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Abstract—Exception-handling is a critical mechanism in many
programming languages. Although it is beneficial in many
programming contexts, the bugs in this mechanism can lead
to disastrous consequences. In the literature, researchers have
proposed various approaches to detect the bugs in handling
exceptions. Meanwhile, the thrown exceptions themselves can also
be buggy, but to the best of our knowledge, no prior approach
has ever been proposed to detect bugs in thrown exceptions,
because it is even difficult for programmers to determine whether
a thrown exception is buggy or not. In this paper, we propose
the first automatic criterion (meta-oracle) to determine whether
a thrown exception contains a bug. Our meta-oracle says that if
the messages of two thrown exceptions are quite similar, the
type of the two exceptions shall be the same. Based on this
meta-oracle, we implement EXMINER that is able to detect bugs
in thrown exceptions. It introduces sequence mining to identify
similar exception messages, and groups thrown exceptions by
the patterns that are mined from their messages. From each
group of exception messages, it detects the ones whose types
are different as bugs in thrown exceptions. For the first time,
EXMINER detected three bugs from the latest versions of three
Apache projects. We reported this new type of bugs to their
developers, and all the bugs were confirmed and fixed.

I. INTRODUCTION

Application Programming Interface (API) libraries have
been an essential ingredient of software development [23].
When calling Application Programming Interface (API) li-
braries incorrectly, programmers can introduce API-related
bugs [27], [29], and such bugs can cause exceptions. Exception
handling is a critical mechanism in many languages [21]. With
its support, if the inputs and the call sequences of APIs are in-
correct, libraries can throw exceptions with error messages to
actively warn programmers. Indeed, another recent empirical
study [28] shows that about 80% of parameter rules are solely
encoded in error messages of thrown exceptions. Although
the exception-handling mechanism is critical, the mechanism
can also introduce bugs. One type of such bugs occurs when
thrown exceptions are incorrectly handled. For example, an
exception can bypass the release method of a resource, and
cause resource leaks. To detect such resource leaks, the prior
approaches [11], [16] mine the acquisitions and releases of
resources, and check whether acquired resources are released
in catch clauses.

Besides the bugs in handling exceptions, a thrown exception
itself can be also buggy. Although it is desirable to detect
such bugs, to the best of our knowledge, no prior approach
has ever been proposed to detect bugs in thrown exceptions.
It is challenging to detect such bugs in thrown exceptions,

Hao Zhong
Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China
zhonghao@sjtu.edu.cn

because it is difficult to obtain the knowledge of throwing
correct exceptions. The knowledge shall be correct, effective,
and useful. It is difficult to obtain such knowledge for throwing
exceptions, because exceptions are many and programmers can
use them in different ways. For example, in Java, J2SE alone
provides hundreds of exceptions, and it allows implementing
more customized exceptions. Many exceptions do not have
high-quality documents, and their definitions of exceptions can
be overlapped. When programmers do not fully understand
exceptions, they can throw wrong exceptions, and such excep-
tions lead to bugs in their written code. As shown Section II,
such bugs can be critical.

To improve the state of the art, in this paper, we propose
the first meta-oracle that is able to determine bugs in thrown
exceptions. Our meta-oracle says that if two thrown exceptions
have similar error messages, they shall be of the same type.
Based on our meta-oracle, we propose the first approach called
EXMINER that detects bugs in thrown exceptions. As error
messages are written in natural languages, it is difficult to
identify similar ones. To handle the problem, we introduce
frequent item mining [24] to mine patterns from sentences, and
invent two criteria to select useful ones. We used EXMINER
to check the latest code of four popular projects. As shown in
Section V, our tool found three bugs, and all the bugs were
fixed by their developers.

II. MOTIVATING EXAMPLE

In this section, we use three real bugs to illustrate the
importance of our wrong exceptions and the technical choice
of EXMINER. TinkerPop [3] is a graph database. As a core
functionality of storing graphs, its serializeResponseAs—
String method serialises objects to strings. A programmer
called Jason Plurad reported a critical bug [2], and this bug
report complains that this method throws a wrong exception.
Figure 1 shows the patch of this bug report. The signature
of this method declares that it can throw Serialization-—
Exception. In the buggy code, it throws the Runtime-
Exception, but in the fixed code, the thrown exception is
modified. When a wrong exception is thrown, the problem
of this exception may not be correctly handled. As a result,
this problem can cause serious bugs. For example, in another
database called Cassandra, its disk failure policy is not acti-
vated, because the buggy code throws a wrong exception when
a failure occurs [7].



public String serializeRequestAsString (...)
throws SerializationException {

} catch (Exception ex) {...
throw new RuntimeException(”Error during
serialization.”, ex);

+ throw new SerializationException(ex);
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Fig. 1: The patch of TINKERPOP-682

We notice that many exceptions are thrown with messages.
For example, in Figure 1, the message in Line 4 indicates that
the thrown exception is related to serialization. Furthermore,
the messages of thrown exceptions shall be meaningful, be-
cause they are useful to debug bugs. We notice that program-
mers take effort to maintain such messages. For example, a
bug report [1] complains that when an exception is thrown,
its message asks users to set a wrong parameter. Based on
the above two observations, we propose EXMINER that detect
wrong thrown exceptions by comparing their messages. We
next introduce our meta-oracle and technical details.

