Enriching Compiler Testing with Real Program from Bug Report

Hao Zhong

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
zhonghao@sjtu.edu.cn

ABSTRACT

Differential testing is widely used to detect bugs in compilers. Its
basic idea is to compile test programs with different compilers, and
compare their compilation results to detect bugs. In this research
line, researchers have proposed various approaches to generate test
programs. The state-of-the-art approaches can be roughly divided
into random-based and mutation-based approaches: random-based
approaches generate random programs and mutation-based ap-
proaches mutate programs to generate more test programs. Both
lines of approaches mainly generate random code, but it is more
beneficial to use real programs, since it is easier to learn the impacts
of compiler bugs and it becomes reasonable to use both valid and
invalid code. However, most real programs from code repositories
are ineffective to trigger compiler bugs, partially because they are
compiled before they are submitted.

In this experience paper, we apply two techniques such as differ-
ential testing and code snippet extraction to the specific research
domain of compiler testing. Based on our observations on the prac-
tice of testing compilers, we identify bug reports of compilers as
a new source for compiler testing. To illustrate the benefits of the
new source, we implement a tool, called LERE, that extracts test
programs from bug reports and uses differential testing to detect
compiler bugs with extracted programs. After we enriched the test
programs, we have found 156 unique bugs in the latest versions of
gcc and clang. Among them, 103 bugs are confirmed as valid, and
9 bugs are already fixed. Our found bugs contain 59 accept-invalid
bugs and 33 reject-valid bugs. In these bugs, compilers wrongly
accept invalid programs or reject valid programs. The new source
enables us detecting accept-invalid and reject-valid bugs that
were usually missed by the prior approaches. The prior approaches
seldom report the two types of bugs. Besides our found bugs, we
also present our analysis on our invalid bug reports. The results
are useful for programmers, when they are switching from one
compiler to another, and can provide insights, when researchers
apply differential testing to detect bugs in more types of software.

ACM Reference Format:

Hao Zhong. 2022. Enriching Compiler Testing with Real Program from Bug
Report. In ASE 2022. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

© 2020 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

1 INTRODUCTION

As compilers are among the most popular and important software
and compiler bugs can lead to disastrous consequences, detecting
their bugs has been a hot research topic [34]. If multiple implemen-
tations shall follow a specification, differential testing [65] presents
a practical test oracle to detect bugs: given the same inputs, these
implementations shall produce identical outputs. A programming
language typically has more than one compiler, and it shall fol-
low specific standards. For example, the International Organiza-
tion for Standardization defines the standard for C++ [17], and all
C++ compilers shall follow this standard to compile code. As pro-
gramming languages have specifications and multiple compilers,
researchers [34] have used differential testing to detect bugs in com-
pilers. In differential testing, the diversity and quality of test inputs
determine the number and importance of detected bugs. Chen et
al. [41] reviewed 85 papers, and they found that 51% papers work
on the generation of test programs.

Although commercial test suites such as PlumHall [20] and Su-
perTest [21] are available, detecting compiler bugs needs more test
programs. Researchers generate test programs through two sources:

1. Random-based approaches generate syntactically valid pro-
grams, and to generate valid programs, random-based approaches
often take the grammars of programming languages as their inputs.
Early approaches are traced back to 1970s [53, 70]. As a more recent
tool, Yang et al. [85] propose CSmith that is based on random test
generation and generates C programs. Nagai et al. [66] generate
random C arithmetic expressions to detect arithmetic-optimization
bugs. Zhang et al. [88] propose an approach to generate effective
programs by identifying those equivalent ones. Chen et al. [42]
propose an approach that tunes the configurations of CSmith to
generate more diverse programs.

2. Mutation-based approaches change given programs to generate
more test programs. Sun et al. [73] mutate variable and function
names to generate programs. Holler et al. [54] mutate programs
by traversing their syntax trees. Le et al. [58, 59] propose a muta-
tion technique called EMI. Given a C program, EMI compiles the
code, and executes the compiled code to collect its executed source
lines. EMI then removes unexecuted source lines, and compiles
the remaining code again. By comparing the outputs of the code
after the removal with those of the original code, researchers (e.g.,
[58, 72]) find that optimization bugs in compilers cause different
outputs. EMI has been extended to detect bugs in OpenCL [63] and
Simulink [46] compilers. Even if the mutation seeds are real code,
mutated programs are not real, and programmers may not write
such programs in practice.

Compared with random code, it is more beneficial to use real
code, since it is easier to learn the importance of a bug and it
becomes reasonable to use real invalid programs as meaningful
inputs for compiler testing (see the listed benefits in Section 2.2 for

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

details). In this paper, we identify bug reports as a rich source to
collect such programs, based on the following observations:

1. Bug reports of compilers contain many useful test programs that
are derived from real projects. Although researchers can submit their
random or mutated programs, most bug reports of compilers are
submitted from real users, and their programs are derived from
real projects. To analyze faulty locations, those programs are often
reduced. Programs from bug reports are often challenging, and it
is unlikely to generate such programs via randomness or muta-
tions. Although researchers can submit random programs, most
programs in bug reports come from real development, in that most
bug reporters are real users of compilers.

2. From bug reports, it is feasible to extract real test programs
for regression testing. As test programs in bug reports are useful,
we notice that the test program of at least a bug report [2] has
been added to the test suites of compilers [3]. As programmers
add only few test programs from bug reports to their test suites,
most test programs from bug report are still useful for regression
testing. Indeed, we have found recurring bugs, when we use the test
programs from a compiler to test this compiler (see long-standing
bugs and controversial programs in Section 4.2).

3. The test programs of a compiler are useful to test other compilers.
As described in the guideline of clang [1], its test suite contains
some test programs from the test suite of gcc. This practice confirms
that the test programs of a compiler are useful for other compilers.
When users encounter a compiler bug, users often report test pro-
grams to their used compiler. As a result, even after a bug is fixed
in a compiler, other compilers can still leave similar bugs unfixed.

Based on our observations, we conduct the first experience study,
in which we applied two automated software engineering tech-
niques in compiler testing. Our contributions are as follows:

o The first exploration on an effective way of using real test
programs in compiler testing. We are the first to advocate
the using of real programs in compiler testing. An arbitrary
piece of real code is ineffective to detect compiler bugs. To
resolve this problem, we identify bug reports as a source
to mine effective real test programs for compiler testing.
To illustrate the benefits of the new source, we apply the
code extraction [26, 55, 69, 90] and differential testing [34]
techniques, and implement the two techniques in a tool
called LERE to support our study.

o An experienced report that provides positive empirical evi-
dences of our new source. We conducted an experience study
on gce and clang. In total, we have found 156 bugs. Among
them, 103 bugs are confirmed as valid by their developers,
and 9 bugs are already fixed after we reported them. Our
found bugs include 59 accept-invalid bugs and 33 reject-
valid bugs. The prior approaches [58, 59, 85] do not report
the two types of bugs. Meanwhile, we found new crashes
and wrong-code bugs as they did.

o Lessons on false alarms of differential testing. We report the
limitations of differential testing, in its application of com-
piler testing. Our results show that although the differences
between compilers are typically bugs, there are cases where
differences are not considered as bugs. Most of such cases in-
dicate undefined behaviors or conflicts in the C++ standard.

Hao Zhong

2 RESEARCH METHODOLOGY

According to its website [4], ASE2022 calls for both technical re-
search papers and experience papers. An experience paper describes
a significant experience in applying automated software engineer-
ing technology, and its evaluation criteria include the importance of
the problem, the insights from the study, and the identified lessons.
In this experience paper, we applied a software analysis technique
and a testing technique to enrich the test inputs for compiler test-
ing. For the techniques, Section 2.1 introduces their background,
and Section 3.1 introduces the implementation. For the problem,
Section 1 introduces why it is desirable to extract test programs
from bug reports, and Section 2.2 further analyzes its importance.
For the insights, Section 4 shows that test programs from bug re-
ports detected more than a hundred compiler bugs. For the lessons,
Section 5 shows that differential testing has inherent limitations.
Our research methodology is customized for experience papers,
and we do not list explicit research questions like empirical studies.

