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Abstract—Code comments are vital for software development
and maintenance. To supplement the code comments, researchers
proposed various approach that generate code comments. The
prior approaches take three sources: (1) programming experi-
ence, (2) code-comment pairs in source files, and (3) comments of
similar code snippets. Most of their generated comments explain
code functionalities, but programmers also need comments that
explain why a code fragment was developed as it is. To meet
the timely needs, in this paper, we introduce a new source,
issue reports (e.g. maintenance types, symptoms, and purposes of
modifications), to generate code comments. Issue reports contain
rich information on how code was maintained. The valuable
details of issue reports are useful to understand source code,
especially when programmers learn why code was developed in
a specific way. Towards this research direction, we propose the
first approach, called ISSUECOMM, that builds the links between
code fragments and issue reports. Our results show that it links
more than 70% issue numbers that are written by programmers
in code comments. Furthermore, the links built by our tool covers
4x bugs, and 10x other issues than the links written in manual
comments. We present samples of our built links, and explain
why our links are useful to describe the functionalities and the
purpose of code.

I. INTRODUCTION

Code comments are helpful for program comprehension.
When developers fix a bug whose code was developed a long
time ago, to understand its functionalities, they often read code
comments before repairing the bug. However, in practice, code
comments are insufficient and noisy due to poor programming
habits. To attack this problem, researchers proposed various
approaches that generate code comments. Based on their
inputs, the prior approaches can be roughly divided into three
categories such as template-based approaches, learning-based
approaches, and clone-based approaches. Taking the program-
ming experience of researchers as their inputs, template-based
approaches define various templates to generate comments
for methods [16], classes [14], thrown exceptions [4] and
test files [22]. Taking code-comment pairs in source files as
their inputs, learning-based approaches reduce generating code
comments to a sequence-to-sequence problem [17]. For this
problem, researchers resolve it with RNN [9], encoder [5],
and the convolutional attention network [3], and they introduce
API sequences [8] and ASTs [7] to improve the quality of
generated comments. Clone-based approaches reuse comments
from similar code snippets from Stackoverflow threads [20]
and code clones [19]. The above approaches typically generate
comments that explain the functionalities of code fragments.
When programmers maintain unfamiliar source files, they need
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private void serializeModifiedFSs () throws IOException {

final int addr = csds.fs2addr.get(fs);

if (addr == 0) {
// https ://issues.apache.org/jira/browse/UMA-5194
//need to write a dummy entry because...
writeVnumber (fsIndexes_dos, 0); }...}

T

(a) The code snippet of serializeModifiedFSs () in UIMA
@ UMA  UIMA-5194
A uv3 delta serializing- handle case where delta is for non-reachable FS

~_Description

In version 3 FSs may be unreachable (if not indexed, and if no other FS that is reachable references them). Serialization only serializes the
reachable FSs; it can't find the others.

It's possible that some modifications are done to FSs which subsequently are unreachable. When serializing, these modifications can't be
found in the set of known FSs being serialized. Handle this case by skipping serialization of those modifications.

(b) The issue report (modified to save space)
Fig. 1: A link in a code comment

more insightful comments. However, from source files or code
clones, it is rather challenging to learn such comments. For
example, to explain why a code fragment is implemented in
a specific way, a programmer must be quite familiar with this
fragment and the whole system. The knowledge from such a
program is difficult to be extract from source files and may
not appear in code clones.

To improve the state of the art, in this paper, we identify
issue reports as a new source for generating code comments.
Issue reports contain many details on maintaining code, and
are quite useful to understand code fragments. We observe that
programmers have written the issue reports numbers in code
comments. For example, without any code comments, it is
difficult to understand the purpose of these lines in Figure la.
The comment in Figure la contains a reference to an issue
report as shown in Figure 1b. As explained in this issue report,
this code fragment handles the situation when addr is zero.
The descriptions in the issue report make a clear explanation.

Towards this research direction, we propose the first ap-
proach, called ISSUECOMM, that links code fragments to
their corresponding issue reports. After the links are built,
ISSUECOMM implements a simple module to insert links to
the code comments of corresponding code fragments. We
evaluated ISSUECOMM on seven projects, and the results are
promising. On one hand, in all the projects, we find that
programmers write some issue numbers in their comments,
which highlights the usefulness of linking issue reports to
code lines. On the other hand, in all the analyzed projects
except derby, programmers write only a small portion of issue
numbers in their comments (less than 30%), which indicates
that many links are still missing.



TABLE I: Issue numbers in code comments that were written by programmers.

