
A Study on Identifying Code Author from Real Development
Siyi Gong

Department of Computer Science and Engineering
Shanghai Jiao Tong University, China

gongsiyi@sjtu.edu.cn

Hao Zhong
Department of Computer Science and Engineering

Shanghai Jiao Tong University, China
zhonghao@sjtu.edu.cn

ABSTRACT
Identifying code authors is important in many research topics, and
various approaches have been proposed. Although these approaches
achieve promising results on their datasets, their true effectiveness
is still in question. To the best of our knowledge, only one large-
scale study was conducted to explore the impacts of related factors
(e.g., the temporal effect and the distribution of files per author).
This study selected Google Code Jam programs as their subjects,
but such programs are quite different from the source files that
programmers write in daily development. To understand their ef-
fectiveness and challenges, we replicate their study and use their
approach to analyze source files that are retrieved from real projects.
The prior study claims that the temporal effect and the distribu-
tion of files per author have only minor impacts on their trained
models. In the contrast, we find that in 85.48% pairs of training and
testing sets, the accuracy of a trained model is less effective when
the temporal effect is considered, and in total, the average accuracy
decreases by 0.4298. In addition, when we use the real distribution
of files as inputs, their approach can accurately identify only one
or two core code authors, although a project can have more than
ten authors. By revealing the limitations of the prior approach, our
study sheds lights on where to make future improvements.

CCS CONCEPTS
• Security and privacy→ Intrusion/anomaly detection and
malware mitigation; • Computing methodologies → Natural
language processing; • Software and its engineering → Software
libraries and repositories.

KEYWORDS
code authorship attribution, coding style evolution, empirical study

ACM Reference Format:
Siyi Gong and Hao Zhong. 2022. A Study on Identifying Code Author from
Real Development. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3540250.3560878

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3560878

1 INTRODUCTION
Given a code snippet, the task of identifying its author is known
as code authorship attribution. This task is important in various
research topics (e.g., bug report assignments [6], software foren-
sics [29], and plagiarism detection [25]). For example, if the author
of a piece of buggy code is identified, it is straightforward to assign
the corresponding bug report to this code author. As another exam-
ple, for software forensics, the identification of code authors is use-
ful to trace malware samples. In the literature, researchers [5, 12, 33]
have proposed various approaches to handle this task, but this task
has many challenges. For example, the code style of an author can
evolve over time [22]. Beside the temporal effect, the distribution
of files can also affect their effectiveness [3]. To better understand
these challenges, researchers [3] conducted a large-scale empirical
study. According to their results, they conclude that the temporal
effect on their accuracy is minor, and their approach [3] works
well, when each code author has only five files in their dataset.
Although their dataset includes programs from more than 8,000
authors, we notice that their settings are quite different from the
real development. As a result, their findings can be compromised
in the context of real development.

To meet the timely needs, in this paper, we conduct a replication
study. In this study, we analyze a more recent version [4] of the
approach that is used in the prior study [3]. Comparing with the
prior study [3], our setting is closer to the real development (see
Section 2 for details). For example, the prior study [3] mainly uses
Google Code Jam programs that are submitted in two years, but
we collect 14,657 commits from real projects over twenty years. As
another example, we design more pairs of training and testing sets
to analyze the impact of the time. This study explores the following
research questions:

• RQ1.What is the overall temporal effect on identifying code
authors from real development?
After a model is trained, it inevitably becomes obsolete, since
the styles of code authors can evolve over time. The prior
study [3] shows that the impacts are minor. However, their
analyzed source files are not from real development.

• RQ2. What is the temporal effect on identifying individual
code authors?
As most lines of code are written by several authors [19],
some authors have insufficient files for mining. To explore
the impacts, the prior study [3] reduces the files per author
from nine to five. In their setting, authors have equal files,
but when source files are retrieved from a real project, a few
authors write much more files than others [19].

