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Abstract With the usage of version control systems, many bug fixes have accumu-
lated over the years. Researchers have proposed various automatic program repair
(APR) approaches that reuse past fixes to fix new bugs. However, some fundamental
questions, such as how new fixes overlap with old fixes, have not been investigated.
Intuitively, the overlap between old and new fixes decides how APR approaches can
construct new fixes with old ones. Based on this intuition, we systematically designed
six overlap metrics, and performed an empirical study on 5,735 bug fixes to investi-
gate the usefulness of past fixes when composing new fixes. For each bug fix, we cre-
ated delta dependency graphs (i.e., program dependency graphs for code changes),
and identified how bug fixes overlap with each other in terms of the content, code
structure, and identifier names of fixes. Our results show that if an APR approach
composes new fixes by fully or partially reusing the content of past fixes, only 2.1%
and 3.2% new fixes can be created from single or multiple past fixes in the same
project, compared with 0.9% and 1.2% fixes created from past fixes across projects.
However, if an APR approach composes new fixes by fully or partially reusing the
code structure of past fixes, up to 41.3% and 29.7% new fixes can be created. By
making the above observations and revealing other ten findings, we investigated the
upper bound of reusable past fixes and composable new fixes, exploring the potential
of existing and future APR approaches.

This paper is an extended version of a poster paper [50] that is presented in the 39th International Confer-
ence on Software Engineering, 2017.
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1 Introduction

With the usage of version control systems, many bug fixes have accumulated
over the years. Researchers conducted various empirical studies to understand bug
fixes [8, 14, 30–32, 35]. For example, Nguyen et al. found that bugs can be repet-
itive [32], indicating that it is feasible to fix new bugs using past fixes. Based on
such observations, other researchers proposed some automatic program repair (APR)
approaches that reuse past fixes to fix new bugs. For example, Kim et al. extracted
fix patterns from thousands of bug fixes [13]. Martinez and Monperrus mined repair
models from past bug fixes to guide the repair process [25]. Long et al. trained a
model with past fixes to automatically generate patches for repairing incorrect appli-
cations [23]. Although these approaches show promising results, they are limited in
the following two aspects:
1. Existing empirical studies are based on manual or simple automatic analysis.
To understand the overlap between bug fixes, researchers usually first check out bug-
fixing revisions in software version histories, and then identify source files modified
for bug fixes. Some researchers manually compared fixes for recurring bug-fixing
patterns [13, 38]. However, this process is tedious, error-prone, and subject to hu-
man bias. Some other researchers analyzed bug fixes [25,48,51] leveraging tools like
ChangeDistiller [4], PPA [3], and CCFinder [12]. For instance, Martinez et al. used
ChangeDistiller to represent changes as edit scripts to the abstract syntax trees (AST-
s) of modified source files, and then extracted common edit operations [25]. Zhong et
al. used PPA to perform type inference on partial Java programs [51]. Yue et al. used
CCFinder to compare the textual diff regions in modified files for repeated fixes [48].
However, none of these tools is able to correlate changes applied in different software
entities (i.e., classes, methods, and fields) based on their data- or control- dependence
relationships; neither can existing studies investigate the more sophisticated bug fix-
ing patterns that involve multiple software entities.
2. Some hypotheses of APR approaches are not fully explored. For instance, Kim
et al. [13] and Long et al. [23] generated new fixes from past fixes based on the fol-
lowing hypothesis: the successful human patches applied in the version history of
different software share certain characteristics. This hypothesis is built on previous
studies by Barr et al. [1] and Martinez et al. [26]. In particular, Barr et al. [1] report-
ed that 11% bug fixes could be fully reconstituted from existing code, and Martinez
et al. [26] observed that 3% to 17% bug fixes are temporally redundant, when they
split bug fixes into code lines. However, the two studies may over- or under- estimate
the graftability or redundancy of bug fixes for two reasons. First, when splitting code
changes into snippets, and match snippets between new fixes and existing code or fix-
es purely based on similar text, these studies lose the syntactic structures of changes,
and any dependency relationship or identifier usage between relevant changes. As a
result, they overestimated the reusability of past fixes, because it is very unlikely that
any APR approach will generate patches by enumerating all possible combinations
of code lines in existing codebases or applied fixes. Second, when fixes are matched
purely based on the textual similarity, these studies can miss textually dissimilar, but
syntactically similar fixes, underestimating the reusability of past fixes. Therefore,
it is still unknown how bug fixes overlap in terms of code structures and identifier
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names of classes, methods, and fields. Although the current hypothesis is correct in
some cases, we do not know how well it generalizes.

In this study, we aim to further investigate the reusable hints from past fixes. Our
study does not suffer from the above two problems, since it does not split bug fixes
into snippets before comparison, and it introduces more advanced code analysis for
comparison. The benefits of our study are as follows:
Benefit 1. The answers can deepen our knowledge on bugs and how to fix bugs effec-
tively. For example, while many programmers believe that it is quite difficult to fix
bugs, some recent studies [32] show contradicted evidences. With the answers, we
can reduce such controversies.
Benefit 2. The answers can provide insights on the potential of this research area,
which can reduce superficial expectations and motivate repair approaches that fulfil
the potential.

Since some existing APR approaches construct fixes from past fixes [13, 23], we
performed an empirical study to investigate the usefulness of past fixes by measuring
the overlap between past fixes and current fixes. Hypothetically, the more overlap a
current fix has with past fixes, the more likely that it can be constructed from those
fixes. To compute the overlap, we have to overcome the following challenges:
Challenge 1. Bug fixes are difficult to understand. As a bug fix may involve modifi-
cations to multiple methods, many prior empirical studies are done via manual code
inspection [10, 24, 47]. However, such manual checking process is not scalable, and
may suffer from human bias. To make our study objective and comprehensive, we
need to automate the process.
Challenge 2. Existing program comprehension tools are not sufficient. Although
static analysis frameworks (e.g., WALA1 and Soot2) can conduct inter-procedural
analysis to correlate code in different methods, they require for a whole program—
including all source code and every library on which the program depends—to reason
about the data- and control- dependency relationships inter-procedurally. To analyze
such dependency relationships between code changes for each revision committed
by developers in a timely manner, we cannot afford the exorbitant analysis time cost
of applying whole-program analysis to both the before- and after- version of the re-
vision, especially when most of the time is spent in resolving library dependencies
and analyzing unchanged code. Partial Program Analysis (PPA) is a framework that
performs partial type inference and uses heuristics to recover the declared type of
expressions and resolve ambiguities in partial Java programs [3, 31]). However, it
does not support inter-procedural program analysis to correlate changes, neither does
it detect code changes. ChangeDistiller [4] and Unix diff [29] detect code changes
without identifying the dependency relationships between changes.

To overcome the above challenges, we leverage our prior work, GRAPA [50],
which combines ChangeDistiller, WALA, and PPA, to perform inter-procedural de-
pendency analysis on code changes, and to create delta dependency graphs (DDGs)
for related changes in different methods. By comparing each fix’s DDGs produced
by GRAPA, we performed a comprehensive empirical study on 5,735 bug fixes in

1 http://wala.sourceforge.net
2 https://github.com/Sable/soot
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four popular projects: Aries, Cassandra, Derby, and Mahout. Our comparison checks
for six types of overlap between bug fixes. Namely, a bug fix may fully or partially
overlap with one or multiple fixes in terms of code content, syntactic structures, and
identifier names. Imagining that all such overlap metrics can be leveraged by existing
or future tools to automate patch generation, we explore how helpful past bug fixes
can be when synthesizing new fixes. Our study provides the following insights:

– Extent of constructing fixes from past fixes. Bug fixes have more overlap in
terms of syntactic structures than code content and identifier names (Findings 1
and 3). The syntactic structures of 41% fixes can be synthesized from the syntac-
tic structures of multiple past fixes (Finding 2). A new fix is often relevant to only
several useful past fixes (Findings 5 and 10). However, if we require exact match-
es, only 3% fixes can be constructed from past fixes (Finding 1), since, since most
bugs need creative repairs that never appear in past fixes (Finding 4).

