
Revisiting Textual Feature of Bug-Triage Approach
Zexuan Li

Department of Computer Science and Engineering
Shanghai Jiao Tong University, China

lizx 17@sjtu.edu.cn

Hao Zhong
Department of Computer Science and Engineering

Shanghai Jiao Tong University, China
zhonghao@sjtu.edu.cn

Abstract—With the increase of software users, programmers
use issue tracking systems to manage bug reports and researchers
propose bug-triage approaches that assign bug reports to pro-
grammers. Programmers assign bug reports often according to
their descriptions. Based on by this observation, prior approaches
typically use classic natural language processing (NLP) to analyze
bug reports. Although the technical choice is straightforward,
the true effectiveness of this technical choice is largely unknown.
Taking a state-of-the-art approach as an example, we explore
the impact of textual features in bug triage. By enabling and
disabling the textual features of this approach, we analyze their
impacts on assigning thousands bug reports from six widely used
open source projects. Our result shows that instead of improving
it, textual features in fact reduce the effectiveness. In particular,
after we turn off its textual features, the f-scores of the baseline
approach are improved by 8%. After manual inspection, we find
two reasons to explain our result: (1) classic NLP techniques
are insufficient to analyze bug reports, because they are not
pure natural language texts and contain other elements (e.g.,
code samples); and (2) some bug reports are poorly written.
Our findings reveal a strong need and sufficient opportunities to
explore more advanced techniques to handle these complicated
elements in bug reports.

I. INTRODUCTION

To support the collaboration of software teams, issue track-
ers (e.g., JIRA [1]) have been widely used in both open source
communities and commercial companies. With issue trackers,
programmers and users can file and assign their found bugs.
Even with issue trackers, it is still a time-consuming task to
assign bug reports to programmers for fixing, since many bug
reports have to be assigned [10] and some projects have many
programmers [22]. In practice, even experienced programmers
can disagree with some of assignments, and 25% bug reports
of Eclipse are reassigned at least once [13], [20].

To handle the problem, researchers [9], [10], [15], [21],
[12], [22], [8] have proposed various bug-triage approaches
that automatically assign bug reports to developers, and these
approaches typically reduce the bug triage problem to a clas-
sification problem. When training such classification models,
the features from bug reports are inputs, and the assignees are
outputs. In particular, most prior approaches focus on textural
features (e.g., bug descriptions) from bug reports. Although
textural features shall be useful, their true effectiveness is not
supported by empirical evidences. In this paper, we conduct
the first empirical study to analyze the impact of textual
features on a state-of-the-art approach [16]. We select this
approach, because it has been evaluated on thousands of real
bug reports from commercial companies and its results are

quite positive. We turn off its textual features to explore the
following research questions:

RQ1: What is the effectiveness of the baseline with
and without textual features? The answer explores how
effectively a typical bug-triage approach uses textual features.

RQ2: What’s the effectiveness when textual features are
combined? The answer explains how the features built up final
effectiveness of the typical bug-triage approach.

RQ3: Why the effectiveness was improved, when textual
features were removed? The answer explains why it is
difficult to extract useful information from textual features.

II. DATASET

Table I shows our dataset. We collected those bug reports
from five Apache projects in different sizes (HBASE [2],
CASSANDRA [3], SHIRO [4], PDFBOX [5] and LUCENE [6])
as our subjects. To remove superficial bug reports, we select
bug reports that are marked as “Closed” and “Fixed”, but
remove bug reports whose assignees or reporters are not
human beings (e.g., Adobe JIRA). In addition, we remove bug
reports that were assigned to their reporters.

For large projects as CASSANDRA and HBASE, we select
their latest 10,000 issues, and for the other projects, we extract
all their issues. For each bug report, our tool extracts its details,
title, description, reporter, and assignee, for latter analysis.

III. BASELINE APPROACH

In this study, we select Jonsson et al. [16] as our baseline,
because it is a recent approach that achieves promising results
in the industrial contexts. They selected Logistic regression
model as the top classifier and combined the underlying
classifiers such as BayesNet, SMO, IBk, KStart and Random
Forest. As they do not release their tool, we follow their steps,
and build our own version also on WEKA [14]. As a minor
difference, Jonsson et al. treat the title and the description as
a single textual feature, but we handle them as two to explore
their individual impacts.