2.1 Automated SE Technology

This experience paper leverages a software analysis technique and
a software testing technique:

1. The software analysis technique. As a software analysis tech-
nique, extracting code snippets from a software engineering doc-
ument is intensively studied. Bacchelli et al. [27, 28] propose ap-
proaches that extract code snippets from emails, and further extend
their approaches to extract more types of contents [25, 26]. Besides
emails, researchers have proposed approaches to extract code snip-
pets from StackOverflow [69] and research articles [35]. In this
experience study, we extend this technique to extract programs
from the bug reports of gcc and clang. As an underlying technol-
ogy, the code-snippet extraction has been an integration of various
approaches such as linking API and its learning resources [47],
detecting API documentation errors [90], and learning patterns of
self-admitted technical debts [87]. As extracting code snippets from
SE documents is intensively studied, it shall be feasible to extract
test programs from bug reports.

2. The testing technique. Differential testing is a widely used test
oracle to determine the correctness of test outputs. To compete the
market shares, there are typically multiple projects that implement
similar or even identical functions. The basic idea of differential
testing lies in that given the same inputs, the implementations shall
produce the same outputs. As a test oracle, differential testing has
been introduced to detect bugs in refactoring [48], cross-language
APIs [91], web browsers [45], virtual machines [64], crashes [56],
JVMs [89], SSL/TLS [44], and compilers [85]. When differential
testing is introduced to test compilers, the oracle is that compilers
shall consistently accept and reject code.

In this experience paper, we implemented a tool called, LERE,
that extracts programs from bug reports, and compiles extracted
programs with differential testing.

2.2 Importance of Target Problem

Real programs may not effectively trigger compiler bugs, since they
are compiled before they are submitted to code repositories. Even
the mutated code of real programs is ineffective to detect compiler
bugs. For example, Le et al. [58, 59] mutated both random and real

Enriching Compiler Testing with Real Program from Bug Report

Gerhard Steinmetz 2017-02-07 17:19:41 UTC
Other test cases :
$ cat zl.c
void f()
{
void g{()
void al[({void b})];

(a) Program

Eric Gallager 2017-07-31 02:54:05 UTC

Confirmed that gcc still ICEs, although I
not... I'll leave the "ice-on-valid-code"

(b) Comment

$ gcc-7-20170205 -c pr30552.c

pr30552.c: In function 'fun':

pr30552.c:6:5: internal compiler error: Segmentation fault
int al({void h(){}2;})1;

0xbf633f crash_signal
../../gcc/toplev.c:333

(c) Error message

Figure 1: Three major elements in bug reports

code to generate test programs, but through mutated real code, they
found only one gcc bug. Based on our observations in Section 1, we
envisage that it is potential to extract test inputs from bug reports.
Towards this direction, our target problem is as follows:

How to extract test programs from bug reports, and how effective
is the new source to detect compiler bugs?

For the first question, Section 3 shows that our support tool is
accurate to extract test programs from bug reports. For the second
question, Section 4 shows that test programs from bug reports are
effective to detect compiler bugs. Indeed, we found more than a hun-
dred compiler bugs, and several types of bugs (e.g., accept-valid
bugs) that are rarely reported by the prior approaches (see Sec-
tion 4.5.1 for details). Our positive results can unleash the benefits:

Benefit 1. It is feasible to learn the impacts of bugs if test programs
are real code. It is feasible to contact the authors of real programs
and to learn the impacts of a bug. For example, the test program of
a bug report [12] comes from a real project, OpenMandriva. In this
bug report, a developer mentioned that OpenMandriva switched
its compiler from gcc to clang, partially due to this bug. Indeed,
when we reported our found bugs, some compiler developers asked
whether our programs were real code, so that they can determine
the severity of our reported bugs.

Benefit 2. It becomes reasonable to use invalid code, when test
programs are real code. When generating test programs, most ap-
proaches (e.g., Yang et al. [85]) require that generated programs are
valid code, but several approaches (e.g., Holler et al. [54]) generate
test programs from seeds that triggered invalid behaviors. Although
it is straightforward to generate invalid programs, it is difficult to
generate meaningful invalid programs. If they are randomly gener-
ated, invalid programs are often meaningless, since programmers
may not write such invalid programs. As a result, all the prior ap-
proaches filter their generated invalid code. In contrast, if they are
real code, invalid programs are meaningful, since programmers in
real development have written such code. As most programs on
bug reports are real code, it is no longer necessary to identify and
filter invalid code, if test programs are extracted from bug reports.

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

Table 1: Extracted features

Category ID Feature

F; the number of compilation errors
structure F,

the number of grammar errors

F; the number of keywords
word F;y the number of compiler commands

F5 the number of splashes
Fg the number of colons
punctuation ~E. " the number of dollars

Fs the number of semicolons

Besides C/C++, for other popular languages, there is typically
at least a popular compilers, and our general idea is beneficial for
all popular programming languages. Even if a language is new, it
is beneficial to keep an eye on the progress of competitors. The
bug reports of a compiler are beneficial for the testing of other
compilers and the regression testing for this compiler. The benefits
of bug reports are not once for all, since even mature compilers
(e.g., gcc and clang) receive hundreds of new bug reports each day.

3 SUPPORT TOOL

Section 3.1 introduces the implementation. Section 3.2 introduces
its highlight. Section 3.3 presents its effectiveness.

3.1 LERE

Given a bug report, LERE extracts programs from its attachments
(Section 3.1.1) and descriptions (Section 3.1.2), and it compares the
compilation results to detect bugs (Section 3.1.3).

3.1.1 Parsing Attachment. Bug report can have attachments in var-
ious formats. Some attached files are binary files, but the current
implementation of LERE ignores binary files. We notice that such
binary files are often compiled code, intermediate code, and com-
pressed files of such files. It is infeasible to use these files as test
programs, but they can be useful to diagnose compiler bugs.

If a file is a textual file, LERE first identifies programs through
their file names. In particular, if a file name contains the word,
testcase, LERE considers it as a program. In contrast, if a file name
contains words such as patch, fix, diff; script, log, and trace, it con-
siders it as not a program.

If a file name does not have the above hints to determine whether
it is a program, LERE uses the Microsoft C++ compiler [22] to
parse it and to determine whether it is a program. As some files
are invalid code, they can contain compilation errors. To extract
such files, if a file has fewer than ten compilation errors, LERE
considers it as a program. Here, instead of clang or gcc, we select
another compiler, since both clang and gcc can wrongly reject valid
programs (see Table 4 for such examples). Selecting either of the
two compilers can introduce bias. For example, if we select gcc,
we will lose all reject-valid bugs of gcc. To resolve this issue, we
select the Microsoft C++ compiler.

3.1.2 Analyzing Description and Comment. Different from tradi-
tional natural language corpus (e.g., newspapers), as shown in Fig-
ure 1, a bug report is a mixture of several elements such as programs
(Figure 1a), comments (Figure 1b), and error messages (Figure 1c).
LERE needs to extract programs from bug reports of compilers.

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

Marc Glisse 2013-11-24 23:11:57 UTC Description [reply] [-]

enum class E : int { prio = 666 };
void £ (int) __attribute__ ((constructor(E::prio)));

is accepted with -std=c++11 whereas the conversion should require an
explicit cast. default conversion -> decay conversion ->
decl_constant_value_safe returns: <integer cst 0x7ffff662efc0 type
<enumeral type O0x7ffff6624b28 E> constant 666> and we then accept any
integer cst.

The example comes from PR—5923%+.
Figure 2: The bug report of gcc59281

The programs of bug reports are more difficult to be extracted
than those of the other documents. First, the programs of bug
reports are much shorter. For example, in Figure 5, three out of the
six programs have fewer than two lines of code. When programs
are too short, it becomes more difficult to distinguish them from
other elements. Second, a program can be invalid. As such programs
can have compilation errors, the borderline between programs and
other elements is further weakened.

To handle the problem, we extract three different types of fea-
tures, and Table 1 shows our extracted features.

1. Structure features (F; and F). For structure features, Bacchelli
et al. [26] use an island parser to extract code features, and Zhong
and Su [90] use an NLP parser to extract NLP features. LERE com-
bines both strategies. For each paragraph, it uses the Microsoft C++
compiler to collect the number of compilation errors (F;), and uses
the language tool [18] to collect the number of grammar errors (Fz).

2. Word features (F3 and F4). For each paragraph, F3 counts the
number of keywords, and F4 counts the number of parameters.

3. Punctuation features (F4 to Fg). The prior tools [26, 90] use
punctuation features to extract programs in Java. For C++, LERE
uses different punctuation features: for each paragraph, F4 to Fg
count the numbers of slashes, colons, dollars, and semicolons (i.e.,
7,47 %87, and).