– Preparing a repository of past fixes. We consider a bug fix to be useful, if it is
repetitive. If we build the repository from fixes of the same project, most fixes are
useful (Finding 6), but it can be challenging to extract useful repair actions, since
a fix typically has both useful repair actions and useless repair actions (Finding 7).
However, the usefulness of a repository may not increase, with the increasing of
collected bug fixes (Finding 10), and with more collected fixes, it is more difficult
to identify useful ones (Finding 11). It is worthy identifying useful fixes, since an
identified fix can be useful to repair many fixes (Finding 12).

– Learning from other projects. From other projects, it is feasible to learn as
many code structure changes, but the combination of multiple past fixes do not
achieve as good results as from fixes of the same projects. Furthermore, from
other projects, as other projects typically have different client code names, it be-
comes more challenging to learn how to replace those API elements with correct
ones (Findings 8 and 9).

Here, Application Programming Interface (API) code is a set of classes and meth-
ods provided by frameworks or libraries, and client code is application code that
reuses or extends API classes and methods provided by API libraries. Our study does
not draw any conclusion on the capability of existing patch generation tools. Instead,
we try to explore the hypotheses underneath existing tools, such as how many useful
hints can be learnt from past fixes, and how significant the divergence can be between
current fixes and past fixes.

2 Open Questions

In this section, we break our research goal into the following research questions:
OP1:How many fixes can be fully constructed from past fixes?
Kim et al. [13] show that both code structure changes and name changes are use-

ful to fix new bugs, and Long and Rinard [23] show that new fixes can be constructed
from past fixes. However, it is unclear to what degree such fix patterns can be mined
from past bug fixes. Here, we care about the potential, and assume that researchers
can propose advanced approaches that reuse a change, even if its instance appears
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only once in past bug fixes. Under this assumption, this research question investi-
gates what can be learnt from past fixes, if we push mining techniques to their limits.
Section 4.1 presents our answer to this question, which can be useful to design more
effective mining techniques.

OP2: How creative is a bug fix?

Many programmers believe that it is difficult to fix bugs, since it takes even years
to fix some bugs (e.g., MySQL Bug #207863). Although many researchers admit the
complexity of fixing bugs, some recent studies present contradicted evidences. For
example, Nguyen et al. [32] show that bug fixes can be repetitive, and Zhong and
Su [51] show that many bug fixes do not need complicated repair actions. This re-
search question mainly concerns the explanation for the contradicted evidences. It is
related to the first question, but focuses on those changes that do not have overlaps.
Here, we consider that a repair action is creative, if it does not appear in previous fix-
es. For each bug, we investigate how many of its nodes and methods can be covered
by past fixes. If a change never appears in past fixes, it shall be more difficult to be
fixed and needs more creative activities. In addition, if a bug needs to refer multiple
past fixes, it shall be more difficult than those bugs that need to refer to only a past fix.
For each bug, we investigate how many past fixes contribute to generating its current
fix. Section 4.2 presents our answers to this question.

OP3. What are the challenges when preparing the repository of bug fixes?

For a bug under fixing, it needs to locate its related past fixes, before we can
learn useful knowledge. For example, Long and Rinard [23] train a model to locate
related bug fixes, before they use such fixes to guide the fixing process. This research
question concerns how difficult it is to retrieve useful past fixes for a bug, which is
reflected by the ratio from the useful past fixes to the total past fixes. In addition,
for each past fix, we investigate how many fixes it can contribute and to what degree
these fixes are useful. Section 4.3 presents our answers to this research question. For
a mining technique, our results present the usefulness frequency of rocks, and can
provide insights on designing effective mining techniques.

OP4. What is the potential to learn from other projects?

A project can have only limited past bug fixes, especially when the project is
new. A natural way to handle this problem is to learn from other projects, but its
effectiveness is largely unknown, since no previous approaches explored that and
contradicted evidences are found in the related work. On one side, many approaches
(e.g., [53]) are proposed to mine specifications that define API usages across projects;
on the other side, researchers find that some rules are specific to projects (e.g., [20]).
When investigating the previous three research questions, for each bug, we consider
fixes on other bugs as past bug fixes, and we do not consider the commit time of
bug fixes for simplicity. To investigate the fourth research question, we replace the
past bug fixes with bug fixes from other projects, and redo the previous evaluations.
Section 4.4 presents our answers to this research question.

3 https://www.youtube.com/watch?v=oAiVsbXVP6k
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3 Methodology

In this section, we present our dataset (Section 3.1), the underlying tool (Sec-
tion 3.2), the major steps (Section 3.3), and our overlap metrics (Section 3.4). Like
what Martinez et al. [26] did in their study, we compare a bug fix with known fixes
to estimate whether it is feasible to construct the bug fix based on known bug fixes.
However, our comparison is more detailed and accurate, since (1) our underlying tool
compares SDGs for their deltas while their study compares textual contents and (2)
we do not split bug fixes as they did. As we compare SDGs, code structure changes
refer to any changes to edges, and code name changes refer to any changes to node
labels. When comparing bug fixes, we envision three types of reusable components,
such as code structure changes, code names changes, or their combinations, and we
imagine two ways to leverage the reusable components: finding a matching compo-
nent, or merging several components.

3.1 Dataset

We reuse the data set mentioned in prior work [51]. Each commit has a message.
Based on messages, we define the following two criteria to identify bug fixes:
1. Issue number. All the projects in Table 1 have their issue trackers to track various
issues (e.g. bugs, improvements, new features, tasks, and sub-tasks). Their commit
messages typically contain corresponding issue number. For example, in Cassandra,
a commit’s message says “implement multiple index expressions. patch by jbellis;
reviewed by Nate McCall for CASSANDRA-1157”. In the issue tracker, the page of
the issue4 lists its description, the discussions among programmers, and the relations
to other issues. In the Apache projects, when writing issue number to messages, pro-
grammers typically use the “name-number” pattern, where name denotes the name
of a project, and number denotes the issue number. We rely on this pattern to extract
issue number, and checks issue trackers to determine whether a commit is a bug fix.
2. Keyword. Issue trackers do not store all the bug fixes. In some cases, program-
mers may bypass issue trackers, especially when they believe that a change is trivial.
When they commit a change, programmers may write a message to describe the fix.
For example, in Aries, the message of a commit says “Fix broken service registration
listener”. We determine a commit as a bug fix, if its message contains words such as
“bug” or “fix”. The preceding commit was identified as a bug fix, since its message
contains the keyword “fix”. The heuristic is simple, and a number of previous studies
(e.g. [15]) used the same technique to extract bug fixes.

Our underlying tool analyzes only source code (see Section 3.2 for details), so we
ignore those bug fixes that do not modify code. In addition, we ignore bug fixes on test
code, since their implementations are different from production code. Table 1 shows
the collected bug fixes in our study. Column “Name” shows names of our subjects.
All the projects are from the Apache software foundation5, and are written in Java.
Column “Bug Fix” lists number of collected bug fixes. Column “LOC” lists lines

4 https://issues.apache.org/jira/browse/CASSANDRA-1157
5 http://www.apache.org/

https://issues.apache.org/jira/browse/CASSANDRA-1157
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Table 1: Dataset
Name Fix LOC File

aries 442 492,349 2,423
cassandra 2,463 9,683,554 19,918

derby 2,392 17,601,539 26,359
mahout 438 538,277 3,712

Total 5,735 28,315,719 52,412

of code. Column “File” lists number of files. In total, we collected more than five
thousand bug fixes. The large quantity ensures the representativeness of our study.