IV. EARLY RESULT

We use our tool to assign the bug reports in our dataset with
and without textural features. We use 10-fold cross-validation
to ensure the reliability of our results on the following RQs.

RQ1: What is the effectiveness of the baseline with and
without textual features? Table II shows the effectiveness
with and without textual features (baseline vs no texts). We



TABLE I: Our dataset
Project Issues Bug reports Developers
CASSANDRA 10,000 2,290 434
HBASE 10,000 2,265 347
LUCENE 8,653 1,923 70
PDFBOX 4,441 2,016 16
SHIRO 659 256 7
Total 33,753 8,750 863

TABLE II: The effectiveness (baseline vs no texts)
Model Setting Precision Recall F-score AUC

BayesNet Baseline 0.533 0.485 0.508 0.941
No texts 0.669 0.669 0.669 0.984

SMO Baseline 0.768 0.701 0.733 0.987
No texts 0.737 0.730 0.733 0.987

IBk Baseline 0.537 0.466 0.499 0.725
No texts 0.615 0.607 0.611 0.887

KStar Baseline 0.021 0.021 0.021 0.512
No texts 0.626 0.618 0.622 0.981

RandomForest Baseline 0.317 0.289 0.302 0.843
No texts 0.681 0.671 0.676 0.987

Stacking Baseline 0.891 0.673 0.767 0.985
No texts 0.953 0.725 0.824 0.986

find that except for SMO, the models obtain better results with-
out textual features. For their meta-classifier, after we disable
textual features, we improve its f-score by 8%. In summary,
removing textual features improves the effectiveness.

RQ2: What is the effectiveness when textual features
are combined? Table III shows the results of comparing
the combinations of textual information and nominal features
reflecting different meanings. We find that the AUC with
textual features only (0.667) is lower than the combination
of nominal features (0.853). The effectiveness is remarkably
improved by combining nominal features. We try to replace
the nominal features with the best combination of textural
contents, and the results show that all the replacements lead
to lower AUC values. In summary, the combinations of the
textual features do not improves its effectiveness either.

RQ3: Why the effectiveness was improved, when textual
features were removed? After some inspections and discus-
sions, we come to two explanations:

1. The classic textural analysis techniques are insufficient
to handle bug reports. Bug reports are the combination of
natural languages and structural contents, e.g. code samples,
stack traces, and patches. However, all the existing approach
use natural language processing techniques to handle bug
reports, including Vector Space Model (VSM) and TF-IDF et
al.. These techniques do not understand the true meanings of
structural contents. As a result, these techniques overestimate
the importance of code elements and such structural contents
can become noises and even harm the effectiveness.

2. Some bug reports have no useful textural descriptions
to determine assignments. For example, LUCENE-4689 [7]
has a description “Just updating the eclipse project name
from lucene solr branch 4x to lucene solr 4 1 on the new
branch.” They introduce version change without informative
natural language texts to explain the symptoms and reasons.
Even experienced programmers also have to think over the
reason behind and make a careful decision. As a result, it is

TABLE III: The combination of features
Items Features AUC

Textual features

Summary 0.539
Description 0.554
Comment 0.645
Summary + Description 0.595
Summary + Comment 0.667
Description + Comment 0.661
Summary + Description + Comment 0.661

Textual & Nominal
features

Summary + Description + Component + Version 0.652
Summary + Description + Commenter + Reporter 0.778

Nominal features Commenter + Reporter + Version + Component 0.853

commenter: people who made comments; component indicates which
component is buggy; version denotes the releases of the buggy code

challenging to determine who shall fix the bug.
In summary, the inspection leads to two conclusions: some

bug reports are poorly written without informative natural lan-
guage texts, while well-written bug reports contain structural
contents which call for more advanced techniques.

Discussion: Although we find that textual features do not
have positive contributions to the state-of-the-art bug assign-
ment approach, we disagree the superficial conclusion that
researchers shall not use NLP in their tools. In contrast,
there are a strong need and many opportunities to explore
better techniques to handle natural language texts in software
engineering. As NLP techniques are proposed to handle pure
natural language texts, it is not strange that these techniques
cannot achieve good results to handle software engineering
documents. In other research topics, when researchers analyze
software engineering documents [24], [11], [23], they propose
techniques to classify code fragments and textual contents.
After the contents of bug reports are classified, it is feasible
to explore more effective techniques for bug triage. In addition,
removing obsolete bug reports [19] can also improves the
effectiveness of textual features.