2 METHODOLOGY
This section introduces the methodology of our study.

https://doi.org/10.1145/3540250.3560878
https://doi.org/10.1145/3540250.3560878

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Siyi Gong and Hao Zhong

Table 1: Our dataset.
Name Time Commit Author LOC

commons-collections 2001-2021 3,559 89 301,881
commons-dbcp 2004-2021 2,284 62 94,764

commons-configuration 2003-2021 3,347 38 269,997
commons-compress 2010-2021 2,493 65 87,177

commons-io 2002-2021 2,974 94 118,634
total 20 14,657 221 872,453

Project: commons-dbcp
Testing

Time Interval

2001-04-15 2003-12-30

Validation

Training

Sliding Window

Stride:
6 months

3 months
6 months
12 months

Size:
6 months

Figure 1: Our setting

Dataset. Table 1 shows our subject projects. Column “Name”
lists project names. We choose these projects, since they have long
maintenance histories. Column “Time” lists the maintained time of
the project. In total, these projects have 14,657 commits that were
submitted from 2001 to 2021. Column “Commit” lists the number
of commits. As the prior studies [4, 19] did, from each commit, we
extract its added lines as code snippets and assign the author of the
commit as the label of these code snippets. Column “Author” lists
the number of authors. Column “LOC” lists the lines of extracted
code snippets.

From the Github code repository of each project, we extract all
its commits. From each commit, we store its original and modified
source files in a local directory. By comparing the original and
modified versions of each file, we build a patch. A patch encodes a
modification as an addition (+) and a deletion (-). In addition, for
each commit, we record its commit information such as its author
time, author name, author email, committer time, committer name,
committer email and message. From each patch, we extract its
added code lines as code snippets. The author name of the commit
is considered as the author of the added lines, e.g., the label of the
code snippet, and the submission time is considered as the time of
the code snippet.

The selected approach. In this study, we select a more recent
version [4] of the approach that is used in the prior study [3].
This approach uses deep learning techniques (BiLSTM [28]) and is
effective on their datasets (an accuracy of 86.41%). As Abuhamad
et al. [4] did not release their tool, we implement the tool upon
Keras [18]. In our study, we use our implementation to identify
the programmers of Table 1. We select the identical parameters as
Abuhamad et al. [4] did. Our implementation achieves an accuracy
of 86.38%, which is close to what were reported in their paper.

Analysis overview. A prior study [3] has investigated the im-
pact of the temporal effect and the files per author. Based on their
results, they claim that both factors have only minor impacts on
their approach. Table 2 lists their settings and ours. As shown in Col-
umn “Dataset”, they used Google Code Jam programs [1]. Google
Code Jam is a code competition. Although these programs are real
code, they are different from the source files from a real project.
First, most programs from GCJ are written by students, but not
written by professional programmers. Second, the programs from
GCJ resolve much simpler tasks than source files from a real project.

Finally, programs from GCJ are written by individual authors, but
source files from a real project are typically written by multiple
code authors. To build a more realistic usage scenario, we use real
projects to build our dataset. As explained in Column “Author
selection”, they required that authors must appear in both the
training set and the testing set. When the authors in the testing set
are unidentified, it is infeasible to determine whether they appear
in the training set. As the requirement is unrealistic, we remove
this requirement from our settings. As shown in Column “Time
strategy”, they used the programs from 2014 to 2015 as the training
set and the programs from 2015 to 2016 as the testing set. The time
interval between their training set and testing set is zero, and the
impact of the time is not fully tested. Here, Table 3 of their paper [3]
lists the programs of only two years, and Table 9 of their paper [3]
lists only an accuracy value for each technique. They must present
more values, if they tried more combinations. As shown in Column
“File strategy”, their dataset is still balanced and different from the
real scenarios. As a comparison, we use the real projects where an
author can have much more or fewer files.

3 EMPIRICAL RESULTS
More details are listed on our project website:

https://github.com/noonekowns/codeauthor

3.1 RQ1. The Overall Temporal Effect
3.1.1 Protocol. As the baseline, we select the stratified 10-fold cross
validation [26], since it is widely used in research papers [27, 31].
Comparing with the classical cross validation [10], the stratified
cross validation uses the stratified sampling [26] to ensure that the
training set and the testing set have the same proportion of labeled
data as in the original dataset has. In each iteration, we split the
submitted code snippets of a whole year into ten groups. In each
fold, we use 9 groups as the training set and the remaining 1 group
as the validation set. From each training set, we train 10 models,
and we collect their validation accuracy values as the baseline, as
the prior approaches [3, 33] did.

