An Empirical Study on Obsolete Issue Reports

Zexuan Li
Department of Computer Science and Engineering
Shanghai Jiao Tong University, China
lizx_17 @sjtu.edu.cn

Abstract—TIssue reports record valuable maintenance details.
Developers write issue numbers into code comprehension and
researchers mine knowledge from issue reports to assist various
programming tasks. Although issue reports are useful, some of
them can be obsolete, in that their corresponding commits are
overwritten or rolled back, with the evolution of software. The
obsolete issue reports can invalidate their references and descrip-
tions, and can have far-reaching impacts on the approaches built
on them. To explore their impacts, we conduct the first empirical
study to analyze obsolete issue reports.

To measure how an issue report becomes obsolete, we define
an obsolete ratio of an issue report as its deleted lines over
all its modified lines. To support our analysis, we build a tool,
ICLINKER, that builds the links between an issue report and
its commits, and calculates the obsolete ratio for each issue
report. In our study, we analyze 70,180 commits and 46,257 issue
reports that are collected from 5 Apache projects. We explore two
research questions, which concern the distributions of obsolete
issue reports and the obsolete references in code comments. Our
findings to these research questions enrich the knowledge on
obsolete issue reports, and some are even counterintuitive. For
example, we find that obsolete issue reports are mixed with other
issue reports. Even when recent issue reports are obsolete, some
old issue reports keep up-to-date.

I. INTRODUCTION

During software maintenance, programmers resolve many
issues (e.g., bugs and feature requests). To manage these is-
sues, they describe their symptoms, reproduce steps, expected
behaviors and report them on issue tracking systems [3]. As
issue reports record many development details, researchers
have used issue reports as their data sources in various
research tools (e.g., bug report summarization [10], bug as-
signments [2], fault localization [15] and patch generation [9]).

As issue reports are quite useful to understand the func-
tionalities and purposes of source code, in many projects,
programmers are required to manually link issue reports to
source files. To help understanding code, some programmers
even write issue numbers in their code comments. With the
evolution of software, the added lines from an issue report
can be overwritten by later commits, and this issue report
becomes obsolete. For example, Figure 1a shows the modified
lines of nHI1vE-7421, and Figure 1b shows a code comment
that refers to this issue report and explains why constant
folding is not allowed. We check the latest files, and as
shown in Figure lc, most code lines of the modified file
(VectorUDFDateString. java) are deleted. As a result, the
added code lines of #IVE-7421 no longer appear in this source

Hao Zhong
Department of Computer Science and Engineering
Shanghai Jiao Tong University, China
zhonghao@sjtu.edu.cn

——— .../ VectorUDFDateString . java
+++ .../ VectorUDFDateString.java
@@ -41,13 +45,10 @@
— Date date = Date.valueOf(s.toString());
— t.set(date.toString());
+ Date date = formatter.parse(s.toString());
+ t.set(formatter.format(date));
return t;...

® 9 U AW —

(a) The modified lines of HIVE-7421

public class VectorizationContext { ...
private VectorExpression getCastToChar (...) ...{
if (child instanceof ExprNodeConstantDesc) {
// Don’t do constant folding here. Wait until
optimizer is changed to do it.

B =

the

5| // Family of related JIRAs: HIVE-7421, HIVE-7422, and
HIVE-7424.
6 return null;

}
8| 1}

(b) A code comment that mentions HIVE-7421

1| public class VectorUDFDateString extends
CastStringToDate {

2 private static final long serialVersionUID = IL;
3 public VectorUDFDateString () {}

4 public VectorUDFDateString (int inputColumn,
outputColumnNum) {

5 super (inputColumn , outputColumnNum) ;

o)

7|}

int

(c) The latest code of VectorUDFDateString
Fig. 1: A obsolete issue report

file. As we are, other programmers can be confused, when they
find the mentioned issue report is obsolete.