3.2 GRAPA

It needs precise analysis to build such graphs, but due to many unknown code
names, partial code analysis is typically inaccurate. In our previous work [50], we
implement a tool, called GRAPA, that is able to build accurate delta graphs for partial
code. The key insight of GRAPA is that we can leverage complete-code tools such
as WALA to analyze partial code, if we fully fix unknown names for partial code.
To achieve this goal, GRAPA extends the inference strategies of PPA [3]. In addition,
many projects provide all their releases. For this example, the Derby project provides
a page for downloading all its current and archive versions6. GRAPA implements a
technique that compares used code elements with declared elements in releases to
locate the context versions for a piece of partial code. With located versions, GRAPA
fixes remaining unknown code names. GRAPA then integrates WALA to builds a
dependency graph for each method.

Before building system dependency graphs, WALA translates source code into
its internal representation (IR), which is similar to Java bytecode. As a result, in a
system dependency graph of an m method, a node denotes an instruction in the IR.
These nodes can be quite different from the source code. WALA generates a label for
each node to describe its content. For example, a label can be:
invoke special...java/util/HashMap, <init>()V

Here, the node calls the default constructor of the java.util.HashMap class.
With the support of the Hungarian algorithm [16], GRAPA is able to detect the

differences between two given graphs. Our previous work [52] show that GRAPA
correctly detects the differences for more than 90% of fixes.

3.3 The Procedure

Given a fix fb and a set of past fixes F = {f1, . . . , fn}, we investigate whether
fb can be constructed from F by taking the following three steps:
Step 1. Building system dependency graphs for each pair of modified methods.
For each fix, we first identify its pairs of modified methods, and build two system
dependency graphs for each pair of modified methods 〈gl, gr〉. We use P to denote

6 http://db.apache.org/derby/derby downloads.html
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the graph pairs that are built from a fix. Here, the definition of system dependency
graphs is as follow:

Definition 1 A system dependency graph (SDG) is defined as g = 〈V,E〉, where V
is a set of nodes, and E ⊆ V × V is a set of edges. Each node denotes an instruc-
tion in the IR of WALA. A 〈v1, v2〉 edge denotes that there exists a data or control
dependency from v1 to v2.

GRAPA enables WALA to build SDGs for bug fixes. Typically, a SDG is huge. When
we analyze bug fixes, we focus on deltas, instead of whole graphs. As a result, we ap-
ply only intra-procedural analysis, when we build SDGs. The strategy reduces sizes
of SDGs, but does not lose information. As we compare all methods, if called meth-
ods are modified, their deltas are extracted, when we analyze such called methods.
Step 2. Building delta graphs for different overlap metrics. Based on our previous
study on bug fixes [51], we identify two types of changes:
1. Code structure changes involve modifications of program structures. For example,
LUCENE-15107 says that the following code throws NullPointerException
return new byte[0];

Programmers change its code structure, and add an if statement:
if (norms == null){

return new byte[0];
}

2. Code name changes involve changes on code names. For example, CASSANDRA-
2174 says that it fails to read saved files, and the faulty line is as follow:
in = new ObjectInputStream(...);

The above code call an incompatible API. To fix the bug, programmers choose an-
other API, and the modified line was as follow:
in = new DataInputStream(...);

The above fix changes API code names. The other fixes can change client code names.
For example, ARIES-1078 says that the buggy code checks a wrong value:
public Object addingService(ServiceReference ref){

ServiceReference reference = ...
if(ref)...

}

The fixed code checks the correct value:
public Object addingService(ServiceReference ref){

ServiceReference reference = ...
if(reference)...

}

Kim et al. [13] implement fix patterns both for code structure changes (e.g.,
obj.m() → if(obj!=null){obj.m()} and for code name changes (e.g., replacing
a method call with any method calls, if they have compatible parameters).

After we build SDGs from source code, code structure changes refer to the graph
structure, and code name changes refer to any change to a nodes label. To detect code
changes, GRAPA builds delta graphs for two given SDGs, and the definition of a delta
graph is as follow:

7 https://issues.apache.org/jira/browse/LUCENE-1510. To save space, in the rest of the paper, we
present only ids of fixes, but do not present their urls. All the fixes come from Apache, and their urls
can be generated by replacing the id in the above url.
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Definition 2 A delta graph is defined as a triple, δ = 〈SGl, SGr, L〉, where SGl
is a set of subgraphs of a system dependency graph gl; SGr is a set of subgraphs
of another system dependency graph gr; and L ⊆ Gl × Gr is a set of edges. Each
node of a delta graph is a node from a system dependency graph. A 〈sgl1, sgr1〉 edge
denotes that sgl1 is modified to sgr1.

In the above definition, each node in a graph is unique, and associated with a
unique identification number. For two system dependency graphs, their delta graphs
show their modified nodes and the mappings between such nodes. To compare gl
and gr, we need to define the distance between their nodes (m in gl and n in gr).
In the optimization research, the assignment problem [28] is to assign agents to their
proper tasks, and the Hungarian algorithm is a classical algorithm that solves the
assignment problem. Initially, the algorithm calculates the distances between agents
and tasks. In each iteration, it selects a pair with the minimum distance, and updates
the distances until all the pairs are selected. We consider the comparison of system
dependency graphs as the assignment problem. For each pair of modified methods
(ml and mr) in a bug fix, GRAPA builds two system dependency graphs, gl and gr.
GRAPA compares gl and gr with the support of the Hungarian algorithm [16], and
creates a delta graph. When GRAPA compares both code structures and code names,
we define the distance as follow:

dis(m,n) =
|i(m)− i(n)|
i(m) + i(n)

+
|o(m)− o(n)|
o(m) + o(n)

+ d(l(m), l(n)) (1)

In this equation, i(m) returns the indegree of m; o(m) returns the outdegree of m;
l(m) returns m’ label that is generated by WALA; and d(l1, l2) returns the Leven-
shtein edit distance. Here, we calculate indegrees and outdegrees both on built sys-
tem dependency graph. We notice that although two code snippets are identical, their
graphs can be different, since their locations can be different. To detect such similar
code, we remove identifications of statements and locations from generated labels
before comparing graphs. We consider that two nodes are matched, if their distance
is zero by Equation 1. We merge all the delta graphs of each fix into a delta graph δ.

When we compare only code structures, we revise the distance function to com-
pare delta graphs:

dis(m,n) =
|i(m)− i(n)|
i(m) + i(n)

+
|o(m)− o(n)|
o(m) + o(n)

+ d(µ(m), µ(n)) (2)

If we compare only edges, it can produce false mappings, since two different types
of nodes can have the same input and output edges. To reduce the false mappings, in
the above equation, we compare types of nodes with d(µ(m), µ(n)). Here, µ(m) is
defined in Equation as follow:

µ(v) =


invoke method, v invokes a method.
get field, v gets a field.
put field, v puts a field.
type(v), otherwise.

(3)
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Table 2: Overlap metrics
Reusable Component Strategy

Both structure and code changes FI. Searching for the best single match.
PI. Searching for the maximum coverage.

Code structure changes FS. Searching for the best single match.
PS. Searching for the maximum coverage.

Code name changes FN. Searching for the best single match.
PN. Searching for the maximum coverage.

Here, type(v) returns the type of a node that is defined by WALA8.
Although we do not intend to define an abstract graph, the above equation trans-

fers delta graphs into a more abstract format. A specific repair tool can have a differ-
ent abstraction granularity. Indeed, to the best of our knowledge, existing tools cannot
synthesize patches only based on our abstract granularity. However, our study does
not evaluate the repair capabilities of specific tools. Instead, based on our abstraction,
our study provides evidences to answer the open questions as listed in Section 2, and
our corresponding results provide an upper bound for the future repair approaches, if
they reuse past fixes to synthesize patches.

