

and recommend them to programmers. It does not try to

automatically complete the entire program.

It is apparent that we do not try to propose a new approach

for building language model or code completion in this

paper. Actually, we are looking forward to the development

of code completion techniques. As we shown in Section IV

that SLAMPA can be further enhanced by introducing more

powerful language models.

D. Clone Detection

There are mainly five types of clone detection techniques

developed: text-based, token-based, tree-based, graph-based,

and metrics-based [32]. Token-based techniques are inher-

ently language-independent and low-cost. They also need

less resources, which in turn makes them more scalable [33].

Token-based clone detection approaches first identify to-

kens and remove white spaces and comments from source

code. Then most of them detect clones based on token

comparison [25][26]. For example, NiCad [25] replaces

identifiers related to types, variables, and constants with spe-

cial tokens, and then compare the resulting token sequences.

SourcererCC [26] indexes code blocks with the least frequent

tokens contained in the blocks, and then compares blocks

indexed by the same token to find clones.

In this paper, we mainly tokenize source code at API level

and leverage deep neural network to measure the similarity.

Compared with traditional token-based approaches, our ap-

proach is more robust in handling T3 clones.

87



VI. CONCLUSION AND FUTURE WORK

In this paper, we present SLAMPA, a novel snippets code

recommending tool with a statistical language model and

a hybrid code clone technique named Hybrid-CD. Given a

piece of incomplete code, SLAMPA can infer its intentions,

retrieve relevant code from codebase with the support of

Hybrid-CD, and recommend the most similar code snippets

to programmers.

Our evaluation results show: (1) Hybrid-CD outperforms

the existing works and is effective to retrieve similar code

snippets; (2) Leveraging a deep neural language model,

SLAMPA is able to find the potential reuse opportunities

and recommends appropriate code snippets to programmers

during programming; (3) The performance of SLAMPA is

related to the capability of language model.

As for our future work, we will further enhance SLAMPA

by introducing the latest language models (e.g., Pointer

Sentinel-LSTM [34]). Furthermore, we will incorporate

some domain specific knowledge (e.g., return type, related

document and comments, etc. ) into SLAMPA, which are

not in the scope of consideration yet in this work.

VII. ACKNOWLEDGEMENT

This research is supported by 973 Program in China

(Grant No. 2015CB352203) and National Natural Science

Foundation of China (Grant No. 61472242).

REFERENCES

[1] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code exam-
ples,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 664–675.

[2] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, MAPO: Mining and
Recommending API Usage Patterns. Springer Berlin Heidelberg,
2009.

[3] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao,
“Codehow: Effective code search based on api understanding and
extended boolean model (e),” in Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on. IEEE,
2015, pp. 260–270.

[4] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings
of the 2018 40th International Conference on Software Engineering
(ICSE 2018). ACM, 2018.

[5] “Searchcode,” https://searchcode.com/, accessed June 15, 2018.
[6] “Krugle,” http://www.krugle.org/, accessed June 15, 2018.
[7] K. Kim, D. Kim, T. F. Bissyande, E. Choi, L. Li, J. Klein, and

Y. Le Traon, “Facoy–a code-to-code search engine,” in Proceedings
of the 40th International Conference on Software Engineering (ICSE),
2018.

[8] Y. Lin, G. Meng, Y. Xue, Z. Xing, J. Sun, X. Peng, Y. Liu,
W. Zhao, and J. Dong, “Mining implicit design templates for ac-
tionable code reuse,” in Automated Software Engineering (ASE), 2017
32nd IEEE/ACM International Conference on. IEEE, 2017, pp. 394–
404.

[9] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 837–847.

[10] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M.
Mia, “Towards a big data curated benchmark of inter-project code
clones,” in IEEE International Conference on Software Maintenance
and Evolution, 2014, pp. 476–480.

[11] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions
on software engineering, vol. 33, no. 9, 2007.

[12] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Ex-
ploring api embedding for api usages and applications,” in Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference
on. IEEE, 2017, pp. 438–449.

[13] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” arXiv preprint arXiv:1607.04606,
2016.

[14] M. Aeschlimann, D. Baumer, and J. Lanneluc, “Java tool smithing
extending the eclipse java development tools,” Proc. 2nd EclipseCon,
2005.

[15] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” Eprint Arxiv, 2014.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, and K. Macherey, “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” 2016.

[18] W. J. Murdoch and A. Szlam, “Automatic rule extraction from long
short term memory networks,” 2017.

[19] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” pp. 2999–3007, 2017.

[20] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[21] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[22] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “Cclearner: A
deep learning-based clone detection approach,” in Software Mainte-
nance and Evolution (ICSME), 2017 IEEE International Conference
on. IEEE, 2017, pp. 249–260.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[24] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in Proceedings of
the 29th international conference on Software Engineering. IEEE
Computer Society, 2007, pp. 96–105.

[25] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normaliza-
tion,” in Program Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on. IEEE, 2008, pp. 172–181.

[26] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: scaling code clone detection to big-code,” in Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference
on. IEEE, 2016, pp. 1157–1168.

[27] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and
D. Tarlow, “Deepcoder: Learning to write programs,” arXiv preprint
arXiv:1611.01989, 2016.

[28] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[29] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Joint Meeting
on Foundations of Software Engineering, 2013, pp. 532–542.

[30] C. Liu, X. Wang, R. Shin, J. E. Gonzalez, and D. Song, “Neural code
completion,” 2016.

[31] J. Li, Y. Wang, I. King, and M. R. Lyu, “Code completion with neural
attention and pointer networks,” 2017.

[32] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queens School of Computing TR, vol. 541, no. 115, pp.
64–68, 2007.

[33] Y. Yuan and Y. Guo, “Boreas: an accurate and scalable token-based ap-
proach to code clone detection,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2012, pp. 286–289.

[34] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” 2016.

88