III. THE CRITERIA OF META-ORACLE

The oracle problem is well-known in software testing [12].
In this paper, we define a test oracle as follows:

Definition 1:

A test oracle is the knowledge to determine whether the
execution result of a test case is correct or not.

Furthermore, we define a meta-test-oracle as follows:

Definition 2:

A meta-test-oracle is the knowledge to determine whether
a type of test cases return correct results or not, and in static
tools, a meta-oracle is the knowledge to determine whether a
type of source files is correct or not.

A meta-oracle shall be correct, effective, and useful:

1. The correctness. This criterion requires that the knowl-
edge itself shall be correct. If not, its downstream tools will
produce many false alarms by their internal flaws.

2. The effectiveness This criterion requires that a meta-
oracle shall be effective to detect bugs. A correct meta-oracle
may not be an effective one, because it may be infeasible to
find many violations of a correct meta-oracle. For example,
source file shall have no compilation errors. Although it is a
correct meta-oracle, it is ineffective to detect real bugs.

3. The usefulness This criterion requires that a meta-oracle
is able to detect important bugs. A meta-oracle is considered
to be less useful if its violations are not considered as bugs.

A correct, effective, and useful meta-oracle is difficult to be
obtained, but it can motivate many research tools (e.g., learning
from repositories [20]). However, due to the complexity of
the real world, it is infeasible to define a perfect meta-
oracle. For example, although differential testing has been
used to detect bugs [14], [15], [26], one of its limitations
lies in undefined behaviors [17]. Even much simpler meta-
oracles have limitations. For example, a meta-oracle says that
a program shall not have infinite loops [13], but loops are

designed to be infinite to host services. Our meta-oracle is
that thrown exceptions shall be of the same type, if their
messages are similar.

IV. APPROACH

Figure 2 shows the overview of EXMINER. It takes the
source files of a Java project as its input, and from the input,
it extracts all the thrown exceptions. From the messages of
thrown exceptions, it mines frequent word sequences. It then
classifies thrown exceptions by their frequent word sequences,
and detects abnormal exceptions.

A. Extracting Thrown Exceptions

From the source files of a library, EXMINER first extracts
the types of the error messages of its thrown exceptions. We
build EXMINER upon JDT [4], the Eclipse’s built-in Java
compiler. From each throw statement, EXMINER extracts a
pair (t,m), where ¢ denotes the type of a thrown exception
and m denotes its message. JDT parses each source file into an
abstract syntax tree (AST) and supports customized visitors. A
customized visitor can capture different types of AST nodes.
EXMINER implements a customized visitor to extract all the
throw statements. To extract ¢ and m from a t hrow statement,
EXMINER analyzes three cases:

1. Instance creations. In most cases, throw keywords are
followed by the creations of exceptions. Figure 3a shows such
an example. For these statements, EXMINER extracts the type
of the exception class as ¢. The creation of an exception
is the method call of a constructor. EXMINER extracts m
from all the arguments of the constructor. If an argument is a
string constant, it adds the constant to m. For example, from
Figure 3a, it extracts the pair, (Illegal ArgumentException,
Property asked is not a Text Property). The arguments
can be the combination of texts and variable names. For
example, a thrown exception is as follows:

1| throw new IllegalArgumentException(”cannot change
index sort from ” + segmentIndexSort + ” to
” 4+ indexSort);

The extracted message is as follows:

cannot change index sort from segmentIndexSort to indexSort

A constructor can have more than one argument, and an
argument can be a variable. For example, a thrown exception
is as follows:

} catch (MaxBytesLengthExceededException e) {
String msg = ”"Document contains at least one

)

throw new IllegalArgumentException(msg, e);

w

'}

If an argument is a variable, EXMINER checks the assign-
ments to this variable. If a constant value is assigned to the
variable, it adds the value to the message of the exception.
If an exception has more than one argument, it adds their
constant values one by one to the message of the exception.
As EXMINER relies on static analysis to extract messages, it
ignores variables whose values are determined at runtime. In
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the above example, the second argument is a thrown exception,
and many methods can throw the exception with different
messages. As its value is determined at runtime, EXMINER
ignores this input, and the extracted message is as follows:

Document contains at least one ...