When we compare only code names, the distance function is revised as follow:

dis(m,n) = d(l(m), l(n)) (4)

For the two metrics, we merge all the delta graphs of each fix into a delta graph β.
Step 3. Comparing delta graphs for overlaps. We revise Equation 1 to compare
two delta graphs:

dis′(m,n) =

{
dis(m,n), m, n are on the same side.
∞, otherwise. (5)

For different metrics, dis(m,n) is defined in Step 2. Each delta graph consists of two
sides (SGl and SGr). The modification ensures that nodes of the two sides cannot be
wrongly matched.

3.4 Overlap Metrics

As shown in Table 2, when defining our overlap metrics, we envision three types
of reusable components: (1) code structure changes, (2) code names changes, or (3)
their combinations, and we imagine two ways to leverage the reusable components:
(1) finding a matching component, or (2) merging several components. We next for-
mally define our overlap metrics.

Suppose that there are a set of past fixes F = {f1, . . . , fn)}, and a new bug fix
fb. Their delta graphs are ∆ = {δ1, . . . , δn}, and δb. Intuitively, if δb is a subgraph of
δi(i ∈ [1..n]), or a super graph which can be composed of subgraphs in ∆, fb can be
generated from F . In our empirical study, we use GRAPA to compare bug fixes, and
define six overlap metrics in correspondence with the six strategies. Ideally, if fb is

8 http://wala.sourceforge.net/javadocs/trunk/

http://wala.sourceforge.net/javadocs/trunk/
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similar to F according to a specific metric, the corresponding strategy will effectively
generate fb from F . We next present the formal definitions of our overlap metrics:
1. Fully overlapped bug fixes (FI): A previous fix δi covers both the structure and

name changes of δb, i.e., δb
I
⊆ δi. For example, we find that δCASSANDRA−5644

I
⊆

δCASSANDRA−6258, and Figure 1a shows the overlapped fixes. As for the above two
fixes, CASSANDRA-5644 complains a swallowed exception, and CASSANDRA-
6258 complains that the root cause of an exception is not presented. Our result shows
that the two related bugs have common fixes. The two fixes in Figure 1a are fully
identical (FI), since their delta graphs are the same.
2. Partially overlapped bug fixes (PI): No previous fix can cover both the struc-
ture and name changes of δb, but the composition of some fixes cover both types of

changes, i.e., δb
I
⊆ δm ∪ . . . ∪ δn. For example, we find that δCASSANDRA−4432

I
⊆

δCASSANDRA−6822∪δCASSANDRA−4925. As shown in Figure 2b. In CASSANDRA-
4432, programmers modified two method invocations. The first change is identical
with the changes in CASSANDRA-6822, and the second change is identical with the
changes in CASSANDRA-4925.

With Equation 3, we transfer delta graphs into abstract graphs asA = {α1, . . . , αn},
and αb. We define the following two overlap metrics relevant to structure changes:
3. Fully overlapped structure changes (FS): The structure changes of a previous fix

αi cover the structure changes of αb, i.e., αb
S
⊆ αi. For example, αCASSANDRA−4279

S
⊆ αCASSANDRA−6618, as shown in Figure 2a. Although the their delta graphs are
different, after we use Equation 3 to map the labels, all the delta graphs are reduced
to the same abstract graph.
4. Partially overlapped structure changes (PS): αb is composed of known structure

changes, i.e., αb
S
⊆ αm ∪ . . . ∪ αn. For example, αARIES−1304

S
⊆ αARIES−682 ∪

αARIES−703, as shown in Figure 2b. In ARIES-1304, the first fix adds a method
invocation, and the second fix modifies a method invocation. The structure of the first
fix can be constructed from ARIES-682, and the structure of the second fix can be
constructed from ARIES-703.

Bug fixes can involve code name changes. We define a function θ(δ) to collect
code name changes:

θ(δ) = {(nameo, namen)} (6)

where nameo denotes an original code name, and namen denotes its modified new
code name. For F and fb, the extracted names changes are represented as B =
{β1, . . . , βn} and βb. The following two overlap metrics are defined for name changes:
5. Fully overlapped name changes (FN): The name changes of a previous fix βi

cover the name changes of βb, i.e., βb
N
⊆ βi. For example, although in Figure 3a,

CASSANDRA-1681 and CASSANDRA-1701 do not the same code structure changes,
both replace an API, array() with the correct API, byteBufferToByteArray().
6. Partially overlapped name changes (PN). βb is composable of known name

changes, i.e., βb
N
⊆ β1∪. . .∪βn. For example, in Figure 3b, the code name changes of
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CASSANDRA-5644 (δb)

catch (SocketException e)
{
-throw new ConfigurationException("...");
+throw new ConfigurationException
+("...",e);
}

CASSANDRA-6258 (δi)

catch (ClassNotFoundException e)
{
-throw new ConfigurationException("...");
+throw new ConfigurationException
+("...",e);
}

The delta graphs

2017/6/27

1

invoke special …
ConfigurationException, 
<init>(Ljava/lang/String;)

new <Source,Lorg/apache/
cassandra/exceptions/Conf

igurationException
left

right
CASSANDRA-5644

invoke special …
ConfigurationException, 
<init>(Ljava/lang/String;)

left

CASSANDRA-6258

invoke special … 
ConfigurationException, 

<init>(Ljava/lang/String;Lja
va/lang/Throwable;)

new <Source,Lorg/apache/
cassandra/exceptions/Conf

igurationException

right

invoke special … 
ConfigurationException, 

<init>(Ljava/lang/String;Lja
va/lang/Throwable;)

(a) FI (δb
I
⊆ δi)

CASSANDRA-4432 (αb)

- ksm.toSchema(
- System.currentTimeMillis());
+ ksm.toSchema(
+ FBUtilities.timestampMicros());
...
- announce(..., System.nanoTime());
+ announce(...,
+ System.currentTimeMillis());

CASSANDRA-6822 (α2)

- mutation.delete(...,
- System.currentTimeMillis());
+ mutation.delete(...,
+ FBUtilities.timestampMicros());

CASSANDRA-4925 (α1)

- long now=System.nanoTime();
+ long now=System.currentTimeMillis();

The delta graphs

2017/7/1

1

invokestatic … 
Lorg/apache/cassandra/utils/
FBUtilities, timestampMicros()

left
invokestatic … 

Ljava/lang/System, 
currentTimeMillis()

invokestatic … 
Ljava/lang/System, 

nanoTime()

CASSANDRA-4925

CASSANDRA-4432

CASSANDRA-6822

right

invokestatic … 
Ljava/lang/System, 
currentTimeMillis()

invokestatic … 
Lorg/apache/cassandra/utils/
FBUtilities, timestampMicros()

left
invokestatic … 

Ljava/lang/System, 
currentTimeMillis()

right

left

invokestatic … 
Ljava/lang/System, 

nanoTime()

right
invokestatic … 

Ljava/lang/System, 
currentTimeMillis()

(b) PI (δb
I
⊆ δ1 ∪ δ2)

Fig. 1: Sample code for FI and PI

CASSANDRA-2625 can be constructed from CASSANDRA-536, CASSANDRA-

1829, and CASSANDRA-2057, i.e., βCASSANDRA−2625
N
⊆ βCASSANDRA−536 ∪

βCASSANDRA−1829 ∪ βCASSANDRA−2625.
In summary, FI and PI concern both code structure changes and name mappings.

FS and PS concern only code structure changes; and FN and PN concern only code
name mappings. FI, FS, and FN compare individual fixes, and PF, PS, and PN com-
pare multiple fixes.