Obsolete issue reports can have far-reaching impacts on
downstream research. For example, to locate the faulty files
of a new received bug report, Zhou et al. [15] compare the
new bug report to the previous ones and recommend the
revised files of a similar previous report as the buggy file.
If a bug report is similar to HIVE-7421, it can recommend
VectorUDFDateString.java as the faulty file, but as this file
now has only several lines of code, it is unlikely to be buggy.

The example shown in Figure 1 is common, and a recent
study [4] shows that the added lines of some programmers
are all rewritten by other programmers. Although obsolete
issue reports can influence both programmers and researchers,
no prior researches have made empirical study to our best
knowledge, and many questions on obsolete issue reports
are still open. For example, to what extent issue reports

T T T T T T
calcite - ——————— | I 1
cassandra [——===-==---- [[b 14
Rt N N S i
hbase [-+—======- { I o 14
] F— — —

T T T T T L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2: The distributions of obsolete ratios

are obsolete, and which types of issue reports contain more
obsolete ones?

To answer these questions, we build a tool, ICLINKER, that
calculates the obsolete ratios for issue reports. ICLINKER links
commits of a project to issue reports from the issue tracker
system. It compares the commits with its corresponding latest
source file, and calculates an obsolete ratio for each issue
report. The obsolete ratio is calculated as the proportion of
its added lines that cannot match to the latest source files.
With ICLINKER, we answer the following research questions:

RQ1: What is the distribution of obsolete issue reports?
By calculating the obsolete ratio for each issue report, we
draw box plots to show the distribution. With the distributions,
researcher can prevent the impacts from obsolete issue reports
to their researches.

RQ2: How do code comments mention obsolete issues?
We explore obsolete issue references that appear in code com-
ments. With the findings, developers can tune the maintenance
process and keep the consistency of code and comment.

II. METHODOLOGY

This section introduces our methodology. In this study, we
define the following terms:

Definition 1 (Obsolete issue report): For an issue report
(1), if the added lines in its revisions are partially or totally
removed in later commits, we treat the issue report as obsolete.

To determine to what degree the issue report is obsolete,
for each modified file of this report, we calculate an obsolete
ratio as follows:

Definition 2 (Obsolete ratio): For an issue report (r), the
obsolete ratio is the proportion of its added lines that cannot
match to the latest source files. It is calculated as:

ratio=1— — n
Ta
where 7, denotes the added lines that appear in the latest
source files and r, denotes all the added line of r.

For an issue report with multiple file modified, we calculate
its obsolete ratio as the average ratios of all its modified files. If
a past bug report is unlinked, this report has no faulty files, and
it is infeasible to use the report, and it becomes less interesting.
In such situations, unlinked issue reports are close to totally
obsolete ones, so we set their ratios as 1.

A. ICLINKER

ICLINKER extracts commits from code repositories (Sec-
tion II-A1); links commits and issue reports (Section 1I-A2);
and compares the latest source files with commits. It thus cal-
culates an obsolete ratio for each issue report (Section II-A3).

200 400 600 800 1000 1200 1400 1600 1800 2000

(a) calcite

] 100 2000 3000 4000 5000 6000 7000
(b) cassandra

500 1000 1500 2000 2500 3000 3500

(c) derby

22 = =
1
6000 8000 100

(d) hbase

0 12000

10000

6000 8000

(e) hive
Fig. 3: The obsolete issue reports in the chronological order

12000

1) Extracting Commits: ICLINKER is built on a version-
control library called Jcit [1]. gcit provides APIs to retrieve
and parse commits of a repository. ICLINKER first extracts
commits of all files. After that, for each source file in the
latest version, it traverses the tree to identify all the commits
on this file. For each commit, ICLINKER extracts added lines
(i.e., the lines starting with “+” in Figure 1a).

2) Linking Commits and Issue Reports: Le et al. [7]
reported that in Apache projects, most revisions explicitly
mention the corresponding issue reports in their commit mes-
sages. Therefore, ICLINKER uses this pattern to link commits
to issue reports as the prior studies [3], [7] did. Thus, given
a source file in the latest version, ICLINKER identifies all its
commits, and further rebuilds the links between commits and
issue reports. If an issue report has more than one commit,
ICLINKER determines that an issue report is obsolete by
comparing the modifications of all its commits.

