
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Inferring Bug Signatures to Detect Real Bugs
Hao Zhong, Member, IEEE , Xiaoyin Wang, Member, IEEE , and Hong Mei, Fellow, IEEE

Abstract—Static tools like Findbugs allow their users to manually define bug patterns, so they can detect more types of bugs, but due to
the complexity and variety of programs, it is difficult to manually enumerate all bug patterns, especially for those related to API usages or
project-specific rules. Therefore, existing bug-detection tools (e.g., Findbugs) based on manual bug patterns are insufficient in detecting
many bugs. Meanwhile, with the rapid development of software, many past bug fixes accumulate in software version histories. These
bug fixes contain valuable samples of illegal coding practices. The gap between existing bug samples and well-defined bug patterns
motivates our research. In the literature, researchers have explored techniques on learning bug signatures from existing bugs, and
a bug signature is defined as a set of program elements explaining the cause/effect of the bug. However, due to various limitations,
existing approaches cannot analyze past bug fixes in large scale, and to the best of our knowledge, no previously unknown bugs were
ever reported by their work. The major challenge to automatically analyze past bug fixes is that, bug-inducing inputs are typically not
recorded, and many bug fixes are partial programs that have compilation errors. As a result, for most bugs in the version history, it is
infeasible to reproduce them for dynamic analysis or to feed buggy/fixed code directly into static analysis tools which mostly depend on
compilable complete programs. In this paper, we propose an approach, called DEPA, that extracts bug signatures based on accurate
partial-code analysis of bug fixes. With its support, we conduct the first large scale evaluation on 6,048 past bug fixes collected from
four popular Apache projects. In particular, we use DEPA to infer bug signatures from these fixes, and to check the latest versions of
the four projects with the inferred bug signatures. Our results show that DEPA detected 27 unique previously unknown bugs in total,
including at least one bug from each project. These bugs are not detected by their developers nor other researchers. Among them, three
of our reported bugs are already confirmed and repaired by their developers. Furthermore, our results show that the state-of-the-art
tools detected only two of our found bugs, and our filtering techniques improve our precision from 25.5% to 51.5%.

Index Terms—bug fix, bug signature, partial code analysis.

F

1 INTRODUCTION

S Tatic tools are typically shipped with predefined patterns of
their target bugs. As it is rather difficult to enumerate all bug

patterns, some tools (e.g., Findbugs [35]) allow programmers to
customize bug patterns, but it may be difficult for even experienced
programmers to define some patterns. For example, Zhong and
Su [94] shows that a notable portion of bugs are related to wrong
API usages, but a developer can hardly define all illegal patterns
because she may not know erroneous usages of the APIs if she
typically uses them correctly.

With the rapid development of software, open source repos-
itories have accumulated many bugs and their fixes. Researchers
(e.g., [36]) have proposed various approaches that infer bug signa-
tures from bug fixes. Here, as defined by Sun and Khoo [82], a bug
signature is a set of program elements that explain the cause or the
effect of a bug, and a bug signature can be easily translated to bug
patterns of existing static tools. The prior approaches roughly fall
into two categories: (1) dynamic approaches [36], [82] mining bug
signatures from buggy traces; and (2) static approaches [53], [70]
extracting bug signatures from buggy source files. Although the
research topic has been intensively studied, two challenges still
remain open and less explored:

Challenge I: The large-scale in-depth analysis. Inferring
bug signatures effectively requires in-depth analysis of many bugs

• Hao Zhong and Hong Mei are with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University, China.
E-mail: zhonghao@sjtu.edu.cn

• Xiaoyin Wang is with Department of Computer Science, University of
Texas at San Antonio, USA.

Manuscript received April 19, 2005; revised August 26, 2015.

to understand their common semantic features (e.g., code depen-
dencies). The prior approaches perform either in-depth analysis
on a small number of known bug fixes, or shallow analysis (e.g.,
syntax analysis) on a large number of bug fixes. For the former,
manual [18], [43], dynamic [24], and static [53], [82] approaches
have inferred bug signatures from only a limited number of
bugs. For the latter, the tools (e.g., spdiff [17]) are built on
shallow code analyses, which considers mainly abstract syntax tree
instead of code bindings and dependency. The compilable code
is a prerequisite for most semantic code analysis, but Tufano et
al. [11], [85] show that only 38% commits are compilable. In their
evaluations, the former approaches suffer from generating too few
bug signatures to catch new bugs, whereas the latter approaches
generate over-specific bug signatures.

Challenge II: The differences between known and new
bugs. Even after bug signatures are inferred, it is challenging to
use them to detect new bugs, because the details of a known bug
may never appear in new bugs. As such details can be encoded in
bug signatures, matching exact matches of bug signatures can be
less effective to detect new bugs, which explains why some prior
approaches [53], [70], [82] fail to detect real bugs. To handle this
issue, the other prior approaches [53], [70], [82] build abstractions
(e.g., dependency graphs) as bug signatures, and match source
files at such abstractions. Although it hides trivial differences (e.g.,
blank spaces), a piece of buggy code can still be ignored, since it
includes different code elements.

Challenge III: The locations of buggy snippets. Zhong and
Su [94] show that most bug fixes modify several source files, and
even if a file is modified, typically, only a small portion of code
lines are modified. If we compare a whole buggy file with source
files, many detected similar code snippets can be false positives.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Due to the above challenges, the prior approaches have diffi-
culties in analyzing large scale bug fixes. For example, in total,
CBCD [53] analyzed only 5 Git bugs, 14 PostgreSQL bugs, and
34 Linux bugs when it is evaluated. In addition, researchers often
evaluated their approaches only on benchmarks, where bugs are
already known. For example, Sun and Khoo [82] evaluated their
approach on the Siemens benchmark [39]. In this benchmark, all
bugs are manually constructed. Pendlebury et al. [69] show that
the settings of benchmarks can be biased, and the effectiveness
of an approach can be significantly reduced when the settings are
adjusted. To understand the true effectiveness of an approach, we
must evaluate it under the real setting, where code is the latest and
bugs are unknown. However, to the best of our knowledge, in this
research field, no prior approaches have ever been evaluated under
the real setting, and no real unknown bugs are ever reported.

Our solution. In this paper, we propose a novel approach,
called DEPA (Detecting bugs with Past fixes), that detects bugs
with past fixes. To overcome the first challenge, we build DEPA

upon GRAPA [95], which enables the analysis on thousands of bug
fixes that are not compilable. To overcome the second and the third
challenges, we build method graphs to represent illegal usages,
and use the Hungarian algorithm [48] to locate buggy snippets.
Different from the prior approaches [53], [70], [82], our inferred
bug signatures are in the format of method graphs (Definition 1),
and they focus on method invocations and their dependencies.

Although mining bug signatures is intensively studied, com-
pared with the prior approaches (e.g., [53], [70], [82]), DEPA

makes the following major contributions:

• The first approach that is able to infer bug signatures
from large scale bug fixes. In their evaluations, the prior
approaches (e.g., [53], [70], [82]) analyzed fewer than
one hundred bug fixes. In comparison, DEPA has already
analyzed more than six thousand real fixes.

• The first approach that uses method graphs to denote bug
signatures. The prior approaches [53], [70], [82] use de-
pendency graphs, but DEPA uses method graphs to encode
bug signatures. We choose this granularity of methods,
since researchers have detected many bugs via mining
specs and most mined specs define method usages [73].

• An approach that leverages the Hungarian algorithm [48]
in identifying buggy code snippets (Sections 3.1.2); infer-
ring bug signatures (Section3.1.3); and detecting new bugs
(Section 3.2). Although the algorithm is classical, we are
the first to introduce it to the above applications, and some
of its benefits are illustrated in Sections 4.5 and 4.6.

In our evaluation, DEPA inferred bug signatures from 6,048
bug fixes, which were collected from four popular open source
projects. Our results are summarized as follows:

• DEPA detected 65 new bugs from the latest versions of real
projects. Their programmers were unaware of these bugs,
until we reported them. To the best of our knowledge, this
is the first time that researchers report real new bugs when
they use their inferred bug signatures to detect bugs.

• Our detected bugs cover various categories such as null
pointer accesses, wrong method (API) calls, wrong excep-
tions, overflow, and resource leaks. As most of these bugs
are caused by API or project related issues, Findbugs and
PMD detected only two of our found bugs. DEPA enriches
the bug patterns through its mined bug signatures.