Our overlap metrics are not exclusive nor symmetric. Indeed, our study does not
aim to classify bug fixes into exclusive categories, but explores the potential of using
hints from past fixes. When defining our overlap metrics, we consider two aspects of
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CASSANDRA-4279 (αb)

this.minCompactionThreshold.set(...);
+ CompactionManager.instance.
+ submitBackground(this);

CASSANDRA-6618 (αi)

connectionTracker.allChannels.add(...);
+ isRunning.set(true);

The structure changes

get field

right

Invoke method

CASSANDRA-4279

left Invoke method

Invoke method

get field

right

Invoke method

CASSANDRA-6618

left Invoke method

Invoke method

(a) FS (αb

S
⊆ αi)

ARIES-1304 (αb)

-for(... mbeanServers){
+for(... mbeanServers.keySet()){
...
-mbeanServers.add(server);
+mbeanServers.put(server,Boolean.TRUE);

ARIES-682 (α1)

-else name=file.getAbsolutePath()
- .substring(...);
+else name=file.getAbsolutePath()
+ .substring(...).replace(...);

ARIES-703 (α2)

-value=recipe.create();
+value=convert(recipe.create(),
+ conversionType);

The structure changes

2017/6/26

1

left
ARIES-1304

invoke method

get field

ARIES-682

invoke method

Invoke method

invoke method

invoke method

right

left
invoke 
method

invoke 
method

Invoke 
method

right
ARIES-703

left
invoke 
method

get field

Invoke 
method

right

Invoke 
method

get field

(b) PS (αb

S
⊆ α1 ∪ α2)

Fig. 2: Sample code for FS and PS

repair capabilities in future repair approaches. First, a repair approach can use either
single fix or multiple fixes to construct a new fix. We define fully overlapped and
partial overlapped (F and P ) for this capability. Second, a repair approach can use
repetitive code changes, only structure changes, or only code name changes, when
it constructs new fixes. We define I , S, and N to denote the three types of repair

capabilities. The relationship of I , S, and N is as follow: δb
I
⊆ δm ∪ . . .∪ δn ⇒ δb

S
⊆

δm ∪ . . .∪ δn ∧ δb
N
⊆ δm ∪ . . .∪ δn, but δb

S
⊆ δm ∪ . . .∪ δn ∧ δb

N
⊆ δm ∪ . . .∪ δn ;

δb
I
⊆ δm ∪ . . . ∪ δn, since the mappings of nodes in S and N can be different. For

bug fixes without code name changes, δb
I
⊆ δm ∪ . . . ∪ δn ⇔ δb

S
⊆ δm ∪ . . . ∪ δn,

since δb
N
⊆ δm∪ . . .∪ δn always holds. Similarly, for bug fixes without code structure

changes, δb
I
⊆ δm ∪ . . .∪ δn ⇔ δb

N
⊆ δm ∪ . . .∪ δn, since δb

S
⊆ δm ∪ . . .∪ δn always

holds. Meanwhile, S and N is irrelevant, since they focus on two different types of
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CASSANDRA-1681 (βb)

-return new BigInteger(bytes.array());
+return new BigInteger(TBaseHelper.
+ byteBufferToByteArray(bytes));

CASSANDRA-1701 (βi)

-getValidatorForValue(
- ..., columnNameInBytes.array());
+getValidatorForValue(...,TBaseHelper.
+ byteBufferToByteArray(columnName));

The code name changes

CASSANDRA-1681:
1. ∅ →
TBaseHelper.byteBufferToByteArray
2. array→ ∅
CASSANDRA-1701:
1. ∅ →
TBaseHelper.byteBufferToByteArray
2. array→ ∅
3. columnNameInBytes→
columnName

(a) FN (βb

N
⊆ βi)

CASSANDRA-2625 (βb)

+ SystemTable.setBootstrapped(true);
+ setToken(token);

CASSANDRA-536 (β1)

+ SystemTable.updateToken(token);

CASSANDRA-1829 (β2)

+ SystemTable.setBootstrapped(true);

CASSANDRA-2057 (β3)

+ setToken(getLocalToken());

The code name changes

CASSANDRA-2625:
1. ∅ → SystemTable.setBootstrapped
2. ∅ → setToken
3. ∅ → token
4. ∅ → true
CASSANDRA-536:
1. ∅ → SystemTable.updateToken
2. ∅ → token
CASSANDRA-1829:
1. ∅ → SystemTable.setBootstrapped
2. ∅ → true
CASSANDRA-2057:
1. ∅ → setToken
2. ∅ → getLocalToken

(b) PN (βb

N
⊆ β1 ∪ β2)

Fig. 3: Sample code for FN and PN

code changes, i.e., δb
S
⊆ δm∪ . . .∪δn < δb

N
⊆ δm∪ . . .∪δn. In total, the combination

of the above two aspects produces six overlap metrics (e.g., FI and PI).
Our overlap metrics do not consider the contexts and semantics of deltas, although

we agree that such information is useful to locate useful fixes. However, no matter
how an approach repairs bugs, its synthesized fixes shall follow our overlap metrics,
if it reuses known fixes. When comparing structure changes, we have to define the
transfer function (Equation 3). We understand that the granularity is not aligned to
a specific approach. To the best of our knowledge, our granularity is coarser than
any existing approaches. Here, we positively believe that some future approaches can
achieve our granularity, and we provide an estimation for their potentials. We next
present our support tool that detects overlapped bug fixes for different metrics.

We envisage that future automatic-program-repair approaches can fully or partial-
ly implement the components in Table 2. Before researchers realize such approaches,
our empirical results are useful for them to estimate the potential of their proposed
approaches. For example, if a proposed approach uses only one past fix at a time and
it needs changes of both code structures and code names from past fixes, we can use
the results of FI to estimate the repair potential of such an approach. As another
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Table 3: Overall result of learning from the same project (Part 1)

Project
Both

FixFI % PI %
aries 8 1.8% 10 2.3% 442

cassandra 68 2.8% 115 4.7% 2,463
derby 37 1.5% 44 1.8% 2,392

mahout 9 2.1% 14 3.2% 438

Total 122 2.1% 183 3.2% 5,735

Table 4: Overall result of learning from the same project (Part 2)

Project
Structure Code Name

FS % PS % FN % PN %
aries 38 8.6% 144 32.6% 16 3.6% 37 8.4%

cassandra 383 15.6% 1,202 48.8% 126 5.1% 327 13.3%
derby 249 10.4% 865 36.2% 63 2.6% 169 7.1%

mahout 47 10.7% 155 35.4% 12 2.7% 29 6.6%

Total 717 12.5% 2,366 41.3% 217 3.8% 562 9.8%

example, if a proposed approach can fully resolve code structure changes from oth-
er sources and needs only code name changes from past fixes, we can estimate its
potential, based on the results of FN and PN .

Our defined overlap metrics do not cover all the relationships between new fixes
and past fixes, but it is feasible to define more overlap metrics that cover more types
of relationships. For example, a future approach can focus on constructing a specific
type of bug fixes (e.g., API-related bug fixes) from past fixes. Before such an approach
is proposed, we can estimate its potential by defining another overlap metric, and such
a metric corresponds to another relationship between new fixes and past fixes.

4 Empirical Result

In this section, we present our answers to the four open questions in Section 2.
For a project, in each iteration, we consider one of its fixes as a fix under analysis.
For each fix under analysis, in Sections 4.1, 4.2, and 4.3, we consider all the other
fixes of the same project as past known fixes; and in Section 4.4, we consider all the
fixes of the other projects as past known fixes. As introduced in Section 3.3, for each
fix under analysis, we compare its delta graphs with the delta graphs of all the past
known fixes. The follow-up sections present our results.