3) Matching Code: To determine to what degree the issue
report is obsolete, ICLINKER calculates the obsolete ratio by
comparing the latest source file with the added lines of a com-
mit. To save the comparison effort, it analyzes only revisions
whose corresponding issue reports are already identified.

III. EMPIRICAL RESULT

In this section, we introduce our protocol for each research
question, and our empirical results. More details of our em-
pirical study are listed on our website:
https://github.com/lizx2017/rotten-issue

A. Dataset

Table I shows our dataset. We select these projects, because
they are popular and under active maintenance. All our se-
lected projects are downloaded from the Apache foundation,
because most Apache projects carefully write issue numbers
in commit messages.

TABLE I: The dataset and our generated comments.

Dataset Issue References
. Commit [Issue Issue reference in code comment [Total fixed issue
Project linked | total | % [Tinked [total [% bug [% [feature [% [other [% [bug [feature | other
calcite 2,363 4,188 | 56.4% 2,101 2,608 80.6% 403 23.3% 56 9.3% 15 | 5.4% 1,727 605 276
cassandra 19,724 | 25299 | 78.0% 7,604 8,931 85.1% 238 4.6% 81 2.7% 16 | 2.2% 5,181 3,032 718
derby 6,993 8,269 84.6% 3,650 4,586 | 79.6% 900 | 34.2% 218 16.3% 50 | 8.1% 2,629 1,339 618
hbase 16,441 17,794 | 92.4% 13,636 16,200 | 84.2% 320 4.1% 114 3.0% 142 3.1% 7,869 3,739 | 4,592
hive 14,208 14,630 | 97.1% 13,149 13,932 | 94.4% 150 1.9% 51 1.9% 79 | 2.2% 7,713 2,681 3,538
[total [59,729 [70,180 | 85.1% | 40,140 | 46,257 | 86.8% || 2,011 | 8.0% | 520 | 4.6% | 302 [3.1% [25,119 | 11,396 | 9,742]
linked: the numbers of commits/issues who have corresponding links to issues/commits by our name heuristic.
feature: improvements and new features; bug: bug reports; other: remaining
B. RQI. Overall Distribution over Time T e N
. cassandra b~ —=====—=--=——| \ \ R .
1) Protocol: For each issue report, we use ICLINKER to
. . . . derby [-F== === === S B IR
calculate its obsolete ratios. A box plot is a diagram that | ‘ !
hbase[-f------------—-| [e 4

displays the median, upper and lower bounds of a data set.
First, we classify obsolete ratios by their projects, and we draw
box plots to show the distributions over projects. To present
vivid distributions, for each project, we then rank its issue
reports by their numbers, and draw a graph to show all obsolete
ratios, since the issue numbers of issue reports increase over
time. Although box plots are informative, they are intuitive,
and they do not present the distribution over time directly.

2) Result: Figure 2 shows the overall distributions. For
cassandra, hbase and hive, the medians are around 0.5, and
for calcite and derby, the ratios are around 0.3. Table I
shows that calcite and derby have much fewer commits
and issue reports than the other three projects. However,
the Pearson product-moment correlation coefficient calculation
between obsolete ratios and commits is 0.17, and the result
indicates obsolete ratios have only a weak correlation with the
number of commits. As the other three projects have longer
histories of evolution, more issue reports of the three projects
become obsolete than those of calcite and derby. The above
observations lead to the first finding:

Finding 1: A project with more issue reports typically
has a larger ratio of obsolete issue reports. If a project
has a long history, at least half of its issue reports are
becoming obsolete.