1 protected ... getWriteDirectory(long writeSize){
2 ...
3 directory = getDirectories().getWriteableLocation(...);
4 if (directory == null)
5 throw new RuntimeException("Insufficient disk space to

write " + writeSize + " bytes");
6 return directory;
7 }

(a) The buggy code

1 protected ... getWriteDirectory(long writeSize){
2 ...
3 directory = getDirectories().getWriteableLocation(...);
4 if (directory == null)
5 throw new FSWriteError(new IOException("Insufficient

disk space to write " + writeSize + " bytes"), "
");

6 return directory;
7 }

(b) The fixed code

Fig. 1: CASSANDRA-11448

• DEPA ranks real bugs on the top of its bug list, and its
precision (51.5%) is higher than the prior studies (17.2%
as reported by Legunsen et al. [51]).

• A detailed analysis of DEPA. Our results show that (1)
our filtering techniques improve our precision from 25.5%
to 51.5%, which is comparable or even better than other
static approaches; and (2) empirically, we find that the best
size parameter is four. Here, the parameter determines the
sizes of inferred bug signatures.

2 MOTIVATING EXAMPLE

Cassandra [1] is a popular distributed database. According to its
documentation [5], when the disk fails, Cassandra allows its users
to choose one of the two policies: stop and best_effort.
In particular, when a disk error occurs, stop will shut down
the node, and best_effort will only blacklist the failed disk.
However, a user submitted a bug report [2] saying that when a
disk is full, neither the disk is blacklisted nor the node is shut
down. Instead, Cassandra throws an exception, when a disk is
full. The programmers of Cassandra inspected the code throwing
exceptions, and Figure 1a shows the buggy code. In particular,
Line 3 tries to retrieve a writable location. If the disk is full, Line 5
will throw a RuntimeException. However, the exception does
not trigger the disk failure policy. Figure 1b shows the fixed code.
In Line 5, instead of an exception, it throws a FSWriteError.
Cassandra implements a mechanism to handle this type of errors,
and it will trigger the disk failure policy.

From the bug fix in Figure 1, DEPA inferred the bug signature
in Figure 2a. In a bug signature, a node denotes a method invo-
cation, and an edge denotes either a data dependency or a control
dependency. For example, the bug signature in Figure 2a defines
that the method call chain of getDirectories() → get-
WriteableLocation()→ RuntimeException,<init>()
that indicates a bug. DEPA checked the latest code of Cassandra
with the bug signature, and it found that the bug was not fully
fixed. For example, Figure 2b shows one of our newly found
bugs [3]. As the code in Figure 1a does and as defined by Fig-
ure 2a, the code in Figure 2b also throws RuntimeException,
when it fails to retrieve writable locations. However, as explained
in CASSANDRA-11448, the thrown exceptions will not trigger
the disk failure policy of Cassandra.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

2018/1/5

1

invokevirtual Lorg/apache/Cassandra/io/util/DiskAwareRunnable, getDirectories()

invokevirtual Lorg/apache/cassandra/db/Directories, getWriteableLocation(…)

invokespecial Ljava/lang/RuntimeException, <init>(…)

(a) The inferred bug signature

1 public ... getWriteDirectory(...) {
2 ...
3 d = getDirectories().getWriteableLocation(...);
4 if (d == null)
5 throw new RuntimeException(...);
6 return d;
7 }

(b) The buggy code in DirObjectFactoryHelper.java
Fig. 2: Our reported bug

Detecting the bug in Figure 2b requires the knowledge on how
Cassandra handles its disk failure policy. As it needs to set up a
cluster to reproduce the bug, it is even difficult for outsiders like us
to trigger out-of-space disk errors. As a result, we did not submit
test cases in our bug report. Fortunately, the programmers of
Cassandra took our report bug seriously. They have implemented
the test cases that trigger the buggy behaviors, and implemented
patches for this bug.

3 APPROACH

Figure 3 shows the overview of our approach. It consists of two
major steps: (1) inferring bug signatures (Section 3.1), and (2)
detecting bugs (Section 3.2).

3.1 Generation of Bug Signatures
3.1.1 Bug Analysis with GRAPA

DEPA uses GRAPA to build SDGs from bug fixes. GRAPA [95]
is a recent advancement in partial code analysis. Given a partial
program of a project, GRAPA extracts its called code names, and
by matching these names with declared code names in all the
released versions of the project, it locates the best approximate
version of the partial program. The partial program can contain
code names that cannot be resolved by the approximate version,
because a fix often appears between two released versions. To
handle the problem, GRAPA extends the repair strategies of
PPA [28], and thus can resolve more code names. After all the
code names are resolved, GRAPA enables WALA [12] to build
system Dependency Graphs (SDGs) for the partial program, as it
builds SDGs for complete programs. We set WALA to extract both
data and control dependencies. As a result, an edge can denote
either a data dependency and a control dependency.

With GRAPA, researchers [87], [93] have analyzed thousands
of bug fixes to understand their code changes. However, neither
GRAPA nor its follow-up studies [87], [93] include any tools that
can infer bug signatures or detect bugs. To use GRAPA for bug
signature construction, for each historical bug fix, DEPA collects
all changed source files and feeds both buggy and fixed versions
of these files into GRAPA to generate a pair of system dependency
graphs. This graph pair is then simplified and compared for bug
signature generation.

DEPA infers bug signatures in the format of method graphs:
Definition 1. A method graph is defined as g = 〈V,E〉, where

V is a set of method invocations, and E ⊆ V × V is a
set of dependencies: A 〈s1, s2〉 ∈ E edge denotes a direct
dependency or transitive dependency from s1 to s2.

From an SDG G, DEPA extracts a method graph M whose
nodes denote all method invocation nodes in G, and whose edges

2018/2/5

1

buggy method

fixed method

bug fix

(a) inferring bug signatures

SDG

SDG
inferring

bug
signature filtering

method

refined bug
signature

parsing SDG comparing bugs

(b) detecting bugs

parsing

latest version

Fig. 3: The overview of DEPA

denote the transitive reachable relationship between method invo-
cation nodes in G. This idea is borrowed from mining specifica-
tions (see Section 6 for details) where temporal or other constraints
are mined for legal usage of method invocations. However, as
DEPA extracts illegal usages which are relatively rare, we do
not apply frequency-based mining which is commonly used in
mining specifications. This technical choice is in accordance with
the prior approaches for mining bug signatures (e.g., [53]). Based
on the difference between the buggy and the fixed method graphs,
DEPA further extracts a subgraph from the buggy method graph to
define buggy behaviors. As a result, our bug signature is a directed
graph where each node denotes a method invocation and each edge
denotes a control or data dependency between two nodes.

DEPA’s bug signature generation process consists of three
steps. First, for each bug fix, DEPA constructs the mapping of
methods between the buggy version and the fixed version so that
the revised methods can be extracted. Second, DEPA infers a
bug signature from each revised method by mapping the SDGs
generated from the buggy version and the fixed version of the
method. The added or removed methods are ignored in this step
as DEPA focuses on inner-method bug signatures. Third, DEPA

filters the inferred bug signatures based on a set of rules to remove
irrelevant bug signatures.

3.1.2 Construction of Mappings

Each bug fix contains a set of buggy files and a set of fixed
files. DEPA identifies the mappings between a buggy file and its
fixed file by their file names. Shi et al. [81] show that method
names are less stable than file names. In the optimization research,
the assignment problem [64] is to assign agents to their proper
tasks, and the Hungarian algorithm [48] is a classical algorithm
that solves the assignment problem. To handle modified method
names, DEPA uses the Hungarian algorithm to build the mappings
between the methods in the buggy version and the methods in
the fixed version. Initially, the algorithm calculates the distances
between buggy methods and fixed methods. We define the distance
as the Levenshtein edit distance of their full method names.

3.1.3 Inferring Bug Signatures

For each pair of mapped methods, DEPA compares their plain text
representations to determine whether the method is modified. If the
method is modified in the new version, DEPA uses GRAPA [95]
to build two SDGs for the method in the buggy version and
the method in the fixed version, respectively. When building the
pair of SDGs for a modified method, DEPA conducts an intra-
procedure analysis. This strategy does not lose any modifications,
in that DEPA compares all modified methods.