4.1 OP1. Repair Potential

Tables 3 and 4 show the overall result9. Column “Project” lists names of projects.
Columns “Both”, “Structure”, and “Code Name” list matched bugs with correspond-
ing overlap metrics. Column “Fix” lists number of collected fixes. In total, Column
“Both” shows that only several percents of bug fixes can be constructed from past

9 PI is more restricted than PS and PN, but not the combination of the two. As a result, Column PI is
not the sum of Columns PS and PN.
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fixes, if an approach requires both structure changes and code name mappings from
past fixes. Column “Code Name” shows slightly better results, but Column “Struc-
ture” shows that more bug fixes can be constructed, if a repair approach requires only
structure changes from past fixes. Here, as discussed in the end of Section 3.4, we
assume that such an approach can fully resolve the missing information from other
sources. The results lead to our first finding:

Finding 1. In total, there are 2.1% FI, 12.5% FS, and 3.8% FN similar bug
fixes, indicating that if an repair approach only reuses the contents, the structure
changes, or name changes from past fixes, at most 2.1%, 12.5%, and 3.8% new
bugs can be constructed in such ways, correspondingly.

If an approach needs both structure changes and code name mappings from past
fixes, our results show that only 2.1% bugs can be fixed in this way.

Column “Structure” shows that PS corresponds to more fixed bugs than FS, and
Columns “Both” and “Code Name” show that PI and PN also have more fixed bugs
than FI and FN, respectively, but the difference is less significant. The results lead to
our second finding:

Finding 2. In total, there are 3.2% PI, 41.3% PS, and 9.8% PN similar bug fixes.
Compared with Finding 1, the improvements implies that a repair approach that
combines multiple fixes is promising to repair much more bugs, especially for
learning code structure changes.

In summary, only about 2.1% of bugs can be fixed, if a repair approach requires
identical matches from past fixes. Composing multiple fixes does not improve the
results. However, if a repair approach requires only structure changes from past fixes,
it can fix about 10% bugs, and composing multiple can fix 30% of bugs.

4.2 OP2. Creativity in Fixing Bug

Section 4.1 shows that many bugs cannot be fully fixed, and they have unmapped
nodes. If a method has unmapped nodes, we consider the method as unfixed. We mea-
sure the challenges in fixing a bug with the metrics such as node coverage, method
coverage, and candidate length as follows:
1. Node coverage presents the coverage of matched nodes:

node coverage(f) =
|mapped nodes|
|total nodes|

(7)

Figure 4a shows boxplots of our results. The horizontal axis lists the combinations
of projects and overlap metrics. For example, “aries-FI” denotes the node coverage,
when we use FI to compare fixes of aries. The vertical axis lists corresponding node
coverage. Figure 4a shows that about thirty percents of nodes can be covered, if we
require both structure changes and code mappings, and their is an improvement of
about ten percents, if we combine multiple fixes; about eighty percents of the nodes
can be covered, if we consider only structure changes, and most nodes can be covered,
if we combine multiple fixes; and about half of nodes can be covered on average, if we
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(b) method coverage
aries-PI

cassandra-PI
derby-PI

mahout-PI
aries-PS

cassandra-PS
derby-PS

mahout-PS
aries-PN

cassandra-PN
derby-PN

mahout-PN

0 20 40 60 80 100 120 140 160
(c) length of related fixes

Fig. 4: The results for OP2

consider only code mappings, and there is an improvement of about twenty percents,
if we consider multiple bug fixes. The results lead to our third finding:

Finding 3. Many structure changes can be learnt from past fixes (50% for indi-
vidual fixes, and 90% when for multiple fixes), while fewer code mappings can
be learnt from past fixes (40% for individual fixes, and 70% for multiple fixes).

Kim et al. [13] manually extract fix patterns from thousands of bug fixes. Our
results are largely consistent with their results, since most their extracted fix patterns
are related to structure changes. Although their fix patterns do not include code name
mappings, these patterns provide insights on fixing bugs, when such mappings are
unavailable. For example, their method-replacer pattern replaces a method call with
another method whose parameters and return type are compatible. This pattern simply
tries all the compatible methods, and tries whether fixed code can pass test cases.
It is feasible to fix specific bugs, but does not cover all code name mappings. For
example, the code mapping in Section 4.1 has incompatible parameters. As a result,
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the fix pattern cannot replace the method call correctly, and their approach cannot fix
the two bugs such as CASSANDRA-1681 and CASSANDRA-1701.

Finding 3 is consistent with prior studies (e.g., [31]), since they find many repeti-
tive changes. However, Finding 3 reveals that most bug fixes consist of both repetitive
changes and non-repetitive changes, since Figure 4 shows that only outliers are fully
repetitive. As a result, Findings 1 and 2 show that only a small portion of bug fixes
can be fully constructed from past fixes.
2. Method coverage is defined as follow:

method coverage(f) =
|overlapped methods|
|buggy methods|

(8)

Figure 4b shows the boxplots of our results. Its horizontal axis lists the combina-
tions of projects and overlap metrics, and its vertical axis lists corresponding method
coverage. Compared with Figure 4a, Figure 4b shows that about 30% of edited n-
odes are mapped between fixes, if we require both mappings of code structures and
identifier names between every two fixes. However, if we allow one fix to partially
match multiple fixes in terms of both code structures and identifier names, 10% more
edited nodes are matched. By requiring only code structure mappings between every
two fixes, we get 80% edited nodes mapped. If we allow one fix to partially match
multiple fixes in terms of code structures, we can increase the percentage further by
20%. The result leads to our fourth finding:

Finding 4. As matched nodes and unmatched nodes are evenly distributed in
methods, a fix typically has both recurring fixes and creative fixes.

Nguyen et al. [32] show that many bug fixes are recurring. Figure 4a is largely
consistent with their results, since most fixes have matched nodes with other fixes.
However, our results reveal that at the method level, only a small portion of bug fixes
are recurring.
3. Length of related fixes presents the length of fixes that have matched nodes with
the fix under analysis. As introduced in Section 3.4, PI, PS, and PN learn from mul-
tiple related fixes. If a bug needs more useful fixes, it can be more difficult to fix the
bug, since it needs to extract useful nodes from more related fixes. Here, we add a
known fix into the related-fix category, only when the fix has additional matched n-
odes than previous known fixes. Figure 4c shows the boxplots of our results. We find
that the medians of all the overlap metrics are around ten, but all the overlap metrics
have exceptional points, where a bug has tens and even more than a hundred fixes.
The result leads to our fifth finding:

Finding 5. In most cases, a bug has only about 10 useful fixes, but some excep-
tional bugs have tens of useful fixes.

In summary, it is feasible to learn most code structure changes, but it is unlikely
to learn many code name mappings from past fixes. At the method level, a bug typ-
ically has both recurring fixes and creative fixes that never appear in previous fixes.
Furthermore, a bug typically has quite limited fixes that can contribute to its fix.
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(a) usefulness frequency
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Fig. 5: The results for OP3

4.3 OP3. Preparing Fix Repository

In this section, we analyze the challenges in learning past fixes. We measure the
challenges in fixing a bug with the metrics such as usefulness frequency, and recurring
nodes as follows:
1. Frequency of useful past fixes present the value of a past fix:

usefulness frequency(f) =
|related fixes|

|total known fixes|
(9)

This metric analyzes the challenges from the side of past known fixes. For a known
fix f , we calculate the metric as its related fixes over total past fixes. As introduced
before, we consider that two fixes are related, if they have matched nodes. Figure 5a
shows the boxplots of our results. Its vertical axis lists the combinations of projects
and overlap metrics, and its horizontal axis lists corresponding usefulness frequen-
cy. The result shows that for structure changes, the usefulness frequency are about
ninety percents; for code name mappings, the usefulness frequency are about seven-
ty percents; and for both structure changes and code name mappings, the usefulness
frequency are about forty percents. The result leads to our sixth finding:

Finding 6. If we focus on only structure changes or code name mappings, past
fixes have high usefulness frequency, no matter if we learn from the same project
(70%), or other projects (40%).