) o Issue in comment Total issue File with issue | Total file

Project Description bug [ % [feature [ % [ other [ % bug [ feature [ other [[ code [ % code
activemq a messaging server 125 4.1% 18 1.2% 3 1.0% 3,067 1,486 303 27 1.5% 1,770
aries an OSGi library 31 3.5% 7 1.3% 1 1.8% 874 524 56 19 1.7% 1,115
carbondata | a data store 0 0.0% 3 0.4% 0 | 0.0% 1,467 721 444 2 0.2% 940
cassandra a partitioned row store 236 4.6% 81 2.7% 14 1.9% 5,181 3,032 718 165 8.5% 1,934
derby a relational database 911 34.7% 218 16.3% 50 | 8.1% 2,629 1,339 618 292 16.0% 1,829
mahout a learning library 8 1.3% 4 0.6% 0| 0.0% 620 638 136 10 1.4% 735
uima a mining library 93 3.2% 31 1.8% 1| 02% 2,941 1,751 508 87 5.9% 1,469

[ total [ - [ 1,404 [ 8.4% [ 362 [ 3.8% [ 69 [ 2.8% [ 16,779 [ 9,491 [ 2,434 “ 602 [ 6.1% [ 9,792 ]

bug: bugs; feature: feature requests and improvements; and other: other types (e.g., tasks). code: source files

In summary, this paper makes the following contributions:

e A new source for generating comments. We identi-
fied issue reports as a new source for generating code
comments. Towards this direction, we implement IS-
SUECOMM that links issue reports to code lines.

o Promising early results. We compare existing comments
with the results of ISSUECOMM. the results show that our
tool relinks 70% issue numbers that are written in manual
comments. In addition, our generated links are 10 times
more than those are written in manual comments, and
our links are useful to explain code functionalities and
implementation rationales.

II. MOTIVATING EXAMPLE

Figure la shows a serialization method of uima. Line 3
handles the situation when addr is zero. If a programmer is
unfamiliar with the code, it is difficult to understand why the
situation must be handled.

Although various code comment generation approaches can
be used, they cannot explain the rationale behind these code
snippets. For example, Hu ef al. [6] train a deep learning model
to generate code comments which explain only the functions
of code lines. Wong et al. [19] recommend comments to a
method by searching its code clones, but this method has no
clones. As a result, neither approach can build the links of
issue reports for this method.

In Figure la, the comment of Line 3 presents the url of
an issue report. Figure 1b shows the issue report. It depicts
the buggy behavior; explains the reasons; and provides the
solution. After reading the issue report, we understand that
Line 3 fixes serialization bug when a delta is not reachable.
Thus, our insight is that linking issue reports to code lines is
helpful for code comprehension.

As shown in Figure la, programmers can manually link their
code lines to issue reports. We conduct an empirical study
to explore this practice. Table I shows the results. Column
“Issue with comment” lists the numbers and percentages of the
comments that contain corresponding types of issue reports.
Column “Total issue” lists the total numbers of resolved issue
reports. Here, we do not count those duplicated and superficial
issue reports (e.g., not a problem). The result shows that the
programmers of all the projects write issue numbers in their
code comments, and they write issue numbers of bug fixes
more frequently than those of other types.

Column “File with issue” lists the numbers and percentages
of source files that contain comments with issue numbers. We
remove test files. The results show that programmers seldom
write down issue numbers into comments of source files.

Although it is beneficial to write issue numbers in code
comments, it takes too much manual effort. As a result, in
total, only 8.4% issue numbers of bugs are written.

In summary, although it is beneficial to link issue reports
to code fragments, due to the huge manual effort, in practice,
programmers often write only a small portion of issue numbers
in comments. The state of the practice reveals a strong need
for an automated tool.

III. APPROACH

Figure 2 shows the overview of ISSUECOMM. It takes a
source file and issue reports as its inputs, and builds the links
between code fragments and issue reports. It has a revision
extractor (Section III-A), an issue matcher (Section III-B), and
a code commenter (Section III-C).

A. Extracting Revisions

In a development team, programmers often use version
control systems to keep the source file consistent, e.g. Git. Git
stores the revision history of source files in .git directory. The
version-control library Jcit provides APIs to parse the repos-
itories and traverses the revisions under the .git directories.
Built on Jeit [1], ISSUECOMM first stores revision details
into a local database and patches into local directories. After
that, for each source file in the latest version, it traverses the
tree to identify all the revisions on this file. In this way, for
each source file in the latest version, ISSUECOMM extracts all
its revisions.