After SDGs are built, for each pair of SDGs, DEPA uses
the Hungarian algorithm in Section 3.1.2 to build the mappings
between their nodes. In the Hungarian algorithm, the distance of
two nodes (m and n) is defined as follows:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Algorithm 1: Type Distance Algorithm
Input:

lt is the hastable of the buggy code (node type→ occurrence)
rt is the hastable of the fixed code (node type→ occurrence)

Output:
dis is the distance between the two tables

1: if lt.isEmpty and rt.isEmpty then
2: dis← 0
3: else if (lt.isEmpty and rt.isNonEmpty) or (lt.isNonEmpty and

rt.isEmpty) then
4: dis← 1
5: else
6: keys← lt.keys ∪ rt.keys
7: for key ∈ keys do
8: lv ← lt.get(key)
9: rv ← rt.get(key)

10: dis← |1v−rv|
max(lv,rv)

+ dis
11: end for
12: dis← dis/keys.size
13: end if

dis(m,n) =
1

3
(dname(m,n) + dintype(m,n) + douttype(m,n))

(1)
Here, dname(m,n) returns the name distance:

dname(m,n) =

dcode(m,n), m, n are variable accesses

or method invocations
dtype(m,n), otherwise

(2)
As introduced in its manual [10], WALA encodes node labels

of SDGs in a language that is close to JVM bytecode. The JVM
specification [57] defines four instructions to access fields or class
variables (i.e., getfield, putfield, getstatic, and put-
static), and five instructions to call a method (i.e., invoke-
dynamic, invokeinterface, invokespecial, invoke-
static, and invokevirtual). For node labels of variable
accesses, dcode extracts only full names of their types for com-
parison. It ignores variable names, since they are ad hoc. For node
labels of method invocations, dcode extracts full method names for
comparison. The names of other nodes are less informative. For
example, as a phi node is a special statement that is inserted
by compilers [10]. For these nodes, dtype extracts their types
for comparison. After extraction, DEPA uses the Levenshtein edit
distance [9] to measure distances between string values.

For each node, din and dout denote its incoming and outgoing
neighbors, respectively. When comparing two nodes, the mappings
of their neighbors are not determined. As a result, it is infeasible
to calculate the accurate cost between their neighbors. Instead,
DEPA calculates the approximate cost with Algorithm 1. In the
algorithm, for two sets of neighbors, DEPA extracts two hash
tables to denote node types and their occurrences. Here, as each
node denotes an instruction, we use instruction types to denote
node types. The JVM spec defines the complete list of instruction
types. Algorithm 1 takes the two hash tables as its inputs, and it
calculates the common instructions of two sets of neighbors.

After the distance function is defined, the Hungarian Algo-
rithm is able to build the optimal node mappings between two
graphs. We consider that a node is modified when Equation 1
calculates that the distance between the node and its mapped node
is nonzero.

TABLE 1: The categories of false alarms.
Project debug fun. global element weak subtle
aries 19 4 13 28 20 4

mahout 2 10 31 7 26 5
derby 23 16 20 3 23 2

cassandra 0 39 1 4 32 4
total 44 69 65 42 101 15

From the modified nodes of an SDG, DEPA extracts all method
invocations. For two method invocations (s and t), if there exists at
least a path and no path goes through a method invocation, DEPA

adds an edge from s to t. In this way, DEPA builds method graphs.
To extract bug signatures from large SDGs, DEPA allows users

to set a size parameter. In each iteration, DEPA includes the n-
depth neighbors of modified nodes into analysis, until the pro-
duced bug signature has more nodes than the size parameter. Here,
it considers both data dependencies and control dependencies. If it
cannot produce such a bug signature after all nodes are included,
it produces the maximized graph as the bug signature.

3.1.4 Filtering Bug Signatures
Figure 7 shows that directly using bug signatures to detect bugs
results about 80% false alarms. After manual inspection, we found
that some bug signatures are superficial. For example, when fixing
bugs, programmers can modify code to print logs. A bug signature
can be inferred from such a modification, but it does not indicate
any bugs. We classified all the found superficial bug signatures,
and designed corresponding filtering techniques. Table 1 shows
the results. Column “debug” shows false alarms that are related to
debugging code, and we define a debug filter for these false alarms.
Column “fun.” lists false alarms that are due to different functions,
and we define a common API filter for these false alarms. Column
“global” lists false alarms that are related to global usages, and
we define a global change filter for these false alarms. Column
“element” lists false alarms that are related to code element other
than method invocations, and we define a size filter for these false
alarms. Column “weak” denotes false alarms that are related to
weak bug signatures, and we define a weak method filter for these
false alarms. The details of these filters are as follows:

1) Debug filter. DEPA filters a pair of SDGs, if their modified
methods are named as “debug”, “info”, “print”, “error”,
or “println”. For example, to fix ARIES-127, programmers
added debugging code to a catch clause:
1 } catch (Exception e) {
2 - //TODO log this
3 + _logger.error("There was an error ...);}

Neither the original nor modified methods have bugs. Pro-
grammers added the _logger.error method to save debug
information. As this type of modifications do not indicate
bugs, DEPA filters its SDGs.

2) Global change filter. DEPA filters two SDGs of a buggy
class, if their modified nodes access the same field. For
example, to fix DERBY-5312, programmers made relevant
modifications to multiple methods as follows:
1 + private ContainerKey currentIdentity;
2 synchronized void createContainer(...{
3 ...
4 + currentIdentity = newIdentity;
5 ...}
6 private boolean openContainerMinion(... {
7 ...
8 + idAPriori = currentIdentity;
9 ...}

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

As we build an SDG for each method and a single SDG is
insufficient to describe the buggy behavior of the above bug,
DEPA filters the above SDGs.

3) Size filter. DEPA filters bug signatures whose method invo-
cations are fewer than two. For example, ARIES-878 fixed a
concurrency bug:

1 - synchronized (list) {
2 + new Thread() {
3 + public void run() {
4 for (ManagedObject cm : list) {
5 cm.updated(props);}
6 + }
7 + }.start()

As WALA ignores concurrency code elements, it builds an
SDG with only one node for the above code. DEPA filters
this SDG, because it is not meaningful.

4) Common API filter. We target at detecting bugs in released
code of popular projects, and such code is implemented by
experienced programmers. We notice that some APIs (e.g.,
the java.lang package) are widely used. We believe that
experienced programmers are familiar with their usages, so
they are unlikely to introduce bugs, when using such common
APIs. In particular, if an inferred bug signature invokes meth-
ods that are declared only by the java.lang package, the
java.math package, and the java.util package, DEPA

filters the bug signature. One example is the enumeration of
a list whose type is java.util.List, and corresponding
code snippets typically call the methods such as iterator,
hasNext, and next. Although the enumeration is widely
used and can appear in buggy code, it often does not indicate
a bug. This filter can ignore some true bugs, but it reduces
false alarms.

5) Weak method filter. We notice that it is unlikely to infer
meaningful bug signatures from some methods. For exam-
ple, some classes override the toString method of the
java.lang.Object class. Although programmers can re-
vise the method to log more details when fixing bugs, its
modifications do not indicate buggy behaviors. DEPA filters
SDGs that are built from such methods.

Our filters are not exhaustive, and some false alarms are
difficult to be removed by filters. In particular, Column “subtle”
lists false alarms that are related to subtle differences. Although
their graphs are similar, their subtle differences in code determine
that they are not true bugs. We still cannot define an effective filter
for this type of false alarms. However, Section 4.6 shows that our
filters are able to improve the precision from 25.5% to 51.5%. Our
result shows that learning from data is promising to reduce false
alarms. Section 5 further discusses this issue.

3.2 Detecting Bugs

After bug signatures are inferred, a detection tool typically de-
termines the matches of a bug signature as suspected bugs. As
the existing approaches [53], [70], [82] locate identical matches,
they can lose true bugs with minor differences. Instead of exact
matches, given a bug signature, DEPA matches its graph with the
graphs built from to-check code, and its matching technique allows
minor differences.

The matching technique of DEPA is also built on the Hun-
garian algorithm as introduced in Section 3.1.2. When comparing
a method graph, DEPA requires that bug signatures shall have
fewer nodes than the method graph has. For a method graph and a

Algorithm 2: Structure Distance Algorithm
Input:

t is the hastable that defines mappings
lg is the left-side graph
rg is the right-side graph

Output:
dis is the structure distance

1: count← 0 // The total common edges.
2: total← 0 // The total edges of the left side.
3: for l1 ∈ m.keys do
4: for l2 ∈ m.keys do
5: if lg.existEdge(l1, l2) then
6: total← total + 1
7: r1 ← lt.get(l1)
8: r2 ← rt.get(l2)
9: if rg.existEdge(r1, r2) then

10: count← count+ 1
11: end if
12: end if
13: end for
14: end for
15: if total is zero then
16: dis← 0
17: else
18: dis← 1− count

total
19: end if

bug signature, DEPA builds their node mappings, and the distance
function is defined in Equation 1. After the mappings (M) are
determined, we calculate the distance value between the method
graph and the bug signature as follow:

dm(M) =
1

3
(dn +

∑
dis(m.source,m.target)

|M |
+ ds(M))

(3)
Here, m ∈ M ; |M | is the cardinality of M ; and m.source

and m.target denote the source node and the target node of the
m mapping, respectively. In this equation, dn denotes the Lev-
enshtein edit distance between the two enclosure method names
where the method graph and the bug signature are extracted; dis()
is defined in Equation 1; and Algorithm 2 shows the details of
diss(). For a given mapping set, Algorithm 2 calculates edges
that appear in the bug signature, and edges that appear in both the
bug signature and the method graph. The distance is calculated by
dividing the two values. As a bug signature is extracted from a pair
of buggy method and fixed method, each bug signature has only
an enclosure method. When comparing with source files, DEPA

checks a method each time. As a result, dn compares only two
method names, although the two methods can call more methods.