Figure 1 shows our settings to explore the impact of the time. To
train each model, we use the commits of a whole year. For example,
in Figure 1, the first commit and the last commit of the training set
are submitted on Jan. 16, 2002 and Dec. 31, 2002, respectively. We
use the same parameters with the baseline to train the model. A
limitation of the prior study [3] is that the time interval between
their training set and their testing set is zero, and their study does
not fully explore the impacts when the interval increases. In our
study, as shown in Figure 1, we increase the time interval from 3
months to 48 months, with three months as a gap. To obtain more
pairs of training sets and testing sets, after each iteration, we apply
a time sliding window. In particular, we move the whole training
set to that of six months later. After all the models are trained and
tested, we move the first commit of the training set to 6 months
later, as shown in the sliding window of Figure 1. In total, we move
the training set for several times until the training sets and testing
sets cover the whole commits of each project.

3.1.2 Result. Figure 2 shows the box plots of the two settings. The
horizontal axes list when the first commits of training sets are
submitted. In each group, the cross-validation setting shows the

https://github.com/noonekowns/codeauthor

A Study on Identifying Code Author from Real Development ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 2: The comparison between Abuhamad et al. [3] and our study.

Setting Abuhamad et al. [3] Our study
Dataset Google Code Jam programs from 2014 to 2016 Real projects from 2001 to 2021

Author selection Authors must appear in both the training set and the testing set No requirement
Time strategy A training set (from 2014 to 2015) and a testing set (from 2015 to 2016) Much more combinations as shown in Figure 1
File strategy The files per author are set to five, seven, and nine The real distribution

A
pr

.1
4,

20
01

O
ct

.1
7,

20
02

A
pr

.1
7,

20
03

O
ct

.1
7,

20
04

Ja
n.

16
,2

00
5

Ju
l.1

6,
20

05
Ja

n.
31

,2
00

7
Ju

l.1
5,

20
07

Ja
n.

16
,2

00
8

Ju
l.2

2,
20

08
Ja

n.
16

,2
01

0
Ju

l.2
0,

20
11

M
ar

.9
,2

01
2

Se
pt

.8
,2

01
2

M
ar

.9
,2

01
3

Se
pt

.1
0,

20
13

M
ar

.9
,2

01
4

Se
pt

.3
0,

20
14

M
ar

.2
6,

20
15

first commit

0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

Project: Commons-collections

The cross-validation setting The aging setting

(a) collections

Ju
l.2

5,
20

04

Ja
n.

31
,2

00
5

Ja
n.

24
,2

00
6

Ju
l.3

1,
20

06

Ja
n.

2,
20

07

Ju
l.2

8,
20

07

Ja
n.

1,
20

10

Ju
n.

20
,2

01
0

Ja
n.

25
,2

01
1

Ju
l.3

1,
20

11

M
ar

.1
9,

20
12

Ja
n.

11
,2

01
3

Ju
l.1

,2
01

3

Ja
n.

8,
20

14

Ju
l.1

2,
20

14

first commit

0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

Project: Commons-dbcp

The cross-validation setting The aging setting

(b) dbcp

D
ec

.2
3,

20
03

Ju
n.

23
,2

00
4

D
ec

.2
4,

20
04

Ju
n.

28
,2

00
5

D
ec

.2
9,

20
05

Ju
n.

23
,2

00
6

D
ec

.2
3,

20
06

Ju
n.

23
,2

00
7

D
ec

.1
6,

20
07

Ju
n.

24
,2

00
8

D
ec

.2
6,

20
08

Ju
n.

25
,2

00
9

Ja
n.

3.
20

10
Ju

n.
28

,2
01

0
Fe

b.
7,

20
11

Ju
l.3

0,
20

11
Ja

n.
1,

20
12

Ju
l.1

5,
20

12
Ja

n.
1,

20
13

Ju
n.

28
,2

01
3

Ja
n.

2,
20

14
Ju

l.1
2,

20
14

Fe
b.