Figure 3 shows all the obsolete ratios for each project. A
lighter color denotes a more obsolete issue report. All the issue
reports are sorted by their issue numbers, and a larger value
of the horizontal axis indicates a larger issue number. The
lines of each project construct a bar. In Figure 3, for calcite,
cassandra, derby, and hive, the left sides are lighter than the
right sides, indicating that the older issue reports are more
obsolete. The result of hbase follows a different pattern, and
its middle issue reports are lighter. Besides, we notice that the
line colors do not change smoothly. For all the projects, some
lines on the left side are black, while some lines on the right
are lighter. It means that the obsolete ratios of issue reports
are not linear with the issue numbers. Instead, obsolete issues
are mixed with up-to-date ones. The above observations lead
to a finding:

hive |-~ \ I B

04

(a) the ratios of missing issues are set to one
cassandra f-==========-= e 1
[o SE— S A A
L I 1
hive fH=————————-— I I i

(b) missing issues are ignored

Fig. 4: Obsolete issue references in comments

Finding 2: As a trend, a more recent issue report often
has a lower obsolete ratio. However, obsolete issue
reports are mixed with other issue reports.

C. RQ?2. Obsolete Issue References in Code Comments

1) Protocol: In this research question, we analyze the issue
references that appear in code comments. We extract issue
numbers from code lines and Table I shows the results. Among
the fixed issue reports, the number of bug reports is the largest.
Accordingly, among the issue references, the number of bug
references is the largest, except hive. Compared with the other
three projects, calcite and derby mention much more issue
reports in their code comments.

As we do in Section III-B1, we draw box plots and image
graphs to show the distributions of obsolete ratios of the issue
references that appear in code comments. Since a comment
can mention an unresolved issue or an issue whose commits
are not recovered, we provide two strategies to handle such
cases. In the first strategy, we set their obsolete ratios as one.
As it is infeasible to locate their modifications, these issue
references are similar to totally obsolete ones. In the second
strategy, we ignore all such issue references. We present the
results for both strategies.

2) Result: Figure 4 shows the distributions of obsolete
ratios. Compared with the results in Figure 2, Figure 4
shows that issue references in code comments have similar
distributions. In Figure 4, the medians of calcite, cassandra,
derby, and hbase are close to those of Figure 2. The code

50 100 150 200 250 300 350 400 450

(a) calcite

50 100 150 200 250 300
(c) cassandra

00 600 700 800 900 1000 1100

(e) derby

50 100 150 200 250 300 350 400 450 500 550

(g) hbase

50 100 150 200 250

(i) hive

comments of cassandra and hbase mention more stable issue
reports, and their upper bounds are reduced from more than
0.8 to around 0.7. However, the median and the upper bound
of nive both become larger than those of Figure 2.

Figure 5 shows the obsolete issue references of code com-
ments in the chronological order. Compared with the results
in Figure 3, the obsolete references in code comments are
also twisted with those fresh issue references. The above
observations lead to a finding:

Finding 3: Code comments contain many references to
obsolete issue reports, and such references are twisted
with references to fresh issue reports.

Figure 5i is quite different from Figure 5j. We find that its
programmers often write issue numbers in the to-do lists of
code comments:

1| private ValidTxnWriteIdList getQueryValidTxnWriteIdList

O ...

2 // TODO: Once HIVE-18948 is in, should be able to
retrieve writeldList from the conf.

3 // cachedWriteldList = AcidUtils. getValidTxnWriteIdList

(conf);
4 .}

In the above code, Line 2 mentions HIvE-18948. This issue
report was filed in 2018, but it is still unresolved. The hive
projects have more such cases than others.

D. Threat to Validity

The threat to internal validity includes our definition of
the obsolete ratio. Even if a ratio is low, the modifications
on several important statements make an issue report more
obsolete than it appears to be. The threats to external validity
include our subjects. The generality of our results could be
improved, if more projects and projects from more sources are

50 100 150 200 250 300 350 400
(b) calcite (no missing issues)

50 100 150 200 250
(d) cassandra (no missing issues)

200 300 400 500 600 700 800
(f) derby (no missing issues)

300 400 500 600 700 800 900

(h) hbase (no missing issues)

20 40

80 100 120 140 160

60
(§) hive (no missing issues)
Fig. 5: Obsolete issue references in the chronological order

analyzed. As projects from other sources may not be carefully
maintained, we need more advanced techniques [12] to build
the links between issue reports and commits.