In the literature, researchers have proposed various approaches
to compare two pieces of code. The prior approaches [33], [44]
typically generate edit scripts to denote their changes. Instead of
such edit scripts, DEPA produces a distance to denote to their
similarity, which is useful to match code with minor differences.
In particular, for a method graph and a set of bug signatures,
DEPA produces an increasing-order list based on Equation 3. Each
item of the list contains a suspicious value, a bug signature, and
corresponding buggy locations. Programmers can manually check
the list for bugs. For example, when we use DEPA to detect bugs in
the code of Figure 2b, it finds that the distance between the graph
from Figure 2b and the graph from Figure 1a is zero. Although
the code snippets in Figures 2b and 1a are different, after DEPA

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 2: Subjects.

Name
Past fix The latest version

fix method file method LOC
aries 542 1,582 2,027 4,717 264,364

mahout 494 2,042 1,181 5,077 172,146
derby 1,604 4,966 2,764 18,568 1,207,970

cassandra 3,408 11,283 2,068 8,046 448,317
total 6,048 19,873 8,040 36,408 2,092,797

builds a method graph from Figure 2b, a subgraph of the method
graph is identical with the bug signature in Figure 2a. As a result,
other tools (e.g., CBCD) cannot detect this bug, since such tools
require identical code snippets.

4 EVALUATION

In this section, we present our research questions (Section 4.1),
our data set (Section 4.2), and our results (Sections 4.3 to 4.7).

4.1 Research Question
In our evaluation, we explore the following research questions:
(RQ1) How effectively does DEPA detect bugs in the latest

releases of real projects (Section 4.3)?
(RQ2) To what degree is DEPA complementary to static tools

such Findbugs and PMD (Section 4.4)?
(RQ3) To what degree does DEPA improve the idea of detecting

clones of buggy snippets as bugs (Section 4.5)
(RQ4) What is the impact of our filtering techniques on detecting

bugs (Section 4.6)?
(RQ5) How does the size parameter influence the effective of

DEPA (Section 4.7)?
RQ1 concerns the overall effectiveness of DEPA. From four

popular open source projects, DEPA detected 65 previously un-
known bugs (27 are unique) and 38 known bugs in total.

RQ2 concerns the significance of our inferred bug signatures
(i.e., whether existing tools already defined their corresponding
rule patterns). Our results show that the two state-of-the-art tools
(Findbugs and PMD) defines only two of our detected bugs, and
they missed all the other our detected bugs.

RQ3 concerns the improvement over detecting clones of buggy
snippets as bugs. We used the combination of CCFinderSW and
git diff to compare buggy files and source files as we did in
RQ1. Although the combined approach detected several bugs, its
effectiveness is much poorer than DEPA.

RQ4 concerns the impact of our filters and our precision. Our
results show that our filtering techniques improved the precision
from 25.5% to 51.5%. We believe this is an acceptable rate, as a
study [18] in Google shows that tools with averagely 8% (for high
priority bugs, before prioritization) or 36% (for high priority bugs,
after prioritization [46]) can be practically very useful.

RQ5 concerns the impact of our size parameter. Our results
show that four is the empirical best value. In the other RQs, we
set the parameter as four.

4.2 Dataset
The eGit [4] tool is an open source Eclipse plugin that supports Git
version control system. We extend the eGit tool to extract com-
mits. Each commit has a message. For example, in the e424950
commit of aries has a message, “[ARIES-788] Possible NPE
when destroying the extender”. As most Apache projects carefully

write issue number to commit messages [94], our extended eGit
extracts such issue number from commit messages (“ARIES-788”
in this example). We implemented a web crawler to extract issue
trackers. The web crawler is based on XPath [21], which is easy to
customized according to the different styles of reported issues. For
each commit, our extended eGit compares its issue number with
reported issues to determine whether it is a bug fix. If a commit
is confirmed as a bug fix, our extended eGit checks out its buggy
files and fixed files, and stores them into two separate directories.

Table 2 shows the subjects. Column “Past fix” lists our col-
lected past fixes. For this column, Subcolumn “fix” lists number of
fixes, and Subcolumn “method” lists number of modified method
pairs. From each pair, DEPA tries to extract a bug signature.
Column “The latest version” lists the latest versions of these
projects. We check out these versions from the Apache Git [6].
For this column, Subcolumn “file” lists number of source files;
Subcolumn “method” lists number of methods; and Subcolumn
“LOC” lists lines of code. We checked out the past fixes and the
trunks in March, 2017.

In total, we analyzed 6,048 bug fixes, which are already much
more than what the prior approaches did, and it is feasible to
collect more subjects. Tian et al. [84] and Wu et al. [90] propose
approaches that identify bug fixes even if issue numbers are not
written to commit messages. Their approaches allow extracting
bug fixes from more sources than Apache projects (e.g., Linux).
However, as their approaches can identify false bug fixes, it will
take extra effort to manually identify true bug fixes.

4.3 RQ1. Overall Effectiveness

4.3.1 Setting

For each project in Table 2, we used DEPA to infer bug signatures
from its past fixes, and to detect bugs in its latest version. For
each method, DEPA produced a list of suspected bugs. For each
project, we merged the output of all its methods, and inspected
the list to identify bugs. Furthermore, we analyzed their types and
distribution. We use precisions as our measurement, but do not
calculate recalls, since it is infeasible to identify all the bugs of
real code. We inspected only the top 50 bugs, because developers
usually inspect only the most severe warnings reported by bug
detection tools [18]. A bug has a buggy location in the source file
and a bug signature. We follow the following protocol to determine
whether the location is a true bug. First, we compare the buggy file
and the fixed file of the bug signature, and locate the modification
of the bug signature. Second, we inspect the modification to learn
whether it fixes a bug. If they have bug reports, we further read
their bug reports to deepen our understanding on this modification.
This step removes superficial modifications that do not fix bugs.
If we determine a modification fixes a bug, we analyze whether
buggy location has similar problems and whether the modification
applies on the buggy location. If they do, we determine the buggy
location as a true bug. We list the source files of our true bugs in
Section 4.3.2, and we report some bugs to their developers.

In this research question, we use Apache projects as our
subjects. As Apache projects are real code and under careful main-
tenance, their bugs are limited. As DEPA learns bug signatures
from past fixes, it mainly detects recurring bugs. It is already
noteworthy that a real project can have up to 50 recurring bugs.
As a result, inspecting more bugs can lead to more false positives,
but we believe that this is a nature of bugs.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 3: Overall effectiveness.
Project UB UUB KB S SD Precision
aries 18 8 3 16 13 42.0%

mahout 13 5 19 2 16 64.0%
derby 17 5 12 12 9 58.0%

cassandra 17 9 4 8 21 42.0%
total 65 27 38 38 59 51.5%

UB: previously unknown bug; UUB: unique UBs; KB: known bug; S:
similar but not bugs; DS: dissimilar and not bugs.
Precision = UB+KB

UB+KB+S+DS
.

TABLE 4: The results with filters off.
Project UB UUB KB S DS Precision
aries 13 6 5 30 2 36.0%

mahout 2 2 10 38 0 24.0%
derby 3 2 6 41 0 18.0%

cassandra 2 2 10 37 1 24.0%
total 20 12 31 146 3 24.5%

4.3.2 Result

Table 3 shows the overall result. Section 2 introduces a bug
in the BlueprintURLContext.java. Besides this file, DEPA

detected the same bug in three other files. In Column “UB”, we
count the above files as four previously unknown bugs, and in
Column “UUB”, we count them as a unique bug. In total, DEPA

detected 65 previously unknown bugs (27 are unique) and 38
known bugs.

The bug in Section 2 throws wrong exceptions. We investi-
gated our detected bugs, and found bugs with more symptoms:

1) Wrong method calls. We find that programmers can call
wrong methods. For example, we reported ARIES-1703,
since a method has the following code:

1 Map<String, Object> result = new HashMap<String,
Object>(...);

2 result.put(NAMESPACE, clause.getPath());
3 result.put(ATTRIBUTE_BUNDLE_VERSION, version.getValue

()};

The last line calls the getValue() method to get the
version. The method call is wrong, since the correct method
is getVersion(). DEPA detected this bug, since a past bug,
ARIES-1453, fixed a similar problem.