2. Recurring nodes present the recurring nodes of a past fix:

recurring node(f) =
|recurring nodes|
|total nodes|

(10)

For a known fix, recurring nodes are its nodes that are matched with other fixes,
and total nodes are its total number of nodes. Figure 5b shows the boxplots of our
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Table 5: Overall result of learning from other project (Part 1)

Project
Both

FixFI % PI %
aries 1 0.2% 3 0.7% 442

cassandra 30 1.2% 44 1.8% 2,463
derby 13 0.5% 15 0.6% 2,392

mahout 6 1.4% 9 2.1% 438

Total 50 0.9% 71 1.2% 5,735

Table 6: Overall result of learning from other project (Part 2)

Project
Structure Code Name

FS % CS % FN % PN %
aries 49 11.1% 109 24.7% 4 0.9% 7 1.6%

cassandra 353 14.3% 813 33.0% 39 1.6% 52 2.1%
derby 252 10.5% 646 27.0% 18 0.8% 25 1.0%

mahout 57 13.0% 133 30.4% 10 2.3% 11 2.5%

Total 711 12.4% 1,701 29.7% 71 1.2% 95 1.7%

results. Its horizontal axis lists the combinations of projects and overlap metrics, and
its vertical axis lists corresponding recurring nodes. The result in Figure 5b leads to
the seventh finding:

Finding 7. When we learn from bug fixes of the same project, 90% or 70% of
nodes are recurring if we consider only structure changes or only code name
mappings, respectively. Even if we consider both structure changes and code
name mappings, 60% of nodes are recurring.

In summary, when learning from the same projects, most fixes are somewhat use-
ful. Some common structure changes and code name mappings appear in more than
one fix.

4.4 OP4. Learning from Other Project

1. Overall results. Tables 5 and 6 show the overall results of learning from other
projects. The columns in Tables 5 and 6 are of the same meanings with Tables 3 and
4. Table 1 shows that aries and mahout both have much fewer fixes than cassandra and
derby. As a result, when learning from other projects, for a fix under analysis, aries
and mahout have much more past known fixes to compare, and the past known fixes
of cassandra and derby do not change as much. The difference allows us investigating
the impacts of more past fixes.

Column “Structure” shows that with much more past fixes, for FS, the matched
fixes of aries and mahout increase several percents. Although their past known fixes
also increase, the matched fixes of cassandra and derby both decrease. For PS, the
matched fixes of all the projects decrease. The results indicate that it is more difficult
to learn multiple fixes. Column “Code Name” shows that for FN and PN, the matched
fixes of all the projects decrease. The results show that it is much more difficult to
learn code mapping from other projects. As a result, Column “Both” shows that when
learning from other projects, although past known fixes become much more, fewer
bugs can be matched. The result leads to our eighth finding:
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Finding 8. Overall, it is more challenging to learn from other projects than from
the same projects.

2. Challenges in fixing bugs. To present details, we calculate the node coverage and
method coverage when learning from other projects. Figures 6a and 6b show the
boxplots of the two metrics, respectively. As shown in Equation 3, FN transfers code
names to abstract names (e.g., field and method) that are independent on projects.
The two figures show that the medians of FS and FN do not change much. The re-
sult indicates that most structure changes can be learnt from other projects. The two
figures show that the medians of FN and PN decrease. Based on the availability of
source code, we identify two types of code names such as client-code names and API
code names. For client code, projects often have different names, so it is infeasible to
mine such mappings from other projects. For API code names, projects can use dif-
ferent API libraries, so it can be difficult to mine such mappings either. In total, only
about two percents of fixes have code name mappings that appear in other projects.
After manual inspection, we find most such mappings define frequent API elements
in popular API libraries (e.g., J2SE). For example, the three bugs in Section 4.1 all
require code mappings of J2SE. As J2SE is widely used, we find that bug fixes in oth-
er projects also require its code name mappings. For example, CASSANDRA-3751
says that dead locks occur when committing logs, and the buggy code is as follow:
Set<Table> tablesRecovered = new HashSet<Table>();

The fixed code replaces the called API method:
Set<Table> tablesRecovered = new NonBlockingHashSet<Table>();

We suspect that the mappings of client code are difficult to be learnt. For example,
in Section 4.1, the desirable code name mapping of CASSANDRA-1701 involves
a method that is declared in TBaseHelper class. The class is implemented by the
programmers of cassandra. As other projects do not implement the same class, it
is infeasible to learn such a mapping from their fixes. The results lead to our ninth
finding:

Finding 9. When we learn fixes from other projects, compared with from the
same project, most structure changes can still be learnt; some API code map-
pings can be learnt; but client code mappings can hardly be learnt.

We further calculate lengths of related fixes, and Figure 6c shows the boxplots
of our results. We find that their results in Figure 4c and Figure 6c are quite similar.
Although aries and mahout have much more past known fixes when learning from
other projects, Figure 6c shows that the medians of the two projects do not increase
consequently. Figure 4c and Figure 6c show that for all the projects, most fixes have
about ten useful past fixes. The results lead to our tenth finding:

Finding 10. For most fixes, from certain point, their useful past fixes do not
increase with more past fixes.

This finding says that most bug fixes are limited useful, and more past fixes may
not help. This limitation can touch our second open question, i.e., the creativity of
fixing bugs.
3. Challenges in learning from past fixes. To present challenges in learning from
past fixes of other projects, we calculate usefulness frequency and recurring node.
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(b) method coverage
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Fig. 6: OP4. Replicating OP2 with other projects.

Figures 7a shows the boxplots of usefulness frequency. We find that for this metric,
cassandra and derby do not change much, but aries and mahout become much smaller.
Table 1 shows that aries and mahout have much fewer fixes than cassandra and derby,
and cassandra has a close number of fixes with derby. Consequently, the known fixes
of aries and mahout become much larger than those in Figures 5a, and the known fixes
of cassandra and derby do not change much. Here, the upper binds of the usefulness
frequency metric are below one, when learning from other projects. This result leads
to our finding:

Finding 11. The usefulness frequency decreases significantly with the increas-
ing of past known fixes.

Figure 7b shows the boxplots of recurring node. We find that Figure 7b and Fig-
ure 5b are quite similar. Figure 7a shows that the usefulness frequency of aries and
mahout become much smaller, but Figure 7b shows that the recurring nodes of the
two projects do not change much. The results lead to our twelfth finding:
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Fig. 7: OP4. Replicating OP3 with other projects.

Finding 12. Most fixes have matched nodes with other fixes, and a few common
structure changes and code name mappings may exist in many fixes.

Nguyen et al. [32] show that recurring fixes exist in the same projects. Figure 7b
indicates that even across projects, some fix actions are recurring, but comparing
Figure 7b with Figure 5b, we find that across projects, recurring fix actions are fewer.
The result is consistent with the empirical study of Barr et al. [1], which show that
there are significantly more recurring fixes within projects than across projects.

In summary, it is more challenging to learn from other projects than from the same
projects. Almost the same percents of structure changes can be learnt from past fixes,
but it learns code name mapping for only about one percent of bugs. By composing
multiple fixes, it is feasible to learn more structure changes, but it shows little im-
provement on learning code name mappings. When learning from other projects, past
fixes increase significantly, but the useful fixes for a bug remain almost unchanged.
As a result, it becomes much more difficult to locate useful fixes of other projects. A
few common structure changes and code name mappings may appear in many fixes,
but at the method level, it needs creative fixes, since recurring changes do not cover
whole fixes.