To extract programs, LERE is built on the decision tree learn-
ing [50]. Decision tree is a supervised classification technique. It
constructs an if-else tree to classify instances. Each internal node
denotes a variable, and each leaf denotes a class. Furthermore, LERE
uses AdaBoost [51] to improve its effectiveness. AdaBoost is a meta-
level learning technique. It combines outputs of weak classifiers
into a weighted sum to predict better outputs.

LERE predicts three types of elements in bug reports.

1. Programs. As shown in Figure 1a, some bug reports provide
C++ programs. LERE needs these programs to enrich the test inputs
of testing compilers.

2. Comments. As shown in Figure 1b, comments are written in
natural languages (English in particular).

3. Others. LERE predicts other elements than programs and com-
ments into this category (e.g., the error message in Figure 1c).

Several paragraphs can construct a single program, but as the
prior approaches do, LERE identifies programs by paragraphs. To
handle this problem, LERE merges programs into one, if there are
no other elements between them. Meanwhile, a paragraph can have
multiple types of elements. For example, Figure 1a shows that a
program can have a corresponding command line ($cat z1.c in
this example) or an introduction sentence (e.g., “the program is as
follows:”). If we include them in a program, both compilers will
fail to compile it. To handle the problem, LERE implements a set of

Hao Zhong

rerror: constructor priorities must be integers from @
2to 65535 inclusive
svoid f (int) __attribute__((constructor(E::prio)));

Figure 3: The error message of gcc, after gcc 59281 is fixed.

heuristics to remove command lines and introduction sentences. In
particular, if a paragraph is identified as a program, LERE checks
whether the first line starts with “$” or “#”. If it is, LERE removes
it, since it is a command line. In addition, LERE checks whether

the first line ends with “:”. If it is, LERE removes it, since it is an
introduction sentence.

3.1.3 Execution and Comparison. LERE extracted programs from
collected bug reports, and compiled them with gcc and clang. For
each test program, it initiates a thread, and compiles the program
with -c to avoid link errors. All the other settings are default, but
it shall be feasible to enumerate more compiler options, and more
compilers bugs (e.g., optimization bugs) can be thus detected. As
messages from compilers are automatically generated, they follow
strict formats. After a thread terminates, it parses its return mes-
sages to determine whether a compiler accepts or rejects a test
program. The results fall into five categories:

(1) The AA category. Both compilers accept the program.

(2) The RA category. gcc rejects, but clang accepts.

(3) The AR category. gcc accepts, but clang rejects.

(4) The RRI category. Both compilers reject the program, and the
error lines are identical.

(5) The RRD category. Both compilers reject the program, but
the error lines are different.

We found that the majority of programs fall into the AA and RRD
categories, and only a small portion of programs fall into the RA
and AR categories. In our study, we analyze and report programs
of only the RA and AR categories. It is feasible to detect more bugs
from the other categories. For example, Le et al. [59] show that even
if a program compiles under different optimization flags, they can
produce different outputs given the same inputs, so the AA category
can still detect wrong-code bugs. As another example, although two
compilers both reject a program, the compilation errors and their
locations can be different, so the RRD category can also detect bugs.
In our study, we did not analyze such cases, since it requires test
inputs for compiled code, and it needs much more human efforts
to determine whether such differences are bugs.

3.2 Highlight

In this section, we introduce the highlights of LERE. As shown in
Figure 2, the bug reporter, Marc Glisse, pointed out that the second
line of the program requires an explicit cast, but gcc4.9.0 wrongly
accepts the program. The developers of gcc fixed the bug, and the
fixed gcc rejects the program, with the error message as shown
in Figure 3. LERE extracted the program, and compiled it with the
latest gcc and clang (i.e., gcc9.0.0 and clang7.0.0). It found that
although the latest gcc rejects the code, the latest clang still accepts
it. We reported the inconsistency to clang. The bug was fixed [6],
one day after we reported it.

As shown in Figure 2. The gcc bug report does not attach the
program, but embeds the program in its description. If we feed de-
scriptions to compilers, we will not find the clang bug [6], since both

Enriching Compiler Testing with Real Program from Bug Report

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

Table 2: The precision, recall and f-score of different features.

All Fy F, F3,Fy Fs5-Fg
program 0.977 0968 0.973 | 0.414 0.643 0.504 | 0.589 0.777 0.67 | 0.527 0.689 0.597 0.51 0.884 0.647
comment | 0.944 0964 0.954 | 0.553 0.469 0.508 | 0.617 0.647 0.632 | 0.514 0.704 0.594 | 0.588 0.294 0.392
other 0978 0.966 0.972 | 0.464 0.277 0.347 | 0.512 0.324 0.397 | 0.741 0.239 0.362 | 0.872 0.668 0.756
average 0.966 0.966 0.966 | 0.477 0.463 0.453 | 0.573 0.583 0.566 | 0.594 0.544 0.518 | 0.656 0.615 0.598
compilers will reject the description. LERE extracts the program, 3.3 Effectiveness

with its trained classifier (Section 3.1.2).

As shown in this example, our solution has the two benefits
as described in Section 2. For the first benefit, as we extract the
program from a bug report, the program in Figure 2 is a real program
that is simplified from a real project. For the second benefit, our
reported program is an invalid program. The prior approaches are
unlikely to detect this bug, since they generate only valid programs.
As a result, we have complemented the other two sources such
as random programs and mutated programs. First, our bug report
shows that the compiler can wrongly accept invalid programs. As
the code is invalid, the compiled code is also invalid and its behavior
is against the intension of programmers. When the bug occurs,
the compiler does not report any messages, so it is difficult for
programmers to manually identify it. However, the prior approaches
cannot detect this type of bugs. Second, our program is written in
C++, and its bug is located in the C++ component. In summary,
LERE has the following two highlights:

Highlight 1. It extracts real programs, and its extracted programs
include both valid and invalid ones. Yang et al. [85] randomly gener-
ate programs as test inputs of compilers. Le et al. [58, 59] mutate
programs to generate more test inputs for compilers. Although
they have detected hundreds of bugs, both approaches can gen-
erate programs that human programmers will never write, and
such programs can trigger superficial bugs. In addition, the prior
tools are unlikely to generate some types of programs. For example,
the prior tools generate valid code, but programmers can write
invalid code that is wrongly accepted by compilers. With LERE, we
reported bugs that are triggered by invalid programs, and some of
such reports are already confirmed and fixed (see Section 4.5.1).

Highlight 2. It is able to detect bugs in C++. Although it is difficult
for a tool to generate C++ programs, Sun et al. [73] show that users
have filed many bug reports in C++. From such bug reports, LERE
has the potential to detect more types of bugs in more languages
(e.g., accepting invalid programs).

Besides the above achievements, we notice that LERE has addi-
tional benefits. For example, our extracted programs of LERE are
reduced, since in bug reports, developers often reduce programs
to locate which lines introduce bugs. As shown in Figure 2, our
program has only two lines of code. As another example, we have
found bugs that are unknown to both compilers. As LERE extracts
programs from bug reports, it is unsurprising that our found bugs
are already known in the other compilers. In this example, our
reported clang bug is similar to the original gcc bug. If a program
is able to detect a bug in a compiler, the program is often written
in a controversial or complicated way. As a result, our extracted
programs can trigger other unknown bugs (see Section 4 for details).

In our application, if other elements are wrongly identified as pro-
grams, they increase the execution time, but shall not change the
results, since both compilers will reject such programs. If programs
are wrongly identified as other elements, we can miss compiler
bugs, since these programs are not used as test inputs. As a result,
recalls are more important in our application. To construct the
golden standard of the evaluation, we manually classified 1,868
paragraphs. We conduct a tenfold cross validation on the dataset
to evaluate the effectiveness of LERE.

Table 2 shows the results. Column “All” lists the results with
all our features, and the other columns show the results with only
given features. The three subcolumns of each column list precision,
recall, and f-score, and the three rows “code example”, “comment”,
and “other” show the results for classifying code examples, com-
ments, and others, respectively. Row “average” shows the averages
of the three categories. Table 2 shows that a single type of features
is insufficient to achieve high f-scores. In particular, F; achieves
the lowest f-score, in that some programs are invalid. The results
highlight the challenges of our research problem. However, Col-
umn “All” shows that the combination of all the features accurately
extracts code examples from bug reports.