2) Wrong API calls. We find that programmers sometimes call
wrong APIs. For example, in ARIES-1705, we reported that
a method can use a wrong API class, ArrayList, to store
bundles. DEPA detected this bug, since in a past bug (ARIES-
464), programmers fixed a similar bug in another method:

1 _logger.debug(LOG_ENTRY, "...", new Object[]{content
});

2 - List<ImportedBundle> result = new ArrayList<
ImportedBundle>();

3 + Set<ImportedBundle> result = new HashSet<
ImportedBundle>();

In the above fix, ArrayList is replaced with Hashset to
remove redundant bundles, since the latter API class does not
store duplicated items.

3) Overflow. We find that it can cause overflow, if an incor-
rect type is used to store return values. For example, in
MAHOUT-1958, we reported that the following code can
overflow:

1 int preferring2 = dataModel.
getNumUsersWithPreferenceFor(...);

2 int intersection = dataModel.
getNumUsersWithPreferenceFor(...);

5 10 15 20 25 30 35 40 45 50
found bug

aries

mhout

derby

cassandra

unknown bug

known bug

similar

disimilar

Fig. 4: The distribution of detected bugs

Both statements assign return long values to int vari-
ables. DEPA detected the bug, since a similar previous bug,
MAHOUT-738, occurs in another source file.

4) Unfinished migration. We find that programmers can fail
to update all call sites, when they upgrade to new APIs.
For example, in MAHOUT-1427, programmers start migrat-
ing from old APIs to new ones. For example, in several
files, the MultipleOutputs class was replaced to its new
version. However, DEPA detected that in other files such
as MatrixMultiplicationJob, these APIs are not mi-
grated. We reported this issue in MAHOUT-1961.

5) Resource leak. We find that programmers can leave excep-
tions unhandled. For example, in DERBY-6927, we reported
the following buggy code:
1 ResultSet rs = conn.getMetaData().getSchemas();
2 boolean schemaFound = false;
3 while (rs.next() && !schemaFound)
4 schemaFound = schemaName.equals(rs.getString("

TABLE_SCHEM"));
5 s.close();

In the above code, if the iteration throws exceptions, the
ResultSet will never be closed. Indeed, a previous bug
(DERBY-6297) is similar. The patch is as follow:
1 boolean found=false;
2 ResultSet result = conn.getMetaData().getSchemas();
3 +try{
4 while(result.next()){
5 if(result.getString(1).equals(schema)){
6 found=true;
7 break; }}
8 +} finally { result.close();}
9 return found;

Although the above buggy code is different from our reported
code, DEPA detected this bug, since their method graphs are
similar.

6) Less-optimized code. In ARIES-1730, we reported that the
following code is less optimized:
1 }finally{
2 if(inputStream != null){
3 try{
4 inputStream.close();
5 }catch(IOException ioe){}}}

Programmers have implemented the IOUtils.close
method to handle unclosed resources in finally causes.
DEPA detected this bug, since a previous bug, ARIES-622,
fixed a similar problem.
DEPA also detected known bugs. For example, in DERBY-
6946, we find a wrong check:
1 if(rows < 0||(this.getMaxRows()!=0&&rows>this.

getMaxRows())){ throw newSQLException(...) }

Its correct code shall be:
1 if(rows < 0){
2 throw newSQLException(...) }

DEPA detected the above bug, since DERBY-3573 fixed a sim-
ilar bug. However, after we reported the bug, their programmers
told us that the latest code has fixed the bug already. We notice

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

5 10 15 20 25bugs

Findbugs

PMD

detected

failed

Fig. 5: The results of Findbugs and PMD

that most previous approaches conduct their evaluations on known
bugs. For example, Sun and Khoo [82] conduct their evaluation
on the Siemens benchmark. In the benchmark, all bugs are known,
and their test cases are available. Although detecting known bugs
can show the effectiveness of a proposed approach, programmers
may be less interested in detecting known bugs, since they have
been already repaired in the latest versions. We notice that the
repairs of a bug can be similar. As a result, it may be feasible to
filter known bugs, if we further compare such suspicious locations
with SDGs of fixed code. We plan to explore this issue in our
future work.

In Table 3, Column “S” lists false alarms that are similar to
bug signatures. For example, we find that a bug signature is mined
from the JavaDriverClient.connect method:
1 - ... clusterBuilder = Cluster.builder().addContactPoint
2 (host).withPort(port);
3 + ... clusterBuilder = Cluster.builder().addContactPoint
4 (host).withPort(port).withoutMetrics();
5 with conflict with our version.

As the comment says, the modified code is legal, but the
withoutMetrics() method has to be added to handle a conflict
issue in the driver. As only the driver has the issue, the inferred
bug signature introduces false alarms.

Column “SD” lists false alarms that are related to subtle
instances. Two pieces of code can have a low distance value, but
their subtle differences determine that they are dissimilar.

Column “Precision” shows our precision:

precision =
UB +KB

UB +KB + S +DS
(4)

Our precision values over the four projects are largely con-
sistent. Figure 4 shows the distribution of detected bugs. Its
horizontal axis shows detected bugs, in an increasing order of
distances that are calculated by Equation 3. Its vertical axis shows
projects. The distribution shows that it is feasible to further reduce
false alarms, if we focus on those top items. It is worth exploring
more advanced techniques to reduce false alarms. We further
discuss this issue in Section 7.

In summary, DEPA detected various types of bugs from all
the four projects, and its false alarms are already sufficiently low.
While the prior approaches (e.g., [82]) detected only known bugs
from benchmarks, DEPA detected both known and previously
unknown bugs from real projects. Huang et al. [37] claim that
a useful tool shall present true bugs at the top, and shall allow
critical programmers to inspect the remaining bugs. DEPA satisfies
this criterion, since Figure 4 shows that most true bugs are ranked
at the top.

4.4 RQ2. Complementing Findbugs and PMD
4.4.1 Setting
We used two state-of-the-art tools Findbugs and PMD, to detect
bugs for the latest versions of the projects as listed in Table 2,
and checked their reported suspicious bugs. We chose these two
tools as they are the state-of-the-art static tools and support a large
variety of known bug patterns. This research question analyzed
whether their predefined rules cover our inferred bug signatures.

4.4.2 Result

Figure 5 shows that PMD and Findbugs in total detected only two
of our found bugs (i.e., ARIES-1730 and DERBY-6927). Both are
related to leaked database resources. The two tools failed to detect
more bugs due to two reasons:
1. Insufficient API rules. Due to the obstacles of learning
APIs [74], programmers can introduce API-related bugs [94]. For
example, as the methods in Figure 2 can return null values,
programmers cannot call them in a method call chain. Findbugs
and PMD fail to detect this bug, since they do not define this rule
nor analyze API code.
2. Insufficient domain knowledge. Findbugs and PMD list their
predefined rules [7], [8]. Among these rules, we did not find any
rules that are project specific. As a result, both tools fail to detect
some bugs (e.g., ARIES-1703 in Section 4.3.2), if it needs domain
knowledge to detect such bugs.

The bug signatures inferred by DEPA can improve Findbugs
and PMD. It is also interesting to compare DEPA directly with
the prior approaches [36], [82], but we must manually repair all
the compilation errors of bug fixes, since such tools require code
without compilation errors. As most buggy versions and fixed
versions have compilation errors after they are checked out, we
cannot afford the huge effort. As their compilation errors are
not removed, the prior approaches can analyze only several bug
fixes that have no compilation errors. DEPA enables us to analyze
thousands of bug fixes, without repairing their compilation errors.
Indeed, saving the effort is a benefit of DEPA.

4.5 RQ3. The Effectiveness of CCFinderSW and Diff

4.5.1 Setting

Code clones are similar code fragments [76]. Section 4.3.2 shows
that the fragments of our found bugs are similar to the ones of
past buggy files. The similar fragments can be considered as code
clones between the past bug files and the current source files.
Even if a source file has bugs, most of its code lines are clean. As
a result, if we directly feed bug files to a clone detection tool, it
will detect many clones of clean code lines. Although this is not
a limitation of clone detection, it makes the detection of bugs less
effective. To handle the problem, we extract modified snippets
from bug fixes, with the support of git diff [14]. After that,
we use a clone detection tool, CCFinderSW [79], to detect clones
between the modified snippets and the current source files. Here,
we select CCFinderSW, because it is an extended version of a
famous clone detection tool called CCFinder [42] and it is open
source on Github [13]. For simplicity, we call the combination of
CCFinderSW and git diff as the combined approach. A few
recent clone detection tools [34], [40] can detect clones across
versions. We did not select these tools, because they are not
designed to detect bugs. It needs even more modifications on them
to detect bugs, but they are not open source.