An argument can be string constants that are defined in other
classes, and it is difficult to determine their values. To extract
more meaningful error messages, EXMINER builds a table for
all defined string constants, and replaces them if they appear
in error messages.

2. Variables. If a throw keyword is followed by a variable,
EXMINER resolves the type of the variable as ¢, and checks
the initializer of the variable. If a constant value is assigned
to the variable, it extracts the value as m.

3. Method invocations. If a throw key word is followed
by a method invocation, EXMINER extracts the return type of
the method as ¢. The extraction of error messages is identical
to the process of instance creations.

B. Mining Frequent Word Sequences

The second step is to mine the commonality among thrown
exceptions. EXMINER achieves this research goal by mining
frequent word sequences from exception messages. A sentence
(S) can be considered as a sequence of words (w; ...wy,).
In natural language processing, a word is a token, and the
task of identifying the words from a sentence is known as
tokenization [25]. We use the tokenizer of lingpipe [5], and
it is a rule-based tokenizer. EXMINER considers an exception
message as a sequence, and extracts its words as items.

After a sentence is split into words, we use frequent item
mining [24] to mine frequent words. In frequent item mining,
a subsequence is defined as follows:

Definition 3: Given two sequences S, = a .. .a, and S, =
b1 ...by,, if there exists integers 1 < i1 < ig... < i, < M
such that a; = b;1,...,a, = bin, S, is a subsequence of Sy,
denoted as S, C Sp. If S, C S, and S, is shorter than S,
S, is a proper subsequence of S, denoted as S, C Sp.

The above definition needs to determine whether two items
are equivalent. The first word of a sentence is capitalized.
As sentences in error messages can be incomplete, after their
words are extracted, their capitalized letters can be different.
When mentioning code names, some sentences use upper cases
and some use lower cases. To handle the problem, when
EXMINER compares two words, it ignores their cases. The
plural forms of most nouns are different from their single
forms, and verbs have different tenses. To handle the problem,
EXMINER uses a stemmer [22] to transfer all words to their
roots. Given a set of sequences, the frequency of a sequence
is calculated as follows:

Definition 4: Given a set of sequences SD = 57 ....5,, the
frequency of S, is the number of S; € SD and S, C 5;.

The frequency of a sequence is also known as its support,
denoted as sup®?(S,). Given a support threshold min_sup,
the problem of mining frequent sequences from SD is to
locate all sequences Si such that sup®?(S;) > min_sup.

Definition 5: If S, is frequent and AS, such that S, C S,
S, is a frequent closed sequence.

As defined in Definition 3, a subsequence of a sentence can
be discontinuous. Although the definition is proper in many
applications, a discontinuous subsequence of a sentence can
be difficult to understand and sometimes even misleading. A
subsequence can consist of an adjective from the subject and a
noun from the object. Such subsequences are less informative.
To handle the problem, we revise sparesort to mine true
subsequences:

Definition 6: Given two sequences S, = a1 . ..a, and S, =
b1 ...by,, if there exists integers 1 < ¢,i+1...;i4+n < m
such that ay = b;,...,a, = b1y, S, is a true subsequence of
Sy, denoted as S, < Sp. If S, < Sy and S, is shorter than Sp,
S, is a proper true subsequence of S, denoted as S, < S.

For example, “property not” is a proper subsequence, but
is not a proper true subsequence of the exception message in
Figure 3. For simplicity, we call a mined frequent proper true
sequence as a pattern. EXMINER extends sparesort [18], and it
mines patterns from exception messages. We select sparesort,
because this library is written in Java and open source.

C. Identifying Abnormal Exceptions

In natural languages, the meaning of a word is limited.
To express richer meanings, word phases and sentences are
constructed. As frequent item mining does not consider the
meanings of its mined patterns, its mined patterns can be too
short to convey meanings, because shorter patterns typically
have higher frequencies than longer ones. The problem cannot
be resolved by simply requiring longer patterns. Even if a
pattern is long, it can contain no informative words. For
example, we find that a pattern is “is the combination of a”.
Although this pattern has five words, it is not quite meaningful.
Indeed, if different subjects and objects are added to this
pattern, it can convey quite different messages.

We notice that meaningful patterns contain more nouns,
verbs, adjectives, and adverbs. Based on this observation, we
use the number of the above words as a criterion to remove less
meaningful patterns. In natural language processing, the task
of identifying the part of speech tags is known as POS tagging,
and the state-of-the-art taggers can be roughly divided into
supervised taggers and unsupervised taggers [19]. Supervised
taggers learn statistical models from corpora with labels, and
unsupervised taggers are often based on predefined rules.
EXMINER uses lingpipe [5] to identify the part of speech tags.
The POS tagger of lingpipe is an unsupervised tagger, and its
statistical model is Hidden Markov Model. We select lingpipe
as our underlying POS tagger, because it is trained on a large
corpus, i.e., the Brown Corpus [8]. This corpus contains a
million words.