4 EXPERIENCE IN THE WILD

Although the results in Section 3.3 are quite positive, the purpose of
our study is more than presenting the effectiveness on datasets. We
next introduce our experience in the wild. Since April 2018, we have
used LERE to detect bugs in gcc and clang. At the beginning, we used
gce 8.0.1 and clang 7.0.0. When we started to report our found
bugs, in June 2018, a gcc developer complained that gcc 8.0.1 is not
the latest version anymore, and asked us to try our bugs on the latest
version. We updated our gcc to 9.0.0. As a result, most of our bugs
are found in gcc 9.0.0 and clang 7.0.0. However, after developers
reproduced our bugs, they updated the versions of our bug reports
to the versions of their own gcc or clang. Our found bugs are listed
on our project website: https://github.com/drhaozhong/otherbugreport

In summary, we achieved the following goals:

1. Many confirmed bugs. In total, we have found 156 bugs. Among
them, 103 bugs are confirmed as valid by their developers, and 7
bugs are already fixed after we reported them. As a comparison, Le
et al. [58] found 147 bugs, 77 of which are found in the latest version.
Our bugs are comparable with theirs. All our bugs are found in the
latest versions of gcc and clang, and they are unknown before we
submit them. It is feasible to tune approaches according to bugs, if
bugs are already known. Intuitively, it is more challenging to detect
unknown bugs.

2. New types of bugs. In total, we found 59 accept-invalid bugs
and 33 reject-valid bugs. The prior approaches [58, 59, 85] do not

https://github.com/drhaozhong/otherbugreport

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

Table 3: Overall result.

gcc clang total

fixed 5 4 9
new 31 18 49
moved 0 1 1
reopen 0 1 1
suspended 4 0
won’t fix 0 3 3
40 27 67
duplicate 24 5 29
unconfirmed 7 0 7
invalid 16 37 53

report the two types of bugs. Meanwhile, we found new crashes
and wrong-code bugs as they did.

3. Several long-standing bugs. For both compilers, we found sev-
eral long-standing bugs. Although these bugs were fixed in one
compiler about ten years ago, they have been in the other compiler
for ten years, and most of them are unknown, until we reported
our found bugs. Our bug reports attracted developers’ attention,
and finally they are fixed in the latest versions.

4. Bugs that are never reported in any compilers. Some of our
programs trigger quite different bugs from their original bug reports.
Some of such bugs are never found in any compilers, before we
report them.

4.1 Setup

Hardware and compilers. We have performed our testing on
a machine (E5-2620v4 Xeon CPU) running Ubuntu 18.04 (x86_64).
For both compilers, we used their default settings. As developers
often reduce programs, most of our extracted programs are short,
and do not even have the main functions. To avoid link errors, we
add the flag, -c, and focus on the compiling process.

Collecting known bug reports. We used LERE to download
the bug reports of gcc and clang. Among downloaded bug reports,
we analyzed only reports whose resolutions are fixed and are not
duplicate. As bug reports are not duplicate, their programs are
unlikely repetitive. To show the benefits of LERE, we analyzed the
bug reports that are related to the C++ components of gcc and
clang. In total, we analyzed 9,708 bug reports from gcc, and 3,213
bug reports from clang.

4.2 Overall Result

With LERE, we have obtained the following achievements:

1. LERE found new types of bugs that are never reported by the prior
approaches. In total, we have filed 156 bug reports, and most of them
are bugs in the C++ components of gcc and clang. Among them, 103
bugs are confirmed as valid, and 9 bugs are already fixed. Besides 8
crashes and 1 wrong-code bug, LERE found 59 accept-invalid bugs
and 33 reject-valid bugs. In an accept-invalid bug, a compiler
accepts an invalid program, and in a reject-valid bug, a compiler
rejects a valid program. The prior approaches seldom report the
two types of bugs.

2. LERE found bugs that do not appear in prior bug reports. As
LERE reuses programs from other compilers, it is unsurprising

Hao Zhong

1class test {
2 friend int bar(int = true);
5};

(a) The program of gcc59480

1class Test{
2 friend const int getInt(int inInt = 0);
3}

(b) The program of gcc86502

Figure 4: Our bug report (gcc86502) was marked as a duplicate
of a previous bug report (gcc59480). Although gcc59480 was
reported in 2013, it was fix, only one month after we reported
our duplicate bug,.

that some of our reported bugs are similar to original bug reports
of the other compilers. For example, the program in Figure 6e is
extracted from a clang bug report [10]. The two bugs are identical.
When we reported the gcc bug, we even copied a sentence from the
original clang bug report. However, LERE also found bugs that have
little connections with their original bug reports. For example, in
Section 4.3, we introduce that our report bug (gcc86502) speeds up
the repair process of a known bug (gcc59480). Our code example is
extracted from a clang bug report [8]. clang crashes on this program,
which is irrelevant with our reported gcc bug (gcc59480). As another
example, the program in Figure 7a is extracted from a clang bug
report [5]. clang miscompiles the program, but gcc crashes when
compiling it. The program triggers a wrong-code bug in clang, but
an ice bug in gcc. Although some of our reported bugs are known
in other compilers, our results show that LERE found bugs that are
never reported in any compilers.

3. LERE found several long-standing bugs. As shown in Section 4.3,
one of our duplicate bugs raised attention to a bug that was reported
in 2013, and it was finally fixed one month after we reported it.
Indeed, besides this bug, we found other long-standing bugs. For
example, Figure 8 shows a program. The program is extracted from
a clang bug report [9] that was reported in 2010. As the clang
bug says, the program comes from an earlier gcc bug [11] that
was reported in 2007. Both the gcc bug and the clang bug were
marked as fixed. However, we found that even the latest gcc and
clang handle it differently, and we reported this bug to gcc [13]. Its
developers explained the issue: “CWG 1839 hasn’t been resolved yet
and doesn’t even have a proposed resolution in the issues list...If 1839
is going to make more changes in this area then this PR should be
suspended until any change happens”.

4. LERE found some controversial programs. For example, in our
bug report [7], we find that gcc4.8, 5.2, 9.0, and clang3.6 accept a
program, but gcc6.0 and clang7.0 reject it. It is difficult for other
tools to generate such programs, since a machine typically does
not understand whether the differences are reasonable.

5. Most reported programs are reduced. The programs in Figures 5d,
5e, 5f, and 6d have only one or two lines of code. When developers
fix a compiler bug, they often manually reduce programs. As our
programs are often reduced, it saves the effort to locate bugs.

4.3 Quantitative Result

Table 3 shows our overall results. In total, we find 156 bugs. Among
them, 103 bugs are real bugs. In particular, 9 bugs are fixed after we
report them; 49 bugs are confirmed as new bugs; 1 bug is moved; 1

Enriching Compiler Testing with Real Program from Bug Report

1template < typename > struct traits;
2template < typename T > struct X{

3 X & operator = (X &&) noexcept

4 (traits < T >::foo ());

53}

¢template < typename T >

7X < T > &

sX < T >::operator = (X &&) noexcept
9 (traits < T >::bar ()){

10 return *this;

1}

(a) clang accepts the code, but it is invalid,
since the declaration has a different excep-
tion specifier.

1int x =

2 reinterpret_cast<const int&&>(1.0f);
(d) gcc accepts the invalid code. It violates
[expr.reinterpret.cast].

1#include <typeinfo>

2#include <iostream>

stemplate<class A,class B> void f(){
4+ std::cout << std::boolalpha

5 << (typeid(A)==typeid(B)) << '\n‘';
6}

7int main(){

s f<void()const,void()>();

9}

(b) clang accepts the code, but the code is
invalid, since it violates [dcl.fct].

rauto 1 = [=1{};
(e) gcc accepts the code, but the code is in-
valid, since it violates [expr.lambda] p9.

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

1template<class T>
2class A{
3 static T a;
1}
stemplate<class T>
6T A<T>::a;
7class B{ };
stemplate
9int A::a;
(c) clang accepts the code. The code is in-
valid for the explicit template instantia-
tion, because the type given for the static
variable does not match the one in the class
template.
1struct S { struct T {}; };
2::decltype(S(Q))::T st;
(f) gcc accepts the code, but the code is in-
valid, since it expects unqualified-id.