20
,2

01
5

first commit

0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

Project: Commons-configuration

The cross-validation setting The aging setting

(c) configuration

O
ct

.2
6,

20
10

Ju
l.1

3,
20

11

Fe
b.

2,
20

12

O
ct

.2
6,

20
12

M
ay

.8
,2

01
3

N
ov

.4
,2

01
3

M
ay

.2
,2

01
4

N
ov

.1
,2

01
4

M
ay

.1
,2

01
5

N
ov

.1
1,

20
15

first commit

0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

Project: Commons-compress

The cross-validation setting The aging setting

(d) compress

Ja
n.

26
,2

00
2

Ju
l.2

8,
20

02
Ja

n.
27

,2
00

3
Ju

l.2
5,

20
03

Ja
n.

30
,2

00
4

Ju
l.2

4,
20

04
Ja

n.
31

,2
00

5
A

ug
.1

6,
20

05
Ja

n.
24

,2
00

6
Ju

l.2
4,

20
06

Ja
n.

26
,2

00
7

Ju
l.2

8,
20

07
Ja

n.
22

,2
00

8
A

ug
.1

1,
20

08
Ja

n.
23

,2
00

9
A

ug
.2

0,
20

09
Ja

n.
22

,2
01

0
A

ug
.4

,2
01

0
Fe

b.
1,

20
11

Se
pt

.6
,2

01
1

Ja
n.

21
,2

01
2

O
ct

.7
,2

01
2

Fe
b.

1,
20

13
N

ov
.2

5,
20

13
Fe

b.
7,

20
14

D
ec

.2
,2

01
4

first commit

0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

Project: Commons-io

The cross-validation setting The aging setting

(e) io
Figure 2: The overall temporal effect

accuracy values of the ten models that are trained from a training
set, and the aging setting shows that the accuracy values when
we increase the time interval. Except for the four exceptions in
configuration and the one exception in collections, in 94.62% (88
out of 93) cases, the medians of the cross-validation setting are
higher than those of the aging setting. We further calculate the
average median reductions from the cross validation setting to the
aging setting. The reductions are 0.5149 (collections), 0.5610 (dbcp),
0.2243 (configuration), 0.2989 (compress), and 0.5499 (io). For all
the projects, the average reduction is 0.4298.

As shown in Figure 2, in several cases, the aging setting produces
even better accuracy values than the cross-validation setting. For
example, on Jun. 23, 2006 of configuration, the median of the cross-
validation setting is even lower than that of the aging setting. We
calculate the cases where the accuracy of the aging setting is more
than the median of the cross-validation setting. The results are
15.79% (collections), 13.33% (dbcp), 25.36% (configuration), 11.67%
(compress), and 5.77% (io). In total, such cases account for 14.52% of
all cases. After inspecting those cases, we find that the distributions
of authors lead to those extreme results. For example, for the data
points on Jan. 31st, 2005 of dbcp, the training set mainly contains
the code snippets of Dir* (58 lines of code) and Phi* (950 lines
of code). After three months, the testing set mainly contains the
code snippets of Dai* (2 lines of code) and Phi* (40 lines of code).

The trained model blindly predicts most authors as Phi*, but still
produces high accuracy, since the data are highly imbalanced. In
more than 85.48% pairs of training and testing sets, the medians of
accuracy become lower when the temporal effect is considered.

The prior study [3] takes the source files in a whole year as its
training set. To eliminate the impact of the time period, we set the
time period of our training data as one year. We increase the time
interval between the training set and the testing set from 3 months
to 12 months, with three months as a gap. Under this setting, we
calculate the average median reductions from the cross validation
setting to the aging setting. The reductions are 0.2442 (collections),
0.4164 (dbcp), 0.2000 (configuration), 0.3179 (compress), and 0.4029
(io). For all the projects, the average reduction is 0.3163. We also
calculate the cases where the median accuracy of the aging setting
is more than that of the cross-validation setting. The results are
28.07% (collections), 20.00% (dbcp), 33.33% (configuration), 6.67%
(compress), and 11.54% (io). In total, such cases account for 21.15% of
all cases. In more than 78.85% pairs of training and testing sets, the
medians of accuracy become lower than those when the temporal
effect is considered.