4.5 Threats to Validity

The threat to internal validity includes the possible errors in extracting delta
graphs. To reduce the threat, we build our tool on WALA, a mature analysis tool for
Java, but even WALA can produce errors. The threat could be reduced if we lever-
age more advanced tools in future work. The threat to internal validity also includes
that we do not consider the order of bug fixes, so we can overestimate the usefulness
of past fixes. We notice that previous studies (e.g., [1]) also share the same threat.
Furthermore, in literature, the n-fold cross validation [7] is a common technique to
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evaluate the effectiveness of a trained model. During the validation, researchers ran-
domly partition their dataset into n equal sized subsamples. In each iteration, a single
subsample is retained as the validation data for testing the trained model, and the
remaining n-1 subsamples are used as the training data. Although the training data
and validation data are not in a chronological sequence, it is widely used in various
research fields including software engineering. In recent years, researchers start to ex-
plore the impacts of the time order empirically. For example, Tan et al. [39] conducted
an empirical study to explore the effectiveness of defect prediction approaches. Their
results show that in an extreme case, the fscore is significantly reduced from 0.54 to
0.073. It is worthy fully exploring the impact of the time order in our future, but we
have to overcome several challenges. For example, for the in-project bug fixing sug-
gestion scenario, it is difficult to uniformly define a timeline before which all fixes are
leveraged to infer the fixes applied later. In addition, for the cross-project bug fixing
suggestion scenario, since we can always extract a large number of diverse fixes from
open source projects, our current usage of fixes ignoring time ordering can properly
emulate the usage of past fixes from different projects. The overestimate problem can
be mitigated in the cross-project bug fixing suggestion scenario, when various fixes
can be possibly extracted from other projects. The threat to external validity includes
that although we analyze thousands of fixes, our approach is evaluated on limited
projects. The threat could be further reduced by analyzing more fixes in future work.

5 Discussion and Future Work

Constructing from multiple fixes. Our study reveals that identical fixes are rare,
and it is more promising to learn from multiple fixes. Although Long and Rinard [23]
mainly locate and reuse a single fix to repair a new bug, it can be feasible to extend
their approach for reusing multiple fixes. In particular, their extended probabilistic
model has to rank multiple useful fixes, and their extended feature extraction has to
learn from multiple fixes. Besides the direct usage, it is feasible to mine and reuse
patterns from multiple fixes. For example, when Kim et al. [13] use more than one
pattern to repair a bug, their fix is in fact constructed from multiple fixes. Despite
the potential, existing approaches are still insufficient to compose many fixes, even if
they are overlapped with past fixes. Kaleeswaran et al. [11] extract repair hints from
past fixes, and leave actual repairs to programmers. In future work, we plan to utilize
their hints and our insights, and work on approaches that better reuse multiple fixes.
Constructing creative fixes. Tables 3 and 5 show that most fixes cannot be construct-
ed solely from past fixes. Researchers applied the generation-and-validation strategy
to construct creative repair actions. For example, Kim et al. [13] replace a method
call with arbitrary method calls, if they have compatible parameters. The strategy can
generate many candidates, so existing approaches suffer from the huge search space.
However, we argue that it is feasible to borrow ideas from other research areas. For
example, in mutation testing, Zhang et al. [49] predict whether a mutation can be
killed, without executing it. In future work, we plan to adapt their approach to reduce
the time of validating generated fixes, which allows constructing more creative fixes.
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Extracting more accurate changes. Due to various technical limitations, our ex-
tracted changes are not fully accurate. On one side, we build a delta graph for each
pair of modified methods. The strategy can lose some changes. For example, a bug fix
can modify static code or modifiers. Our underlying tool ignores these changes, al-
though such changes are rare. On the other side, a fix can contain irrelevant changes.
For example, when programmes fix a bug, they may find bad smells, and eliminate
such smells with refactoring tools. After that, they commit their fixed code, so a com-
mit can contain both fix actions and refactoring actions. As a result, a delta graph
can contain irrelevant subgraphs, which leads to lower percents of matched nodes. In
future work, we plan to improve our extraction tool. For example, Taneja et al. [40]
propose an approach that detects refactored code. It is feasible to integrate their tool,
so that we can filter irrelevant changes.

6 Related Work

Automatic program repair. Given a buggy program, automatic program repair gen-
erates candidate patches and searches for a source code-level patch that fixes the bug
and passes all tests [41]. Various approaches are proposed to efficiently search for
patches [13, 22, 25, 33, 41]. BugFix [9] uses the apriori algorithm to rank previous
fixes. GenProg defines mutate and crossover operators to generate and evolve patch-
es [41]. RSRepair conducts random search [33]. PAR extracts repair patterns from
past bug fixes and prioritizes patch generation accordingly [13]. Liu et al. [21] pro-
pose an approach that compares bug reports to locate similar past fixes for a new
bug. Gao et al. [6] repair crash bugs based on existing samples from StackOverflow.
Prophet generates most popular patches first, but it trains a machine learning model
using past fixes to predict the likelihood of correctness for each generated patch [22].
Rolim et al. [36] repair bugs based on known examples. Xiong et al. [42] learn how
to repair if-conditions from code samples and API documents. Chen et al. [2] repair
bugs with learnt contracts. Chen et al. [2] repair bugs with learnt contracts. Le et
al. [17] synthesize patches based on examples. Saha et al. [37] introduce more repair
templates and algorithms to rank patches. Le Goues et al. demonstrate that GenProg
can fix 55 out of 105 bugs [18], while Qi et al. argue that only 2 of the 55 patches
are actually correct [34]. Le Goues et al. [19] prepare a benchmark for the follow-up
research in this research field. Recent studies [44, 45] show that better test cases can
lead to better synthesized patches. Yang et al. [43] show that the suspiciousness-first
algorithm is better than the rank-first algorithm in parallel repair and patch diversity.
Though many approaches rely on hints from existing patches, there are still funda-
mental research questions left unanswered, which motivates our empirical study.
Empirical studies on bugs and fixes. Many researchers manually inspect code changes
and commit messages to understand bug fixes [10, 46, 47]. Such manual inspection
process is too time-consuming to scale, and suffers from human bias. Some other
researchers build tools to automatically comprehend code changes, and find that a lot
of bug fixes are repetitive. For example, Nguyen et al. show that 17%-45% bug fixes
are repetitive [32], but their tool focuses on bug fixes involving API calls. Ray et al.
observe that 11%-16% patches are copy-pasted across different BSD products [35].
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However, they only leverage textual similarity to identify similar bug fixes. In real
world, nevertheless, many bug fixes may not call any API, and similar bug fixes may
be textually different, but syntactically similar. Relevant to automatic program repair,
Gabel et al. [5] found a lot of syntactic redundancy in Sourceforge projects, but their
study does not analyze bug fixes. Barr et al. [1] report that 11% bug fixes can be fully
reconstituted from existing code. Martinez et al. [26] report that at the line granulari-
ty, 3% to 17% bug fixes are temporal redundancy. Due the three issues as introduced
in Section 1, we believe that our results better reflect the reality of repetitive bug fixes,
since we handled all the three issues. By conducting this empirical study to explore
how useful past fixes can be given six imaginary ways to reuse past fixes, we are
taking a step towards investigating new automatic program repair approaches.
Automatic change comprehension. ChangeDistiller parses code changes between
the old and the new versions of a program entity (i.e. class, method, and field) [4]. It
has been used to automatically comprehend and represent code changes [27, 32, 35].
However, it does not perform static analysis to correlate changes. In contrast, stat-
ic analysis frameworks, such as Soot and WALA, analyze whole programs with-
out knowing which part is changed. When understanding relationship between code
changes, we need a tool to focus static analysis on modified code only. PPA is the
state-of-the-art tool for partial code analysis [3], but it does not conduct control or da-
ta flow analysis. In order to better understand bug fixes automatically, we use GRAPA
to effectively merge all kinds of tools mentioned above.

7 Conclusion

With decades of software development, many bugs fixes accumulate, and such
fixes contain valuable knowledge on fixing new bugs. Recently, researchers propose
approaches that locate useful fixes and use located fixes to guide the fix process of a
new bug. Despite their positive results, their potential is largely unknown, and many
questions are still open. In this paper, we conduct an empirical study on millions lines
of code to answer the open questions. We summarize our results into twelve findings,
and provide our insights for the follow-up research on this topic.
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