(a) https://bugs.llvm.org/show_bug.cgi?id=38141; (b) https://bugs.llvm.org/show_bug.cgi?id=37846; (c) https://bugs.llvm.org/show_bug.cgi?id=38205; (d) https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=86633; (e) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86499; and (f) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86500

Figure 5: accept-invalid bugs

1struct X { 1#include <stdio.h>
2 template <class T> 2struct X {
3 void foo(); 3 XO{printf("X(): this=%p\n", this);}
13}; 1+ X(const X& other) {
sstruct Base { 5 printf("X(const &X):this=%p,
6 X get(); 6 other=%p\n", this, &other); }
73}; 7 ~X() { printf("~X(): this=%p\n",
s template <class > s this); 3}
9struct Derived : Base{ 9 operator bool() {
| template<typename... Args> 10 void foo() { 1 printf("X::operator bool():
2void spurious(Args... args){ 1 auto result = Base::get(); 1 this=%p\n", this); return true; }
5 (... + args).member; 12 result.foo<void>(); 12 };
0} 13 } int main() {
sint mainO{} 14}; w X x = XO? : XO;
1s template struct Derived<int>; 15}

(a) clang rejects the code, since it fails to
parse the fold expression.

1struct A {

1#include <stddef.h> 2

2::nullptr_t n; 3}

(d) clang rejects this code. [depr.c.headers]

says that it is valid. jects it.

(b) clang determines that the template names
are dependent, but they are not.

static int const B = sizeof B;

(e) gec rejects the valid code, but clang re-

(c) gec rejects the code, since it miscalcu-
lates the type of a return value.

1void f(charx);

2int &Ff(...);

3int &r = f("foo");
(f) gec, icc, and MSVC reject the valid code,
but clang accepts it.

(a) https://bugs.llvim.org/show_bug.cgi?id=38282; (b) https://bugs.llvm.org/show_bug.cgi?id=38299; (c) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86184; (d) https://bugs.llvm.org/
show_bug.cgi?id=38216; (e) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86431; and (f) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86498

Figure 6: reject-valid bugs

bug is initially marked as invalid but later is marked as reopen; 4
bugs are suspended before assigning to programmers; and 3 bugs
are marked as won’t fix. When we reported our bugs, we selected
the default severity, since Tian et al. [77] show that it is difficult to
select proper the severity of a bug report and programmers tend
to ignore the severity. Like Le et al. [59], in our study, more gcc
bugs are confirmed, since gcc developers pay more attention to the
comparability of compilers.

Although they are valid, 29 bugs were marked as duplicate. Bet-
tenburg et al. [32] argue that duplicated bug reports are not harmful.
Although our reported bugs were marked as duplicate, we found
that they report different programs, and our duplicate bugs boost
the repair process of some bugs. For example, in 2013, a developer,
named Tobias Burnus, reported that gcc accepts the program as
shown in Figure 4a, but clang rejects it [12]. The reporter believed
that the program violates the C++ specification. OpenMandriva [19]

is a Linux operation system. In the follow-up discussion of the
bug report [12], another developer mentioned that OpenMandriva
switched its compiler from gcc to clang, partially due to this bug.
However, this bug was not fixed before we reported our found bug.
We reported a bug on July 12th 2018 [16], and Figure 4b shows our
program. Our reported bug (gcc86502) was resolved as a duplicate
of gcc59480. After that, gcc developers submitted three patches on
July 18th 2018, July 19th 2018, and August 7th 2018. Finally, the bug
was fixed five years after it was first reported.

In total, 7 bugs are unconfirmed, and 53 bugs are marked as
invalid. Section 5 presents our invalid bugs.

4.4 Bug Category

The gcc developers classified some of our bug reports with key-
words. Following their definition, we classified all our bug reports.
Table 4 shows our classification results: accept-invalid denotes

https://bugs.llvm.org/show_bug.cgi?id=38141
https://bugs.llvm.org/show_bug.cgi?id=37846
https://bugs.llvm.org/show_bug.cgi?id=38205
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86633
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86633
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86499
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86500
https://bugs.llvm.org/show_bug.cgi?id=38282
https://bugs.llvm.org/show_bug.cgi?id=38299
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86184
https://bugs.llvm.org/show_bug.cgi?id=38216
https://bugs.llvm.org/show_bug.cgi?id=38216
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86431
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86498

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

1
2

3
4
5
6

7
8
9
10

1

Hao Zhong

1struct A {
2 intx a;
#include <stdio.h> s A(int a) : a(new int(a)) {3}
template<typename T> static char const * f(* ~AQO { delete a;) 1class X {
T xt) { s A(const A&) = delete; 2 public:
T u(xt); 6 A(A&8& other) { a = other.a; other.a = 0; 3 int i
u.x = "hello world"; 5 1}
printf ("%s\n", u.x); 7 operator bool() { return true; } sinline const int& OHashKey(const X& x) {
return "initialized": 8 int operator*() { return *a; } 6 return x.i;
) ' 03 0

int main() {

union { char const *x = f(this); };
printf ("%s\n", x);

3

nint main() {

12 A ¢ = makeA(42) ?:
13 return *c;
14}

(a) An internal compilation error of gcc.

wstatic A makeA(int x) { return A(x); }

makeA(-1);

(b) A wrong-code error.

sint main() {
9 extern const int& OHashKey(const X& x);
10 X X;
1 return OHashKey(x);
12}
(c) A link failure of gcc.

(a) https://gec.gnu.org/bugzilla/show_bug.cgi?id=86182; (b) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86385; and (c) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86208
Figure 7: Other bugs

Table 4: Bug category of our detected bugs.

gcc clang total

accept-invalid 40 19 59
reject-valid 22 11 33
ice 6 2 8
other 5 1 6

that a compiler wrongly accepts an invalid program; reject-valid
denotes that a compiler wrongly rejects a valid program; and ice
denotes internal compiler errors which often cause crashes.

As shown Table 4, we find 92 accept-invalid and reject-valid
bugs. The results indicate that most of our programs are borderline
cases, which introduce controversial compilation results. It is rather
difficult for a tool to generate such borderline cases, especially when
the differences shall be meaningful to programmers. As a result,
the prior approaches [58, 85] did not find the two types of bugs.

Besides the two types of bugs, Table 4 shows 8 ice bugs, and 1
wrong-code bug. Most ice bugs are crashes, and most bugs of Yang
et al. [85] are crashes. Le et al. [58] define that wrong-code refers to
runtime errors of compiled code. As we did not execute compiled
code, we did not report our bugs as wrong-code bugs, but one of our
reported bugs was marked as wrong-code by gcc developers [15].
Le et al. [58] detected performance bugs. When LERE compared
the results of compilers, we found that both compilers hang on
some programs. At that time, we did not know that they were
performance bugs, and we ignored them.

LERE detected even more types of bugs than the above-mentioned
bugs. We present their programs in Section 4.5.3.

4.5 Sample Bug

As LERE extracts programs from reported bugs, it has the potential
to detect any type of bugs, if that type of bugs were once reported.
However, as the first work in this research line, we did not prepare
the required inputs of some bugs. For example, as we did not prepare
test inputs for compiled code, it is less effective to detect wrong-code
bugs than the prior work [58, 85]. As another example, we have not
detected any optimization bugs, since we did not try corresponding
flags as the prior work [58, 85] did. However, we found two types of
bugs, i.e., accept-invalid bugs and reject-valid bugs, which were
never reported by the prior approaches [58, 85].

4.5.1 Accept-invalid bugs. In an accept-invalid bug, a compiler
wrongly accepts an invalid program.

Figure 5a shows a program. clang accepts it, but it is invalid,
since the noexcept methods in Lines 3 and 7 do not match. The bug
was already fixed after we reported it. Figure 5b shows a program.
clang developers once marked the bug report as invalid, but later
changed it to reopen. A clang developer left a message: “After some
discussion on the core reflector, ... a strict reading of [dcl.fct]p6 suggests
that it is not in the set, so GCC is correct to reject.” Figure 5¢ shows
another clang bug. A developer confirmed that they did not check
static data: “We diagnose the mismatch for variable templates but
strangely not for static data members of class templates”. Figure 5d
shows a gcc bug. gce accepts it, but a developer confirmed that
the code is invalid: “[expr.reinterpret.cast] p11 covers casting to a
reference type, and is only allowed when the source is a glvalue, so
this is invalid”. Figure 5e shows an ill-formed lambda expression.
A developer confirmed that icc and msvc also wrongly accept the
program. Figure 5f shows another gcc bug. gcc accepts the program,
but a developer confirmed that clang, icc, and msvc all correctly
reject the program.