More details of our study are listed on our project website:
https://github.com/lizx2017/textMyth

V. WORK PLAN

Our plan to extend this work is as follows:
1. Identifying the key features of bug triage. While this

study show that textual features are not effectively used, we
will use feature selection techniques (e.g., [17]) to explore
which features were effectively used by the prior approaches.

2. Exploring more advanced techniques to handle textual
contents. We plan to explore the effectiveness of textual
features with more advanced techniques. For example, we will
explore deep learning techniques [18] for their effectiveness.

3. Exploring the impacts on individual projects. Our
study explores our research questions on a large dataset, but
the impacts on a specific project can be overwhelmed by other
projects. We plan to conduct our study on individual projects
to explore impacts on specific projects.

ACKNOWLEDGMENT

We appreciate the anonymous reviewers for their insightful
comments. Hao Zhong is the corresponding author. This work
is sponsored by the National Key R&D Program of China
No.2018YFC0830500.

https://github.com/lizx2017/textMyth


REFERENCES

[1] https://issues.apache.org/jira.
[2] https://issues.apache.org/jira/projects/HBASE.
[3] https://issues.apache.org/jira/projects/CASSANDRA.
[4] https://issues.apache.org/jira/projects/SHIRO.
[5] https://issues.apache.org/jira/projects/PDFBOX.
[6] https://issues.apache.org/jira/projects/LUCENE.
[7] https://issues.apache.org/jira/browse/LUCENE-4689.
[8] S. N. Ahsan, J. Ferzund, and F. Wotawa. Automatic software bug

triage system (bts) based on latent semantic indexing and support vector
machine. In Proc. ICSEA, pages 216–221, 2009.

[9] J. Anvik. Automating bug report assignment. In Proc. ICSE, pages
937–940, 2006.

[10] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In
Proc. ICSE, pages 361–370, 2006.

[11] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza. Content
classification of development emails. In Proc. ICSE, pages 375–385,
2012.

[12] P. Bhattacharya and I. Neamtiu. Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging. In Proc. ICSM,
pages 1–10, 2010.

[13] P. Bhattacharya, I. Neamtiu, and C. R. Shelton. Automated, highly-
accurate, bug assignment using machine learning and tossing graphs.
The Journal of Systems & Software, 85(10):2275–2292, 2012.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[15] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage with bug
tossing graphs. In Proc. ESEC/FSE, pages 111–120, 2009.

[16] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson.
Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts. Empirical Software Engineering, 21(4):1533–
1578, 2016.

[17] R. Kohavi and G. H. John. Wrappers for feature subset selection. AI,
97(1-2):273–324, 1997.

[18] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong. Applying deep
learning based automatic bug triager to industrial projects. In Proc.
ESEC/FSE, pages 926–931. ACM, 2017.

[19] Z. Li and H. Zhong. An empirical study on obsolete issue reports. In
Proc. ASE, page to eappear, 2021.

[20] G. Murphy and D. Cubranic. Automatic bug triage using text catego-
rization. In Proc. SEKE, 2004.

[21] M. M. Rahman, G. Ruhe, and T. Zimmermann. Optimized assignment
of developers for fixing bugs an initial evaluation for eclipse projects.
In Proc. ESEM, pages 439–442, 2009.

[22] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang.
Improving automated bug triaging with specialized topic model. IEEE
Transactions on Software Engineering, 43(3):272–297, 2016.

[23] F. Zampetti, A. Serebrenik, and M. Di Penta. Automatically learning
patterns for self-admitted technical debt removal. In Proc. SANER, pages
355–366, 2020.

[24] H. Zhong and Z. Su. Detecting API documentation errors. In Proc.
OOPSLA, pages 803–816, 2013.

https://issues.apache.org/jira
https://issues.apache.org/jira/projects/HBASE
https://issues.apache.org/jira/projects/CASSANDRA
https://issues.apache.org/jira/projects/SHIRO
https://issues.apache.org/jira/projects/PDFBOX
https://issues.apache.org/jira/projects/LUCENE
https://issues.apache.org/jira/browse/LUCENE-4689

	Introduction
	Dataset
	Baseline Approach
	Early Result
	Work Plan
	References