As clone detection is expensive, it is unaffordable to analyze
all bug fixes. In this research question, we analyze only the latest
1,000 bug fixes from each project. We accept the default settings
of CCFinderSW, and set the tool to detect clone sets. To build
the links from buggy files to the latest source files, we require
that each clone set contains at least a fragment from buggy files
and a fragment from source files. If a clone set satisfies the above
criterion, we call it as a valid clone set. CCFinderSW generates an
identification number for a clone set, and saves clone sets in the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

5 10 15 20 25 30 35 40 45
found bug

aries

mahout

derby

cassandra known bug

similar

dissimilar

no data

Fig. 6: The distribution of detected code clones

ascending order of identification numbers. For each project, we
also manually inspect the top 50 clone sets to detect bugs.

4.5.2 Result
Figure 6 shows the results. Its labels are of the same meanings with
Figure 4. The new label, “no data”, denotes that no valid clone set
is found. Figure 4 shows that the combined approach detected
fewer than 50 suspicious bugs for Aris, Derby, and Cassandra. In
particular, it detected only 7 valid clone sets for Cassandra. DEPA

compares bug signatures with source files to detect bugs. Although
it looks similar to clone detection, the comparison is applied on
method graphs and Equation 3 is much more relaxed than the
similarities that are defined in clone detection tools. As a result,
the combined approach detected fewer valid clone sets. Mahout is
an exception. After inspecting its clone sets, we find that most of
them are method call chains to initialize parameters:
1 Option dataSourceOpt = obuilder.withLongName("dataSource"

).withRequired(
2 true).withArgument(
3 abuilder.withName("dataSource").withMinimum(1).

withMaximum(1).create())

These initializers appear in most source files, and are likely to be
detected as clones. However, we found that none indicates a bug.

As shown in Figure 6, the combined approach detected many
false alarms. Section 3.1.4 illustrates six categories of false alarms
where similar code snippets are not bugs. Besides sharing the same
categories, the combined approach suffers from two other prob-
lems such as trivial modifications and clean lines. For example, a
modification is as follows:
1 -
2 +
3 Text keyT = new Text(key);
4 Text valueT = new Text(value);
5 currentChunkSize += keyT.getBytes().length + valueT.

getBytes().length; //
Overhead

6 writer.append(keyT, valueT);

The top two lines delete an invisible tabularor, and the following
lines are clean. The combined approach detected clones for the
clean lines, but such clones are not bugs.

Although it can still detect several bugs, the effectiveness of
the combined approach is much poorer than that of DEPA.

4.6 RQ4. The Impact of Filtering Technique
4.6.1 Setting
We rerun RQ1 with all filters off. After all the data are collected,
we rebuild the table of found bugs, and the figure of bug distribu-
tion. This setting has two purposes. First, we compare its results
with the results in Table 3 and Figure 4. This comparison reveals
the impact of our filters. Second, we compare its results with the
results in Figure 6. This comparison reveals the impacts of our
inference and detection techniques. Compared with the combined
approach in Section 4.5, DEPA locates modified code snippets
by matching graphs, its identified modified code snippets shall

5 10 15 20 25 30 35 40 45 50
found bug

aries

mahout

derby

cassandra

unknown bug

known bug

similar

dissimilar

Fig. 7: The distribution of detected bugs with filters off

be more accurate than matching texts. In addition, as DEPA uses
the Hungarian algorithm to find similar graphs, it can detect code
clone with differences. Roy et al. [76] show that clone detection
tools are typically less effective to detect such clones.

4.6.2 Result
Table 4 shows the results, when we turn off all our filters. Without
filters, DEPA detected about one third of previously unknown
bugs; one half of unique previously unknown bugs; but most
of known bugs. Our filters increase the capability of detecting
previously unknown bugs.

Without filters, DEPA produces more false alarms, which
are similar to bug signatures but not bugs. Figure 7 shows the
distribution. The results show that many false bugs are ranked
at the top. Intuitively, a better result leads to a darker figure.
Comparing Figure 4 with Figure 7, we find that our filters remove
many light gray items, so the figure becomes darker. Our results
show that our filtering techniques improve the precision from
25.5% to 51.5%. As references, Kim and Ernst [46] finds that the
after their improvements, the precision of Findbugs is around 36%;
and Legunsen et al. [51] report that when they use mined specs
to detect bugs, their precision is 17.2%. Although these precisions
may not be directly compared due to different settings (e.g., their
different inputs.), they show that our precision is acceptable as
tools like Findbugs have been widely adopted in practice.

Although removing filters reduces its effectiveness, with filters
off, DEPA still detected much more bugs and reported fewer false
alarms than those of the combined approach in Section 4.5.2. The
inference technique of DEPA does not suffer from trivial changes
and clean lines. From the trivial modification in Section 4.5.2,
DEPA inferred no bug signature, in that no method was modified.

In summary, blindly identifying similar code clones can lead
to many false positives, and the high ratio of false positives is also
notorious in other bug detection tools [41]. Our results show that
filtering is a practical way to reduce false positives, but we do not
claim that this is a perfect solution to this problem. We further
discuss this issue in Section 5.

4.7 RQ5. The Best Size Parameter
4.7.1 Setting
We rerun RQ1, and change the size parameter from two to ten. We
analyze their trends of detected bugs to analyze the impact of the
size parameter.

4.7.2 Result
As introduced in Section 3.1.3, DEPA has a size parameter that
determines the number of nodes inside a bug signature. We rerun
RQ1 with different size parameters, and Figure 8 shows the results.
Its horizontal axis shows size parameters. The vertical axis shows
detected unknown bugs and known bugs. For this parameter, we
tried the values from two to ten. Here, it is worth mentioning that
the size parameter does not filter bug signatures that call fewer
methods than a defined size parameter, as explained in Section 3.1.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

2 3 4 5 6 7 8 9 10

size

0

5

10

15

20

nu
m

be
r

unknown bug
known bug

Fig. 8: The impact of the size parameter

For example, the buggy code in Figure 1a calls only three methods.
Even with a larger size parameter, its inferred bug signature
calls only three methods. However, from other methods that call
more methods, it is possible to include unnecessary methods into
inferred bug signatures with a larger parameter. In the contrast,
a smaller size parameter can lose details of bug signatures. A
recent study [92] shows that API usages are typically short, but
too fewer nodes may not describe adequate contexts of an API
usage. Empirically, our results show that four is the best value for
the size parameter.

4.8 Threats to Validity
The external threats to validity include that our findings may be not
fully general due to limited subjects. The threat could be reduced
by introducing more subjects in future work. The internal threats
to validity include the human factors in our study. To reduce the
threat, we submit our found bugs to their developers, and other
researchers can examine our reported bugs, since our reported bugs
are all online. To further reduce the threat, we could invite more
participants to verify our results in future work.

5 DISCUSSION AND FUTURE WORK

Reducing false alarms. The prior studies [27], [41] show that
programmers are concerned about false alarms in static bug detec-
tion tools. Although our filters have reduced many false alarms,
some other ways can also reduce false alarms: (1) the false alarms
of static analysis can be removed by dynamic analysis [51], [59]
and model checkers [47], and (2) with active learning [80], it can
be feasible to use the feedbacks of programmers to remove false
alarms. In future work, we plan to explore the above directions.
Inferring context-aware bug signatures. A usage can be associ-
ated to a requirement, and is illegal only under specific contexts.
Inferring context-aware bug signatures needs a deep understanding
on the symptoms and causes of bugs. For a given bug, researchers
have proposed various approaches to debug its symptoms [56] and
causes [86], [91], which we plan to integrate in future work.
Repairing our detected bugs. DEPA detects bugs with past
fixes. As a bug fix presents a way to repair a bug, it presents
an example to repair a newly found bug. Meng et al. [62], [63]
systematically locate and apply edits based on a given example of
modifications. After we identify bugs, their tool can further learn
and apply edits from corresponding bug fixes. In addition, Xuan
et al. [50] boost automatic program repair with past bug fixes, and
Mechtaev et al. [61] propose to repair bugs based on a reference
implementation. In future work, we plan to analyze to what degree
these approaches can handle real bugs.