In summary, the averagemedians of accuracy values significantly
decrease overtime, and the accuracy values decrease for most pairs
of training and testing sets when the temporal effect is considered.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Siyi Gong and Hao Zhong

3 m
onths6 m

onths12 m
onths24 m

onths36 m
onths48 m

onths

tim
e interval

0

0.2

0.4

0.6

0.8 1

accuracy

Project: C
om

m
ons-collections

Step*
H

en*
R

od*
G

arD
*

T
ho*

(a) collections

3 m
onths6 m

onths12 m
onths24 m

onths36 m
onths48 m

onths

tim
e interval

0

0.2

0.4

0.6

0.8 1

accuracy

Project: C
om

m
ons-dbcp

Phi*
M

ar*
Seb*

(b) dbcp

3 m
onths6 m

onths12 m
onths24 m

onths36 m
onths48 m

onths

tim
e interval

0

0.2

0.4

0.6

0.8 1

accuracy

Project: C
om

m
ons-configuration

E
m

m
*

O
li*

R
al*

G
arD

*
Seb*

(c) configuration

3 m
onths6 m

onths12 m
onths24 m

onths36 m
onths48 m

onths

tim
e interval

0

0.2

0.4

0.6

0.8 1

accuracy

Project: C
om

m
ons-com

press

Stef*
Seb*

G
arD

*
E

m
m

*

(d) compress

3 m
onths6 m

onths12 m
onths24 m

onths36 m
onths48 m

onths

tim
e interval

0

0.5 1

accuracy

Project: C
om

m
ons-io

H
en*

Step*
Jer*
G

arD
*

N
ai*

Seb*

(e) io
Figure 3: The temporal effect on individual authors

3.2 RQ2. The Effect on Individual Authors
3.2.1 Protocol. In this RQ, we explore the temporal effect on in-
dividual authors and analyze the impacts of files per author. To
simulate the situation where each author has different files, the
prior study [3] reduces the files per author from nine to five, but in
the real development, code authors are not evenly distributed, and
a few core programmers write most code lines [19]. In our study,
we use the real distribution to train and test the models. After that,
we record the accuracy for individual core members. Here, like the
prior study [8], we consider a programmer as a core member of a
project, if the time interval between his/her first and last commits
in the project is larger than a year.

3.2.2 Result. Figure 3 shows the results of core authors. The hor-
izontal axes list the time intervals. Although Figure 2 shows that
the overall accuracy is high, for all the projects, we find that the
trained models work well on only one or two authors. As the files
per author are imbalanced, other measures (e.g., MCC [13, 34]) are
more suitable than the accuracy.

Except for compress, we find that the trained models become less
effective when the time interval is larger. For example, in dbcp, when
the time interval is 3-month, the trained model predicts the code of
Phi* and Mar* accurately, but when it is 6-month, the trained model
predicts accurately only the code of Phi*. We find that a trained
model becomes less effective, when it is obsolete.

In summary, the trained models work well on only one or two
authors, and their accuracy values largely decrease over time.

3.3 Threat to Validity
The threats to internal validity include wrong labels, since commits
may not be submitted by their true authors. This threat is shared
by the prior studies [4, 14], and its impact shall be minor, since
Apache projects are carefully maintained. This threat could be
further reduced by data sanitization techniques [9]. The threats
to internal validity also include our implementation. The selected
approach [4] is built upon TensorFlow [2], but we build the tool
upon Keras. Despite of the differences, the impact shall be minor,
since our effectiveness is similar with theirs. The threats to external
validity include our limited subjects, although our subjects are
already much more than the prior study [3]. This threat could be
further reduced with more subjects.

4 WORK PLAN
In future work, we plan to conduct in-depth investigations on more
challenges of identifying authors:

1. Exploring the impacts of the time on other approaches.
In this study, we select only one subject, but researchers have
proposed more approaches to identify code authors. Besides deep
learning techniques [3, 11], other features (e.g., n-grams [16], lex-
ical features [7, 33], and Abstract Syntax Trees [5, 32]) and other
techniques (e.g., statistic analysis [12, 17]) are used to identify code
authors. In future work, we plan to introduce more approaches and
fully explore the impact of the time and the distribution.