As our model is Hidden Markov Model and it is trained on
complete sentences, lingpipe is more effective to tag complete



public getUnqualifiedTextProperty (String name){
AbstractField prop = getAbstractProperty (name)

©

if (prop instanceof TextType){
return (TextType) prop;
}else{
throw new IllegalArgumentException(”Property
asked is not a Text Property”);
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(a) A method throws T1legalArgumentException

public getUnqualifiedArrayList(String name) {...
for (AbstractField child getAllProperties ()){
if (child.getPropertyName ().equals (name)){
if (child instanceof ArrayProperty){
array = (ArrayProperty) child; break;
}
throw new BadFieldValueException(”Property
asked is not an array”);
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(b) The other method throws BadFieldvValueException
Fig. 3: Our found bug

sentences than patterns. To extract better tagging results,
instead of patterns, EXMINER extracts the tagging results from
complete error messages, and maps them to mined patterns.
For each frequent word sequence S,, EXMINER searches
for a subset of thrown exceptions {(e1,m1), ..., (én, My ) such
that S, C m,. As the sentences of exception messages
are already tokenized, it is straightforward to compare them
to determine whether S, is a subsequence of m;. After
that, EXMINER compares all the e;. A mined frequent word
sequence indicates the same type of problems, and its located
exceptions are thrown because of the same problem. In a
project, programmers shall throw the same exception for the
problem. If they do not, it is confusing, and it can lose
the same type of problems when programmers try to catch
this exception. Due to the above considerations, if EXMINER
finds more than one thrown exception in the located subset, it
determines that an abnormal exception is detected. After that,
programmers can inspect such abnormal exceptions for bugs.

V. EARLY RESULTS

We used EXMINER to check the three Apache projects such
as common_io, pdfbox, and shiro. EXMINER detected three
bugs. After we reported them, they are all confirmed and fixed.
Figure 3 shows an example of our found bugs. We find this
bug in the latest version of pdfbox [6]. Figure 3 shows two
methods of pdfbox, and each method has a parameter. Given
an illegal input, the method in Figure 3a throws Illegal-
ArgumentException, but the method in Figure 3b throws
BadFieldvValueException. We determine that this shall be
a bug, because it is strange that the same error triggers two
different exceptions. After we reported the problem, it was
fixed by the developers of pdfbox [10].

It is challenging to detect this type of bugs, because the
definitions of exceptions are vague and can have overlaps.

In this example, according to their documents [9], I1legal-
ArgumentException indicates that an illegal or inappropri-
ate argument is passed to a method. As the exceptions in
Figure 3 are triggered by illegal inputs, it does not violate its
document to throw IllegalArgumentException. However,
from the perspective of client programmers, if the same type
of errors throw different exceptions, their catch statement can
fail to catch exceptions. The developers of pdfbox also agree
that it is important to throw the identical exception, if the error
is identical. We summarize this criterion as our meta-oracle to
detect bugs in thrown exceptions.

However, it is difficult to determine whether two exceptions
are thrown for an identical problem. In this example, the two
checked variables have different names (prop vs child), and
their values are checked against different types (TextType
vs ArrayProperty). One exception is thrown from an else
statement, but the other exception is thrown inside an if state-
ment. Even their thrown messages are different. EXMINER
resolves the problem by mining the thrown messages. In this
example, EXMINER mines that the phrase, property asked
is not, often appear in thrown messages, but their thrown
exceptions are different. In this way, it detects the abnormal
thrown exception, and we determine that it indicates a bug.
This bug is already fixed, after we report it.

VI. WORK PLAN

As our effectiveness and usefulness have not been analyzed
in a quantitative manner yet. In future work, we plan to extend
this work from three perspectives:

1. Building a benchmark of our target bugs. We plan to
build a benchmark where true labels of bugs are provided. It
can be feasible to identify our target bugs from past bug fixes
and bug reports. With such a benchmark, we can calculate the
precision and recall of EXMINER.

2. Detecting bugs of the latest versions. Another way is
to detect bugs in the latest versions, but we cannot calculate
recalls in this way, because it is infeasible to obtain all the
bugs of a real project. In addition, from a decent project, it is
unlikely for a tool to detect many bugs and some programmers
are reluctant to check too many reported bugs. We are still
working towards a better way to solve this problem.

3. Improving our approach. In some projects, exception
messages are built at runtime, and cannot be extracted throw
static analysis. For example, a project can store all exception
messages in a property file, and load them at runtime. We
plan to introduce dynamic analysis to collect such messages.
In addition, we notice that if a message is associate with more
than one exception, its minority group can be correct, instead
of the majority group. We plan to explore more informative
oracles to determine which one shall be correct.
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