B. Extracting Issues

ISSUECOMM implements a web crawler to extract issue
reports from the issue tracking system. For each issue report,
ISSUECOMM parses its content and stores its details into a
local database. Then ISSUECOMM extracts the links between
issue reports and revisions by matching commit messages with
issue numbers. Indeed, many Apache projects explicitly define
that commit messages shall contain corresponding issue num-
bers. For example, Apache Geode [2] defines that a commit
message shall start with its corresponding issue number. Given
a source file in the latest version, our revision extractor in
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Section III-A identifies all its revisions, and in this section,
our issue extractor further identifies the links between revisions
and issue reports. As a result, given a source file in the latest
version, we can identify all of its related issue reports.

C. Commenting Code

Our code commenter compares a latest source file with
the patch of a revision to determine whether its issue report
shall be linked and where to link the report. In a patch of
a revision, lines started with “+” represent the added lines,
while the lines started with “-” represent the removed lines.
ISSUECOMM identifies and removes useless modified lines,
including code comments, import statements, bracket lines,
annotation lines, the headers of packages, classes and methods,
log lines and variable declarations. Code commenter then
generates a comment only when a patch has more than one
useful added line. For each remaining patch, it inserts a
comment to the first added line, if such a line appears in the
latest file.

IV. EVALUATION

With ISSUECOMM, we conduct evaluations to explore the
following research questions:
(RQ1) How many correct links are recovered (Section IV-B)?
(RQ2) How many more links are recovered (Section IV-C)?
More details of our evaluations are listed on our website:
https://github.com/lizx2017/issuelinker

A. Dataset

Table I shows the dataset of our evaluation. We select seven
open source projects as our dataset since they are popular,
under careful and active maintenance.

B. RQI. Overall Effectiveness

1) Setup: In this research question, we analyze how many
links in code comments are identified by ISSUECOMM. As
we introduced in Section II, programmers can write issue
numbers in code comments. Table I shows the issue numbers
in manually written code comments. It is improper to use
manual code comments as a gold standard, because they are
incomplete. Even if ISSUECOMM generates a correct link, it
will be considered as a false positive. However, manual code
comments can be used as a reference to our results. Although
manual links are incomplete, they shall be correct. We use
them as a reference to measure how many correct links are
identified by our tool. We calculate our recall as follows:

io N
recall = 2"

1
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where i, denotes the number of issue reports that are manu-
ally written in code comments and ¢, A, denotes the number
of issue reports in both manual code comments and our built
links. Similarly, we define the recall for files:
Jo A fm @
fm
where f,, denotes the number of files that contain manual
comments with issue numbers, and f, A f,,, denotes the number
of files with manual links and our built links.

2) Result: Table II shows the overall results. Columns
“Bug”, “Feature”, and “Other” list the numbers and recalls
of the corresponding types of issue reports, and their def-
initions are the same with Table I. The results show that
ISSUECOMM achieves high recalls on aries, derby, and umia.
For cassandra, the recalls are around 60%. As carbondata
has only three manual links, its result is not representative,
and two of its recalls are not a number, because their manual
links have not such types of issue numbers. Only the recalls
of activemg on “other” are low (around 30%). We check the
linked issues of all projects and find that activemg has the
fewest links between commits and issue reports, which can
partially explain its low recalls. In total, for all the types of
issue reports, our tool achieves around 75% recalls. As manual
comments can mention issue reports for more purpose than
their modifications, and manual links are not fully correct,
our recalls are already quite high.

In summary, for all types of issue reports, our generated
links cover about 70% links that appear in the comments
written by programmers.

recall =

C. RQ2. The Improvements over Manual Links

1) Setup: In this research questions, we compare manual
links and our built links to show how we improve the state of

the practice. We define the delta of the improvements as:
io

Ay = — (3)
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Similarly, we define the delta of files as follows:
fo
Ay =22 4
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The symbols are of the same meanings as Equations 1 and 2.

2) Result: Table II shows the results. Columns “A of
issue” list the improvements over those of the manual links.
The results show that for all the types of issue reports, our
built links improve the manual links of activemg, aries,
carbondata, and mahout by more than ten times. Some deltas
of carbondata and mahout are not a number, because their
manual links do not mention any issue numbers, i.e., %, iS
zero. Table I shows that cassandra and derby have more
comments with issue numbers, but even for the two projects,
we improve their comments by two and more times. Table I
shows that programmers write the issue numbers of more bug
reports than those of other issue reports. As a result, our
improvements on bugs are less than those on other types of
issue reports, but in total, the improvement on bugs is still five
times more than that of the manual links.

Column “A of file” shows the improvements over those of
manual links. The results show that in total, our tool generates



TABLE II: The manual links that were identified by ISSUECOMM.