4.5.2 Reject-valid bugs. In a reject-valid bug, a compiler wrongly
rejects a valid program.

Figure 6a shows a clang bug. It is a valid code, since a fold-
expression is a primary-expression. The bug is already fixed after
we reported it. Figure 6b shows a valid program, but clang rejects it.
A developer indicated that this may be a known bug, since a related
source file has a FIXME in its code comments. Figure 6¢c shows a gcc
bug. gcc rejects a valid program. Its developers already fixed the
bug, after we reported it. Figure 6d shows another clang bug. clang
developers confirmed that it is a bug, and icc has the same problem.
However, they did not identify which libraries shall be changed to
fix the bug. Figure 6e shows a gcc bug. gcc determines that B is not
declared, but it is. Figure 6f shows another gcc bug. A developer
confirmed that icc and msvc also wrongly reject the program.

4.5.3 Other bugs. Besides the accept-invalid bugs and reject-valid
bugs, LERE detected a few other bugs.

Figure 7a shows an ice bug in gcc. gce crashes when it compiles
the program. The buggy code does not fully check the conditions,
before it handles anonymous aggregates. The bug was fixed, after
we reported it. Figure 7b shows a wrong-code bug in gcc. In Line 12,

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86182
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86385
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86208

Enriching Compiler Testing with Real Program from Bug Report

1extern "C" void abort();
2static int i;
sint *p = &i;
4int main(){
s int i
{
extern int i;
i=1;
*p = 2;
10 if (i == 2) abort ();
n o}

1z return 0;}

© ® u o

Figure 8: The program is extracted from a bug report of 2007,
and it still triggers a bug in the trunk version of gcc.

gee considers 42 and -1 as const A& and A&&, instead of integer values.
A developer confirmed that “Maybe the object is being copied by an
implicitly-defined copy constructor, but that’s meant to be deleted and
overload resolution should have used the move constructor”. Figure 7c
shows a link failure. A flag is no longer set, so a check is disable,
after gcc3.2. As a result, latter versions have the problem. After
we reported the bug [14], gcc developers have fixed the bug four
months later.

4.6 Threat to Validity

The threat to internal validity includes the manual process to de-
termine real bugs. We once reported dozens of bugs in a day, and
our reported bugs were not related. Compiler developers suspected
that we were not real users. In that day and the follow-up days,
they marked many of our bug reports as invalid or duplicated. To
reduce the threat, we list all our bug reports on our website, so
others can inspect our found bugs based on their own expertise. The
threat to internal validity also includes random test programs, since
researchers can submit such programs in their bug reports. Still,
the impacts shall be minor, since most bugs are reported by real
programmers, even if their programs can be reduced. The threat to
external validity includes the generality of LERE to other languages.
Although this is a limitation to our tool, it reveals that our research
direction has many research opportunities.

5 LESSON ON DIFFERENTIAL TESTING

We notice that some of our reported bugs were marked as invalid.
Differential testing has long been introduced to detect compiler
bugs [34, 85], but most researchers did not report their found invalid
bug reports in their papers. Although Le et al. [58, 59] reported
several invalid bug reports, they did not analyze why their bug
reports were considered as invalid. We carefully analyzed our in-
valid bug reports. Although they are marked as invalid, we find that
they detect useful difference between compilers. Figure 9 shows
the cases where this oracle fails:

Figure 9a shows a bug report. Lines 5 and 6 of its program declare
two items with the same name. A clang developer explains that the
validity of this program is undefined: “CWG does not have a consen-
sus position on the desired validity of this example”. Figure 9b shows
a clang report. In C++, _Atomic is undefined: “_Atomic is a reserved
identifier (per [lex.name]), with no defined meaning in C++, so we
can define it to mean whatever we want”. Figure 9c shows a clang
bug report. clang accepts it, but gcc produces an error message
on Line 5. A developer explained that their flexible array member

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

extensions are different: “Clang’s flexible array member extension
isn’t the same as GCC’s, and allows this”. Figure 9d shows an in-
valid gcc bug report. clang complains that in Line 2 the requested
alignment is dependent but the declaration is not dependent. A
developer explained “This is an explicit extension which GCC sup-
ports. Clang might not want to support this extension but GCC does”.
Figure 9e shows a gcc bug report. clang accepts it, but gec produces
an error message on Line 1. A gcc developer explained “We don’t
have attribute ext_vector_type (we have vector_size). Gec warns about
it”. Figure 9f shows an invalid gcc bug report. A gcc developer ex-
plained the difference: “The standard says passing non-trivial types
through varargs is conditionally-supported so an implementation can
either support it, or reject it with a diagnostic”.

Although these differences are false alarms, it is useful to warn
programmers the differences. If programmers blindly believe that
their code will produce the same results across compilers, they
can introduce many latent bugs. Programmers shall understand the
differences, when they are switching from one compiler to the other.
Most of our found false alarms are undefined in the C++ standard,
which highlights the importance of drafting better standards.

Indeed, all test oracles have limitations. For example, a test or-
acle says that programs shall not crash [30], but even this widely
believed test oracle can fail. For example, if a pirated key is sent to
a game server, the game can crash as designed, but this crash is not
considered as a bug.

Some programmers complain that bug detection tools have high
false alarms [57]. Besides incomplete specifications [60] and the
limitations of detection techniques [57], we identify that test oracles
can also introduce false alarms. However, our findings shall not be
interpreted as an excuse to only reject papers. Indeed, as a response
of such reviewer comments, many researchers start to hide their
false alarms with various tricks. In our humble view, this is not a
constructive way to build the knowledge, and introduces long-term
harms to the research community. Instead, we list the false alarms
in our paper, so follow-up researchers can understand the inevitable
false alarms and locate where to make improvements.

6 RELATED WORK

Empirical studies on bug reports and compiler testing. Re-
searchers [23, 52, 61] conducted various empirical studies to under-
stand the characteristics of bug reports. Researchers also conducted
empirical studies to compare compiler testing approaches [39] or
to analyze the characteristics of compiler bugs [71]. Our work is
not an empirical study, but an experience paper. In our research
context, the technology includes differential testing and extracting
code snippets from SE documents, and our target problem explores
a new source for extracting compiler test inputs. Our experience
report shows that our problem is practical important for compiler
developers, since they have confirmed more than one hundred bugs.
Our lessons provide insights on the limitation of differential testing,
and these findings can motivate exciting research on this issue.
Bug report analysis. Bettenburg et al. [31] analyze factors that
contribute to a good bug report. A hot research line is to identify
duplicate bug reports [67, 74, 76], and the other hot research line is
to assign bug reports [23, 24, 82]. Tian et al. [78] build the priority
list of bug reports. Bachmann et al. [29] and Wu et al. [81] build

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

1namespace N{
2 int i;

3}

svoid £ OF 2{
5 using N::i;
¢ using N::i;

7}

1struct AtomiclInt

(B

3 _Atomic(int) Atomic;

s AtomicInt GlobalAtomic@ = {0};

Hao Zhong

1struct x0{

2 x0 () = default;
33}

4struct x1{

5 x0 x2[]1;

¢ void x3 ()¢

7 x1 (O

sconstexpr AtomicInt GlobalAtomicl = {0}; s}
(a) The C++ standard (http://wg21.link/ (b) clang and gcc handle _Atomic differently, 9 3;
cwg36) does not have a consensus postilion since it is a reserved identifier without defined (c) The two compilers have different

on this program. meaning in C++.

flexible-array-member extension.

1struct Foo {

2 Foo() {3

3 Foo(const Foo&) {1}};
qvoid f(...);

1 template <typename T> void Fun(T A) { svoid g() {
2 typedef int __attribute__((__aligned__(A)) ¢ Foo foo;
) T1; 1typedef __attribute__((ext_vector_type(4))) 7 f(foo);
3 int k1[__alignof__(T1)1; int vi4; s void (xfp)(...) = f;
4} 2const int &r = vi4(1).x; 9 fp(foo);}

(d) gcc supports the explicit extension, but
clang does not.

(e) clang implements the ext_vector_type
attribute, but gcc does not.

(f) The C++ standard does not defines be-
haviors clearly.