6 RELATED WORK

Inferring bug signatures. Hsu et al. [36] mine bug signature from
sequences, but others [24], [53], [70], [82], [97] mine bug signa-
tures from graph representation of code. While the majorities [36],

[53], [82], [97] analyze execution traces, a few approaches [53]
analyze source files of bugs. Hsu et al. [36] and Sun and Khoo [82]
use frequency-based mining; Li and Ernst [53] extract subgraphs;
and Cheng et al. [24] use discriminative graph mining. Kim
et. al. [43] proposed techniques to mine patching patterns from
historical bug fixes for automatic bug repair. Due to various
limitations, no previous approaches can analyze large scale bug
fixes. It is nontrivial to integrate these tools with GRAPA, because
GRAPA must modify their source files. For example, CBCD [53]
is built on CodeSurfer, and as CodeSurfer is a commercial tool,
it is infeasible to modify its code. Even if CBCD is boosted to
analyze partial programs, it is ineffective to detect bugs with past
fixes. From the descriptions of CBCD, we find that it detects only
identical code snippets, and the authors of the CBCD paper [53]
argue that code with minor differences are not clones. As a result,
it is unlikely that CBCD can detect our found bugs (e.g., the one
in Figure 2b). DEPA compliment the above limitations. Huang
et al. [38] mine unsafe API calls that lead to crashes. Their
approaches need test inputs and compiled code, which are not
required by our approach.
Clone detection and its management. Clone detection [75]
is a hot research topic. In the literature, researchers [19], [42],
[78], [89] have proposed various approaches to detect clones,
and their effectiveness is carefully compared [20], [83]. DEPA

detects similar code across versions, but clone detection tools
locate similar code at present. Duala-Ekoko et al. [30] propose
an approach that tracks the evolutionary clones. Nguyen et al.
[65] propose an approach that records the modifications on an
AST, and applies recorded modifications on its code clone. Lin et
al. [55] propose an approach that integrates cloned code with the
current programming context. Cheng et al. [26] extract mappings
between code clones and synchronize code clones with extracted
mappings. Cheng et al. [25] detect cross-language clones. Kim et
al. [45] show that most clones become less similar during their
evolution. Their result shows that the mappings of clones change
over time. As a result, it is difficult to prevent bugs that are related
to clones. Although our approach is not limited to detect bugs in
clones, it provides a treatment for bugs that are introduced during
clone evaluation.
Mining specifications. Ammons et al. [16] mine automata for
APIs. Some researchers [58], [68] refine their approach, and
others [66], [67], [96] mine graphs as specs. Robillard et al. [73]
show that automata and graphs are equivalent. The research in
this line can be reduced to the grammar inference problem,
and can be solved by corresponding techniques (e.g., the k-tail
algorithm [22]). Li and Zhou [54] extract method pairs, and other
researchers [77] improve their approach in more complicated
contexts. Engler et al. [31] extract frequent call sequences, and
other researchers [72], [88] improve their approach with more
advanced techniques. Furthermore, researchers [52], [60] encode
mined sequences as temporal logic. The research in this line can be
reduced to sequence mining [15]. All the above approaches con-
cern call sequences. Ernst et al. [32] infer invariants to define rules
for variables. Researchers [49] combine sequences and invariants
for more informative specs, and other researchers [29], [71] use
test cases to enrich mined specs. Marc and David [23] mine
performance models from runtime traces. Zhong and Mei [92]
conduct an empirical study to analyze several open questions
for the research line. The above approaches mine legal usages.
Although this setting does not apply for us, it can be feasible to
borrow their ideas for future improvements.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

7 CONCLUSION

Researchers have explored detecting bugs based on mined knowl-
edge from known bugs. Although their initial results are positive,
to the best of our knowledge, no previously unknown bugs were
ever detected, due to the challenges of large-scale analysis of bug
fixes and selection of proper abstraction levels for bug signatures.
In this paper, we propose DEPA that overcomes the challenges.
We use DEPA to mine bug signatures from thousands of bug fixes
in four popular open source projects. Our results show that DEPA

detects 65 bugs that are both previously known (38) or unknown
(27) for the four subjects with reasonable precision (51.5%).

REFERENCES

[1] Cassandra. http://cassandra.apache.org, 2019.
[2] CASSANDRA-11448. https://issues.apache.org/jira/browse/

CASSANDRA-11448, 2019.
[3] CASSANDRA-13692. https://issues.apache.org/jira/browse/

CASSANDRA-13692, 2019.
[4] eGit. http://www.eclipse.org/egit/, 2019.
[5] Handling disk failures in Cassandra. https://www.datastax.com/dev/blog/

handling-disk-failures-in-cassandra-1-2, 2019.
[6] The Apache Git. https://git.apache.org/, 2019.
[7] The bug description of FindBugs. http://findbugs.sourceforge.net/

bugDescriptions.html, 2019.
[8] The git-diff command. https://pmd.github.io/pmd-5.8.1/pmd-java/rules/

index.html, 2019.
[9] The Levenshtein distance. https://en.wikipedia.org/wiki/Levenshtein

distance, 2019.
[10] The manual of WALA. https://github.com/wala/WALA/wiki/

Intermediate-Representation-(IR), 2019.
[11] The replicate package of “There and Back Again: Can you Compile

that Snapshot?”. http://www.cs.wm.edu/semeru/data/breaking-changes,
2019.

[12] WALA. http://wala.sf.net, 2019.
[13] CCFinderSW. https://github.com/YuichiSemura/CCFinderSW, 2020.
[14] The rulesets of PMD. https://git-scm.com/docs/git-diff, 2020.
[15] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. ICDE,

pages 3–14, 1995.
[16] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In Proc.

29th POPL, pages 4–16, 2002.
[17] J. Andersen, A. C. Nguyen, D. Lo, J. L. Lawall, and S. C. Khoo. Semantic

patch inference. In Proc. ASE, pages 382–385, 2012.
[18] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh.

Using static analysis to find bugs. IEEE Software, 25(5):22–29, 2008.
[19] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone

detection using abstract syntax trees. In Proc. ICSM, pages 368–377,
1998.

[20] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison
and evaluation of clone detection tools. IEEE Transactions on software
engineering, 33(9), 2007.

[21] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie,
and J. Siméon. Xml path language (xpath). World Wide Web Consortium
(W3C), 2003.

[22] A. W. Biermann and J. A. Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transactions on
Computers, 100(6):592–597, 1972.

[23] M. Brünink and D. S. Rosenblum. Mining performance specifications.
In Proc. ESEC/FSE, pages 39–49, 2016.

[24] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan. Identifying bug
signatures using discriminative graph mining. In Proc. ISSTA, pages
141–152, 2009.

[25] X. Cheng, Z. Peng, L. Jiang, H. Zhong, H. Yu, and J. Zhao. Mining
revision histories to detect cross-language clones without intermediates.
In Proc. ASE, pages 696–701, 2016.

[26] X. Cheng, H. Zhong, Y. Chen, Z. Hu, and J. Zhao. Rule-directed code
clone synchronization. In Proc. ICPC, pages 1–10, 2016.

[27] M. Christakis and C. Bird. What developers want and need from program
analysis: an empirical study. In Proc. ICSE, pages 332–343, 2016.

[28] B. Dagenais and L. J. Hendren. Enabling static analysis for partial Java
programs. In Proc. OOPSLA, pages 313–328, 2008.

[29] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating
test cases for specification mining. In Proc. ISSTA, pages 85–96, 2010.

[30] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in evolving
software. In Proc. ICSE, pages 158–167, 2007.

[31] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
inconsistent behavior: A general approach to inferring errors in systems
code. In Proc. 18th SOSP, pages 57–72, 2001.

[32] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1-3):35–45,
2007.

[33] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall. Change distilling: Tree
differencing for fine-grained source code change extraction. Transactions
on Software Engineering, 33(11):725–743, 2007.

[34] N. Göde and R. Koschke. Incremental clone detection. In Proc. CSMR,
pages 219–228, 2009.

[35] D. Hovemeyer and W. Pugh. Finding bugs is easy. In OOPSLA, pages
132–136, 2004.

[36] H.-Y. Hsu, J. A. Jones, and A. Orso. Rapid: Identifying bug signatures
to support debugging activities. In Proc. ASE, pages 439–442, 2008.

[37] Q. Huang, X. Xia, and D. Lo. Supervised vs unsupervised models:
A holistic look at effort-aware just-in-time defect prediction. In Proc.
ICSME, pages 159–170, 2017.

[38] S. Huang, J. Guo, S. Li, X. Li, Y. Qi, K. Chow, and J. Huang. Safecheck:
Safety enhancement of Java unsafe API. In Proc. ICSE, page to appear,
2019.

[39] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow-and controlflow-based test adequacy criteria. In
Proc. ICSE, pages 191–200, 1994.

[40] J. Jang, A. Agrawal, and D. Brumley. Redebug: Finding unpatched code
clones in entire OS distributions. In Proc. S&P, pages 48–62, 2012.

[41] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In Proc. ICSE,
pages 672–681, 2013.

[42] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE
Transactions on Software Engineering, 28(7):654–670, 2002.

[43] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned
from human-written patches. In Proc. icse, pages 802–811, 2013.

[44] M. Kim, D. Notkin, and D. Grossman. Automatic inference of structural
changes for matching across program versions. In Proc. ICSE, pages
333–343, 2007.

[45] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of
code clone genealogies. In Proc. ESEC/FSE, pages 187–196, 2005.