IV. WORK PLAN

To extend to full paper, our work plan is:

1. Exploring which factors contribute to the obsolesce
of issue reports. We plan to explore which factors contribute
to the obsolesce of issue categories. For example, the issue
reports of a specific component can have more obsolete issue
reports than others. The factors can be useful to understand
the obsolesce of issue reports.

2. Cleansing the inputs of prior approaches. Researchers
have proposed approaches to mine knowledge from issue
reports. Their mined knowledge is used to configure tools [13],
to predict bug severity [14], and to tune development pro-
cesses [5]. Obsolete issue reports can invalid some knowledge,
but the prior approaches do not take them into consideration.
ICLINKER can be used to cleanse their inputs, and improve
their effectiveness. When we use issue reports to generate code
comments [8], we already considered obsolete issue reports,
and have removed them from our inputs.

3. Detecting wrong issue references. It is difficult to keep
the references between software artifacts consistent. For exam-
ple, even if code comments are written near implementations,
they can become inconsistent [6], [11]. When issue reports are
obsolete, their references can become incorrect. A detection
tool can be useful to maintain issue reports more effectively.

ACKNOWLEDGMENT

We appreciate the anonymous reviewers for their insightful
comments. Hao Zhong is the corresponding author. This work
is sponsored by the National Key R&D Program of China
No.2018YFC0830500.

[1]
[2]

[3]

[4]
[5]

[6]
[7]

[8]

REFERENCES

JGit. https://www.eclipse.org/jgit/.

J. Anvik, L. Hiew, and G. Murphy. Who should fix this bug? In Proc.
28th ICSE, pages 361-370, 2006.

T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. L.
Traon. Got issues? who cares about it? a large scale investigation of
issue trackers from github. In Proc. ISSRE, pages 188-197, 2013.

S. Gong and H. Zhong. Code authors hidden in file revision histories:
An empirical study. In Proc. ICPC, pages 71-82, 2021.

M. Gupta and A. Sureka. Nirikshan: Mining bug report history for
discovering process maps, inefficiencies and inconsistencies. In Proc.
MSR, pages 1-10, 2014.

Z. M. Jiang and A. E. Hassan. Examining the evolution of code
comments in postgresql. In Proc. MSR, pages 179-180, 2006.

T. B. Le, M. Linares-Vasquez, D. Lo, and D. Poshyvanyk. Rclinker: Au-
tomated linking of issue reports and commits leveraging rich contextual
information. In Proc. ICPC, pages 3647, 2015.

Z. Li and H. Zhong. Understanding code fragments with issue reports.
In Proc. ASE, page to eappear, 2021.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

C. Liu, J. Yang, L. Tan, and M. Hafiz. R2fix: Automatically generating
bug fixes from bug reports. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, pages 282-291, 2013.
S. Mani, R. Catherine, V. S. Sinha, and A. Dubey. Ausum: approach
for unsupervised bug report summarization. In Proc. FSE, pages 1-11,
2012.

F. Wen, C. Nagy, G. Bavota, and M. Lanza. A large-scale empirical
study on code-comment inconsistencies. In Proc. ICPC, pages 53-64,
2019.

R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering links
between bugs and changes. In Proc. ESEC/FSE, pages 15-25, 2011.
X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou. Automated configuration
bug report prediction using text mining. In Proc. COMPSAC, pages
107-116, 2014.

T. Zhang, G. Yang, B. Lee, and A. T. Chan. Predicting severity of bug
report by mining bug repository with concept profile. In Proc. SAC,
pages 1553-1558, 2015.

J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports. In Proc. ICSE, pages 14-24, 2012.