(a) https://bugs.llvm.org/show_bug.cgi?id=38144; (b) https://bugs.llvm.org/show_bug.cgi?id=37922; (c) https://bugs.llvm.org/show_bug.cgi?id=38265; (d) https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=86578; (e) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86477; and (f) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86562

Figure 9: False alarms

the links between bug reports and bug fixes. Zhou et al. [92] locate
buggy files of a given bug report. LERE extracts test inputs from
bug reports, complementing these approaches.

7 CONCLUSION AND FUTURE WORK

To generate more test programs for compilers, researchers have
proposed approaches that randomly generate programs or mutate
existing programs. Compared with random code, it is more inter-
esting to generate real test programs, since it is feasible to trace
their authors and it is reasonable to use both valid and invalid real
programs. However, an arbitrary source file is often ineffective to
detect compiler bugs. Based on our observations on the bug fix
process of compiler bugs, we identify bug reports as a new source
for enriching compiler testing. To illustrate the benefits of the new
source and to support our study, we implement LERE that extracts
test programs from bug reports and uses differential testing to de-
tect compiler bugs. With LERE, our experience report shows that
more than one hundred new bugs were found, and two types of
our found bugs are never reported in the prior approaches. Further-
more, while the prior approaches found bugs in C programs, LERE
is able to handle other programming languages.

Some next research opportunities are as follows.

Detecting more types of compiler bugs. With our extracted
test programs, the prior compiler testing approaches [36, 37, 43] can
have more test inputs, and more types of compiler bugs can be thus
detected. First, a bug report often contains an original test program
and its reduced version. Taking original programs as inputs, it is
feasible to detect more wrong-code bugs as the prior work [58, 85]
did, and comparing original programs with their reduced versions
can motivate better techniques to reduce test programs [26, 55, 69].
Second, we can try more compiler flags to detect optimization bugs
as other researchers [58, 59, 85] do. Finally, Le et al. [58] believe
that it is feasible to extend their approach to support C++. After
they extend their tool, it is feasible to feed our extracted programs

to Le et al. [58, 59] as their seeds. The combination can detect more
bugs in the C++ component, especially for the optimization phases.

Exploring other sources to extract effective real programs
for compiler testing. Although bug reports of compilers provide a
rich source of real test programs, the compilers for a new program-
ming language may not have many bug reports. For such compilers,
we envisage other sources to extract real test programs. For ex-
ample, Yan et al. [83] show that programmers can workaround
compiler bugs, and such changes can be identified from commits
of code repositories. In particular, if bug reports mention compiler
bugs, it is feasible identify the code fragments from corresponding
commits [62]. After such programs are mined, many follow-up ap-
proaches shall be extended to handle real programs. For example, Le
et al. [58] complain that it is difficult to reduce real programs. When
reducing programs, most approaches [38, 40, 68, 79] assume that
the file that triggers compiler bugs is a single file. To enable such
approaches for real programs, researchers shall narrow compiler
bugs to a single file.

Generating test cases from the bug reports of other applica-
tions. For example, some recent approaches (e.g., [84]) can detect
similar modules across different projects. Furthermore, a recent
study [75] asks students to detect bugs of an Android application,
based on the known bug reports of its related applications, and
these students have detected some bugs with similar symptoms in
this way. Bettenburg et al. [33] proposed an approach that extracts
structural information from bug reports. Researchers have explored
how to generate test inputs based on core dumps [80], runtime
logs [86], and natural language descriptions [49]. These approaches
can be useful to extend LERE.

ACKNOWLEDGMENTS

We appreciate reviewers for their insightful comments. This work
is sponsored by the CCF-Huawei Innovation Research Plan No.
CCF2021-admin-270-202111.

http://wg21.link/cwg36
http://wg21.link/cwg36
https://bugs.llvm.org/show_bug.cgi?id=38144
https://bugs.llvm.org/show_bug.cgi?id=37922
https://bugs.llvm.org/show_bug.cgi?id=38265
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86578
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86578
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86477
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86562

Enriching Compiler Testing with Real Program from Bug Report

REFERENCES

(1]

[21
[22]

[23]

[24]

[25]

[26

[27]

[28

[29]

[30

[31]

[32]

[33

[34]

[35

[36]

[37]

[38]

[39]

[40

[41]

2020. The test suite guide of llvm. https://llvm.org/docs/TestSuiteGuide.html.
(2020).

2021. Partial specialization halfway accepted after instantiation. https://gcc.gnu.
org/bugzilla/show_bug.cgi?id=32505. (2021).

2021. An test case that originates from a bug report. https://github.com/gcc-
mirror/gce/blob/master/gec/testsuite/g%2B%2B.dg/template/partial8.C. (2021).
2022. The call for papers of ASE2022. https://conf.researchr.org/track/ase-
2022/ase-2022-research-papers. (2022).

2022. Clang 10531. https://bugs.llvm.org/show_bug.cgi?id=10531. (2022).

2022. Clang 38235. https://bugs.llvm.org/show_bug.cgi?id=38235. (2022).

2022. Clang 38268. https://bugs.llvm.org/show_bug.cgi?id=38268. (2022).

2022. Clang 5134. https://bugs.llvm.org/show_bug.cgi?id=5134. (2022).

2022. Clang 5966. https://bugs.llvm.org/show_bug.cgi?id=5966. (2022).

2022. Clang 9989. https://bugs.llvm.org/show_bug.cgi?id=9989. (2022).

2022. GCC 31775. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775. (2022).
2022. GCC 59480. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59480. (2022).
2022. GCC 86181. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86181. (2022).
2022. GCC 86208. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86208. (2022).
2022. GCC 86385. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86385. (2022).
2022. GCC 86502. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86502. (2022).
2022. The ISO C++ standard. https://isocpp.org/std/the-standard. (2022).

2022. Languagetool. https://www.languagetool.org. (2022).

2022. OpenMandriva. https://www.openmandriva.org. (2022).

2022. PlumHall. http://www.plumhall.com/stec.html. (2022).

2022. SuperTest. http://www.ace.nl/compiler/supertest.html. (2022).

2022. The Microsoft C++ compiler. https://msdn.microsoft.com/en-us/library/
ms235639.aspx. (2022).

John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should fix this bug?.
In Proc. ICSE. 361-370.

John Anvik and Gail C Murphy. 2011. Reducing the effort of bug report triage: Rec-
ommenders for development-oriented decisions. ACM Transactions on Software
Engineering and Methodology 20, 3 (2011), 10.

Alberto Bacchelli, Anthony Cleve, Michele Lanza, and Andrea Mocci. 2011. Ex-
tracting structured data from natural language documents with island parsing.
In Proc. ASE. 476-479.

Alberto Bacchelli, Tommaso Dal Sasso, Marco D’Ambros, and Michele Lanza.
2012. Content classification of development emails. In Proc. 34th ICSE. 375-385.
Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. 2010. Extracting source
code from e-mails. In Proc. 18th ICPC. 24-33.

Alberto Bacchelli, Michele Lanza, and Romain Robbes. 2010. Linking e-mails and
source code artifacts. In Proc. 32nd ICSE. 375-384.

Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu, and
Abraham Bernstein. 2010. The missing links: bugs and bug-fix commits. In Proc.
ESEC/FSE. 97-106.

Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.
The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2014), 507-525.

Nicolas Bettenburg, Sascha Just, Adrian Schroter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In Proc. FSE.
308-318.

Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim.
2008. Duplicate bug reports considered harmful ... really?. In Proc. ICSM. 337-345.
Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim.
2008. Extracting structural information from bug reports. In Proc. MSR. 27-30.
Abdulazeez S Boujarwah and Kassem Saleh. 1997. Compiler test case generation
methods: a survey and assessment. Information and software technology 39, 9
(1997), 617-625.

Preetha Chatterjee, Benjamin Gause, Hunter Hedinger, and Lori Pollock. 2017.
Extracting code segments and their descriptions from research articles. In Proc.
MSR. 91-101.

Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.
2017. Learning to prioritize test programs for compiler testing. In Proc. ICSE.
700-711.

Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. Test case prioritization for compilers: A text-vector based
approach. In Proc. ICST. 266-277.

Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2022. Compiler bug isolation via effective witness test program generation. In
Proc. ESEC/FSE. 223-234.

Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proc. ICSE. 180-190.

Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Compiler Bug
Isolation via Memoized Search. In Proc. ASE. to appear.

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan

Hao, and Lu Zhang. 2020. A survey of compiler testing. Comput. Surveys 53, 1
(2020), 1-36.