RQI RQ2
Project Bug Feature Other Code A of issue A of file
no. | % | mo. ] % | mo. | % no. | % bug [ feature [ other code
activemq 103 | 82.4% 13 | 76.5% 1 33.3% 16 | 59.3% 12.36 4324 | 27.33 32.56
aries 24 | 82.8% 5| 833% 1 | 100.0% 11 | 57.9% 13.97 44.83 | 25.00 31.63
carbondata 0 n/a 2 | 66.7% 0 n/a 0 0.0% n/a 99.00 n/a 354.00
cassandra 146 | 61.9% 51 | 63.0% 8 57.1% 74 | 44.8% 6.07 13.27 | 12.14 8.73
derby 768 | 853% | 175 | 82.9% | 42 84.0% || 232 | 79.5% 1.89 3.95 6.94 6.97
mahout 3 | 37.5% 1 | 33.3% 0 n/a 8 | 80.0% || 24.63 86.00 n/a 58.60
uima 76 | 81.7% 23 | 742% 1 | 100.0% 70 | 80.5% 5.02 11.84 | 57.00 12.79

[ total [ 1,120 [ 79.8% | 270 | 74.6% | 53 [ 76.8% || 411 | 683% [ 439 [ 1059 | 12.68 | 1223 ]

comments for more than 16 times of source files than those
of the manual comments. As an extreme case, in carbondata,
our tool generates comments for more than one hundred times
of files. The results show that our tool significantly improves
manual links, because it generates much more (10 X on most
projects) links to issue reports.

We next present some sample links to show their usefulness:

1. A link to an improvement.

protected UnfilteredRowlIterator computeNext() {

try (UnfilteredRowlIterator partition = ...)){
//see: https ://issues.apache.org/jira/browse/CASSANDRA
-11183
Row staticRow =
List<Unfiltered> clusters =
while (partition.hasNext()){
Unfiltered row = partition.next() ;

!

N

partition .staticRow () ;
new ArrayList<>();

© ® 9w

The above code has no manual comments, and it is difficult
for a novice programmer to understand its functionality. Our
tool adds Line 4. This mentions issue report introduces that
programmers extend cassandra to support static columns. our
link is useful for programmers to understand that the follow-up
lines handle static columns.

2. A link to a task.

//see: https://issues.apache.org/jira/browse/AMQ-1846

protected Subscription createSubscription (...) ...{
ActiveMQDestination destination=info.getDestination ()
PolicyEntry entry = null;...}

ESERTRECE

A built link on activemg is shown as above. The method
has no comments, and it is difficult for a novice programmer
to understand its functionality. Our tool finds that this method
is added in amMp-1864. This issue report is a task, and its title
is “Provide tags to set defaultPrefetchSize in activemq.xml”.
This comment is useful for programmers to understand code.

3. A link to a bug.

if (isXa) { ..
//see: https: //ls%uLs.ap"tchL org/jira/browse/AMQ-3863
} else { session.setlgnoreClose(false); }

W

The above activemg bug report complains that a session
returns twice from a pool, and the problem exhausts the pool.
To fix the bug, Lines 4 to 6 are added to the above code. The
added lines set the flag to allow sessions be automatically
closed. our link is useful for programmers to understand why
it is necessary to call the setIgnoreclose method.

In summary, ISSUECOMM generates much more (10 times
on most projects) links to issue reports, which significantly
improves the existing manual links.

D. Threat to Validity

The external threat to validity includes our subjects. Al-
though we select only Java projects, our approach is general
to other languages. The internal threat to validity includes our
strategy to match commit messages with issue numbers. The
strategy relies on commit messages containing issue numbers.
Although software developers record the issue numbers into
commit messages in most case, it would be better to introduce
alternative tools for commit matching. The internal threat to
validity includes our gold standard of our evaluation. We use
the manual links in code comments as the gold standard, but
such links are neither fully precise nor complete, since it takes
too much effort to comment all links and code comments
can become insistent with implementations [10], [18]. To
reduce the threat, we conduct manual inspections on those
inconsistent cases.

V. WORK PLAN

To extend our work to a full paper, our research plan is:

1. Summarizing issue reports. Researchers have proposed
approaches to summarize bug reports [11], [15] and code
changes [13], [21]. In the future work, we plan to summarize
issue reports and measure the quality of our comments.

2. Comparing with prior approaches. As our inputs are
different from the prior approaches, it is infeasible to compare
them with controlled experiments. However, it is interesting to
explore the characteristic of comments that are generated from
other sources (e.g., comments that are learnt from code [7] and
code clones [19], [20].) As the comparison of classical mea-
sures (e.g., f-score) are useful only in controlled experiments,
we will explore advanced comparison techniques.

3. Presenting more technical details. Due to space limit,
we cannot write all details of our approach. For example, we
have removed obsolete issue reports [12], since their links are
not built. When extending our work to a full paper, we will
provide such details.
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