[46] S. Kim and M. D. Ernst. Which warnings should I fix first? In Proc.
ESEC/FSE, pages 45–54, 2007.

[47] Y. Kim, J. Lee, H. Han, and K.-M. Choe. Filtering false alarms of
buffer overflow analysis using smt solvers. Information and Software
Technology, 52(2):210–219, 2010.

[48] H. W. Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[49] T. Le, X. Le, D. Lo, and I. Beschastnikh. Synergizing specification
miners through model fissions and fusions. In Proc. ASE, pages 115–
125, 2015.

[50] X. B. D. Le, D. Lo, and C. Le Goues. History driven program repair. In
Proc. SANER, pages 213–224, 2016.

[51] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov. How good
are the specs? a study of the bug-finding effectiveness of existing Java
API specifications. In Proc. ASE, pages 602–613, 2016.

[52] C. Lemieux, D. Park, and I. Beschastnikh. General LTL specification
mining. In Proc. ASE, pages 81–92, 2015.

[53] J. Li and M. D. Ernst. CBCD: Cloned buggy code detector. In Proc.
ICSE, pages 310–320, 2012.

[54] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit pro-
gramming rules and detecting violations in large software code. In Proc.
ESEC/FSE, pages 306–315, 2005.

[55] Y. Lin, X. Peng, Z. Xing, D. Zheng, and W. Zhao. Clone-based
and interactive recommendation for modifying pasted code. In Proc.
ESEC/FSE, pages 520–531, 2015.

[56] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong. Feedback-based debugging.
In Proc. ICSE, pages 393–403, 2017.

[57] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java virtual
machine specification. Pearson Education, 2014.

[58] L. M. Lo, David and M. Pezzè. Automatic steering of behavioral model
inference. In Proc. ESEC/FSE, pages 345–354, 2009.

[59] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
MUVI: automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. In Proc. SOSP, pages
103–116, 2007.

[60] S. Maoz and J. O. Ringert. GR(1) synthesis for LTL specification
patterns. In Proc. ESEC/FSE, pages 96–106, 2015.

http://cassandra.apache.org
https://issues.apache.org/jira/browse/CASSANDRA-11448
https://issues.apache.org/jira/browse/CASSANDRA-11448
https://issues.apache.org/jira/browse/CASSANDRA-13692
https://issues.apache.org/jira/browse/CASSANDRA-13692
http://www.eclipse.org/egit/
https://www.datastax.com/dev/blog/handling-disk-failures-in-cassandra-1-2
https://www.datastax.com/dev/blog/handling-disk-failures-in-cassandra-1-2
https://git.apache.org/
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)
https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)
http://www.cs.wm.edu/semeru/data/breaking-changes
http://wala.sf.net
https://github.com/YuichiSemura/CCFinderSW
https://git-scm.com/docs/git-diff

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[61] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roychoud-
hury. Semantic program repair using a reference implementation. In
Proc. ICSE, pages 129–139, 2018.

[62] N. Meng, M. Kim, and K. S. McKinley. Systematic editing: generating
program transformations from an example. In Proc. PLDI, pages 329–
342, 2011.

[63] N. Meng, M. Kim, and K. S. McKinley. Lase: Locating and applying
systematic edits by learning from examples. In Proceedings of the
2013 International Conference on Software Engineering, pages 502–511,
2013.

[64] J. Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):32–
38, 1957.

[65] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen. Clone management for evolving software. IEEE Transactions
on Software Engineering, 38(5):1008–1026, 2012.

[66] H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen.
Mining interprocedural, data-oriented usage patterns in JavaScript web
applications. In Proc. ICSE, pages 791–802, 2014.

[67] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen. Graph-based mining of multiple object usage patterns. In Proc.
ESEC/FSE, pages 383–392, 2009.

[68] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar.
Inferring method specifications from natural language API descriptions.
In Proc. ICSE, pages 815–825, 2012.

[69] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro.
TESSERACT : Eliminating experimental bias in malware classifica-
tion across space and time. In Proc. USENIX Security, pages 729–746,
2019.

[70] N. H. Pham, T. T. Nguyen, H. A. Nguyen, X. Wang, A. T. Nguyen, and
T. N. Nguyen. Detecting recurring and similar software vulnerabilities.
In Proc. ICSE, volume 2, pages 227–230, 2010.

[71] M. Pradel and T. R. Gross. Leveraging test generation and specification
mining for automated bug detection without false positives. In Proc.
ICSE, pages 288–298, 2012.

[72] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive
inference of function precedence protocols. In Proc. ICSE, pages 240–
250, 2007.

[73] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.
Automated API property inference techniques. IEEE Transactions on
Software Engineering, 39(5):613–637, 2013.

[74] M. P. Robillard and R. DeLine. A field study of API learning obstacles.
Empirical Software Engineering, 16(6):703–732, 2011.

[75] C. K. Roy and J. R. Cordy. A survey on software clone detection research.
Technical report, 2007.

[76] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of computer programming, 74(7):470–495, 2009.

[77] A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining multi-level
API usage patterns. In Proc. SANER, pages 23–32, 2015.

[78] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes. Sourcer-
erCC: scaling code clone detection to big-code. In Proc. ICSE, pages
1157–1168, 2016.

[79] Y. Semura, N. Yoshida, E. Choi, and K. Inoue. CCFinderSW: Clone
detection tool with flexible multilingual tokenization. In Proc. APSEC,
pages 654–659, 2017.

[80] B. Settles. Active learning literature survey. Technical report, University
of Wisconsin-Madison Department of Computer Sciences, 2009.

[81] L. Shi, H. Zhong, T. Xie, and M. Li. An empirical study on evolution of
API documentation. In Proc. FASE, pages 416–431, 2011.

[82] C. Sun and S.-C. Khoo. Mining succinct predicated bug signatures. In
Proc. ESEC/FSE, pages 576–586, 2013.

[83] J. Svajlenko and C. K. Roy. Evaluating clone detection tools with
bigclonebench. In Proc. ICSME, pages 131–140, 2015.

[84] Y. Tian, J. Lawall, and D. Lo. Identifying linux bug fixing patches. In
Proc. ICSE, pages 386–396, 2012.

[85] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk. There and back again: Can you compile that
snapshot? Journal of Software: Evolution and Process, 29(4), 2017.

[86] H. Wang, Y. Lin, Z. Yang, J. Sun, Y. Liu, J. S. Dong, Q. Zheng, and
T. Liu. Explaining regressions via alignment slicing and mending. IEEE
Transactions on Software Engineering, 2019.

[87] Y. Wang, N. Meng, and H. Zhong. An empirical study of multi-entity
changes in real bug fixes. In Proc. ICSME, pages 287–298, 2018.

[88] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage
anomalies. In Proc. ESEC/FSE, pages 35–44, 2007.

[89] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning
code fragments for code clone detection. In Proc. ASE, pages 87–98,
2016.

[90] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering links
between bugs and changes. In Proc. ESEC/FSE, pages 15–25, 2011.

[91] Z. Xu, S. Ma, X. Zhang, S. Zhu, and B. Xu. Debugging with intelligence
via probabilistic inference. In Proc. ICSE, pages 1171–1181, 2018.

[92] H. Zhong and H. Mei. An empirical study on API usages. IEEE
Transactions on Software Engineering, 2018.

[93] H. Zhong and N. Meng. Towards reusing hints from past fixes -an
exploratory study on thousands of real samples. Empirical Software
Engineering, 2018.

[94] H. Zhong and Z. Su. An empirical study on real bug fixes. In Proc.
ICSE, pages 913–923, 2015.

[95] H. Zhong and X. Wang. Boosting complete-code tools for partial
program. In Proc. ASE, pages 671–681, 2017.

[96] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifications
from natural language API documentation. In Proc. ASE, pages 307–318,
2009.

[97] Z. Zuo, S.-C. Khoo, and C. Sun. Efficient predicated bug signature
mining via hierarchical instrumentation. In Proc. ISSTA, pages 215–224,
2014.

	Introduction
	Motivating Example
	Approach
	Generation of Bug Signatures
	Bug Analysis with Grapa
	Construction of Mappings
	Inferring Bug Signatures
	Filtering Bug Signatures

	Detecting Bugs

	Evaluation
	Research Question
	Dataset
	RQ1. Overall Effectiveness
	Setting
	Result

	RQ2. Complementing Findbugs and PMD
	Setting
	Result

	RQ3. The Effectiveness of CCFinderSW and Diff
	Setting
	Result

	RQ4. The Impact of Filtering Technique
	Setting
	Result

	RQ5. The Best Size Parameter
	Setting
	Result

	Threats to Validity

	Discussion and Future Work
	Related Work
	Conclusion
	References