[42]

[43]

[44

[45

[46]

(47

(48]

[49]

[50

[51]

(52

[53

(54

[55

[56

NN
A

=
Ko

[68

[69

[70]

[71

[72

[73

[74

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and
Lu Zhang. 2022. History-guided configuration diversification for compiler test-
program generation. In Proc. ASE. 305-316.

Yang Chen, Alex Groce, Chaogiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric
Eide, and John Regehr. 2013. Taming compiler fuzzers. In Proc. PLDI. 197-208.
Yuting Chen and Zhendong Su. 2015. Guided differential testing of certificate
validation in SSL/TLS implementations. In Proc. ESEC/FSE. 793-804.

Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBDIFF:
Automated identification of cross-browser issues in web applications. In Proc.
ICSM. 1-10.

Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence modulo input (EMI) based mutation of CPS
models for finding compiler bugs in Simulink. In Proc. ICSE. to appear.
Barthélémy Dagenais and Martin P. Robillard. 2012. Recovering Traceability
Links between an API and its Learning Resources. In Proc. 34rd ICSE. 47-57.
Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated
testing of refactoring engines. In Proc. ESEC/FSE. 185-194.

Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Automatically translating bug reports into test cases for mobile apps. In Proc.
ISSTA. 141-152.

Eibe Frank. 2000. Pruning Decision Trees and Lists. Ph.D. Dissertation. Department
of Computer Science, University of Waikato.

Yoav Freund and Robert E. Schapire. 1996. Experiments with a new boosting
algorithm. In Proc. ICML. San Francisco, 148-156.

Philip] Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.
2010. Characterizing and predicting which bugs get fixed: an empirical study of
Microsoft Windows. In Proc. ICSE. 495-504.

Kenneth V. Hanford. 1970. Automatic generation of test cases. IBM Systems
Journal 9, 4 (1970), 242-257.

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In Proc. USENIX. 445-458.

He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. 2017. An unsupervised
approach for discovering relevant tutorial fragments for APIs. In Proc. ICSE.
38-48.

Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu, Xiaoxing Ma, and Jian Lu.
2016. Crash consistency validation made easy. In Proc. ESEC/FSE. 133-143.
Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
Proc. ICSE. 672-681.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In Proc. PLDI. 216-226.

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In Proc. OOPSLA. 386-399.

Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Rosu, and Darko
Marinov. 2016. How good are the specs? A study of the bug-finding effectiveness
of existing Java API specifications. In Proc. ASE. 602-613.

Zexuan Li and Hao Zhong. 2021. An empirical study on obsolete issue reports.
In Proc. ASE. 1317-1321.

Zexuan Li and Hao Zhong. 2021. Understanding code fragments with issue
reports. In Proc. ASE. 1312-1316.

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.
2015. Many-core compiler fuzzing. In Proc. PLDL 65-76.

Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2010. Testing system virtual machines. In Proc. ISSTA. 171-182.

William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100-107.

Eriko Nagai, Hironobu Awazu, Nagisa Ishiura, and Naoya Takeda. 2012. Random
testing of C compilers targeting arithmetic optimization. In Proc. SASIMI 2012.
48-53.

Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Cheng-
nian Sun. 2012. Duplicate bug report detection with a combination of information
retrieval and topic modeling. In Proc. ICSE. 70-79.

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In Proc. PLDI. 335-346.
Peter C. Rigby and Martin P. Robillard. 2013. Discovering Essential Code Elements
in Informal Documentation. In Proc. 35th ICSE. 11.

RP Seaman. 1974. Testing compilers of high level programming languages. IEEE
Compututer System and Technology (1974), 366-375.

Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In Proc. ESEC/FSE. 968-980.

Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In Proc. OOPSLA. 849-863.

Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-
standing compiler bugs in GCC and LLVM. In Proc. ISSTA. 294-305.

Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. 2010.
A discriminative model approach for accurate duplicate bug report retrieval. In
Proc. ICSE. 45-54.

https://llvm.org/docs/TestSuiteGuide.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=32505
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=32505
https://github.com/gcc-mirror/gcc/blob/master/gcc/testsuite/g%2B%2B.dg/template/partial8.C
https://github.com/gcc-mirror/gcc/blob/master/gcc/testsuite/g%2B%2B.dg/template/partial8.C
https://conf.researchr.org/track/ase-2022/ase-2022-research-papers
https://conf.researchr.org/track/ase-2022/ase-2022-research-papers
https://bugs.llvm.org/show_bug.cgi?id=10531
https://bugs.llvm.org/show_bug.cgi?id=38235
https://bugs.llvm.org/show_bug.cgi?id=38268
https://bugs.llvm.org/show_bug.cgi?id=5134
https://bugs.llvm.org/show_bug.cgi?id=5966
https://bugs.llvm.org/show_bug.cgi?id=9989
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59480
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86181
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86208
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86385
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86502
https://isocpp.org/std/the-standard
https://www.languagetool.org
https://www.openmandriva.org
http://www.plumhall.com/stec.html
http://www.ace.nl/compiler/supertest.html
https://msdn.microsoft.com/en-us/library/ms235639.aspx
https://msdn.microsoft.com/en-us/library/ms235639.aspx

ASE 2022, 10-14 October, 2022, Ann Arbor, Michigan, United States

[75]
[76]
[77]

[78]

[79]

[80]

[81

[82]

[83]

Shin Hwei Tan and Ziqiang Li. 2020. Collaborative Bug Finding for Android
Apps. In Proc. ICSE. to appear.

Ferdian Thung, Pavneet Singh Kochhar, and David Lo. 2014. DupFinder: inte-
grated tool support for duplicate bug report detection. In Proc. ASE. 871-874.
Yuan Tian, Nasir Ali, David Lo, and Ahmed E Hassan. 2016. On the unreliability
of bug severity data. Empirical Software Engineering 21, 6 (2016), 2298-2323.
Yuan Tian, David Lo, Xin Xia, and Chengnian Sun. 2015. Automated prediction
of bug report priority using multi-factor analysis. Empirical Software Engineering
20, 5 (2015), 1354-1383.

Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang.
2021. Probabilistic Delta debugging. In Proc. ESEC/FSE. 881-892.

Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. 2010. Analyzing
multicore dumps to facilitate concurrency bug reproduction. In Proc. APLOS.
155-166.

Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. Relink:
recovering links between bugs and changes. In Proc. ESEC/FSE. 15-25.

Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weigin Zou, Zhongxuan Luo, and
Xindong Wu. 2015. Towards Effective Bug Triage with Software Data Reduction
Techniques. IEEE Transactions on Knowledge and Data Engineering 27, 1 (2015),
264-280.

Aoyang Yan, Hao Zhong, Daohan Song, and Li Jia. 2022. The Symptoms, Causes,
and Repairs of Workarounds in Apache Issue Trackers. In Proc. ICSE. to appear.

[84
[85
[86

[87

(88

[89

[90

[91

[92

]

]
]

]

Hao Zhong

Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. 2020. Near-duplicate
detection in Web App model inference. In Proc. ICSE. 186-197.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proc. PLDI. 283-294.

Tingting Yu, Tarannum S Zaman, and Chao Wang. 2017. DESCRY: reproducing
system-level concurrency failures. In Proc. ESEC/FSE. 694-704.

Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2020. Au-
tomatically learning patterns for self-admitted technical debt removal. In Proc.
SANER. 355-366.

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-
meration for rigorous compiler testing. In Proc. PLDI. 347-361.

Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun
Zhang, and Lingming Zhang. 2022. History-driven test program synthesis for
JVM testing. In Proc. ICSE. 1133-1144.

Hao Zhong and Zhendong Su. 2013. Detecting API documentation errors. In
Proc. OOPSLA. 803-816.

Hao Zhong, Suresh Thummalapenta, and Tao Xie. 2013. Exposing behavioral
differences in cross-language API mapping relations. In Proc. ETAPS/FASE. 130—
145.

Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports.
In Proc. ICSE. 14-24.

	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Automated SE Technology
	2.2 Importance of Target Problem

	3 Support Tool
	3.1 LeRe
	3.2 Highlight
	3.3 Effectiveness

	4 Experience In The Wild
	4.1 Setup
	4.2 Overall Result
	4.3 Quantitative Result
	4.4 Bug Category
	4.5 Sample Bug
	4.6 Threat to Validity

	5 Lesson on Differential Testing
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