2. Exploring the impacts of the cross-project predication.
Besides what we explored in this study, there are other factors with
practical values. For example, an author can write code for multiple
projects. When an author joins a new project, this project may not
contain sufficient histories for mining. Although it is feasible to
use models trained from other projects, the team of a project can
define quite different naming conventions and code styles from
other teams [23]. As a result, a trained model may not work well on
other projects. It is interesting to explore to what degree a trained
model becomes less effective in this situation. We plan to explore
these issues in our future work.

3. Learning features and techniques that are stable over
time and across projects. From different features and techniques,
we plan to explore those stable ones. Although the code style of an
author inherently evolves over time and across projects, there can
be some features that are more stable than others, and some tech-
niques can be more robust to such changes. For example, although
their approach identifies authors for natural language documents,
Hansen et al. [21] analyzed how features evolve over time. Their
ideas can motivate our work on identifying stable features and
techniques. Besides identifying code authors, machine learning
techniques [15, 30] and their variants [20, 24] have been used to
resolve other software engineering problems. All these approaches
suffer from the impacts of aging and cross-project learning, and
our findings can be useful to improve these approaches.

ACKNOWLEDGMENTS
We appreciate reviewers for their insightful comments. Hao Zhong
is the corresponding author. This work is sponsored by the CCF-
Huawei Innovation Research Plan No. CCF2021-admin-270-202111.

A Study on Identifying Code Author from Real Development ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

REFERENCES
[1] 2019. Google Code Jam . https://codingcompetitions.withgoogle.com/codejam.
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang.
2018. Large-scale and language-oblivious code authorship identification. In Proc.
CCS. 101–114.

[4] Mohammed Abuhamad, Tamer Abuhmed, DaeHun Nyang, and David Mohaisen.
2020. Multi-𝜒 : Identifying multiple authors from source code files. In Proc. PETS.
25–41.

[5] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis, and Rachel
Greenstadt. 2017. Source code authorship attribution using long short-term
memory based networks. In Proc. ESORICS. 65–82.

[6] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should fix this bug?.
In Proc. ICSE. 361–370.

[7] Upul Bandara and Gamini Wijayarathna. 2013. Source code author identification
with unsupervised feature learning. Pattern Recognition Letters 34, 3 (2013),
330–334.

[8] Lingfeng Bao, Xin Xia, David Lo, and Gail C Murphy. 2019. A large scale study
of long-time contributor prediction for GitHub projects. IEEE Transactions on
Software Engineering (2019), 1–22.

[9] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German,
and Prem Devanbu. 2009. The promises and perils of mining git. In Proc. MSR.
1–10.

[10] Michael W Browne. 2000. Cross-validation methods. Journal of mathematical
psychology 44, 1 (2000), 108–132.

[11] Steven Burrows, Alexandra L Uitdenbogerd, and Andrew Turpin. 2014. Compar-
ing techniques for authorship attribution of source code. Software: Practice and
Experience 44, 1 (2014), 1–32.

[12] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare
Voss, Fabian Yamaguchi, and Rachel Greenstadt. 2015. De-anonymizing program-
mers via code stylometry. In Proc. USENIX Security. 255–270.

[13] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics 21, 1 (2020), 1–13.

[14] Edwin Dauber, Aylin Caliskan, Richard Harang, and Rachel Greenstadt. 2018.
Git blame who? stylistic authorship attribution of small, incomplete source code
fragments. In Proc. ICSE Companion. 356–357.

[15] Felix Fischer, Huang Xiao, Ching-Yu Kao, Yannick Stachelscheid, Benjamin John-
son, Danial Razar, Paul Fawkesley, Nat Buckley, Konstantin Böttinger, Paul
Muntean, et al. 2019. Stack overflow considered helpful! deep learning security
nudges towards stronger cryptography. In Proc. USENIX Security. 339–356.

[16] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, Carole E Chaski,
and Blake Stephen Howald. 2007. Identifying authorship by byte-level n-grams:

The source code author profile (scap) method. International Journal of Digital
Evidence 6, 1 (2007), 1–18.

[17] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and Sokratis
Katsikas. 2006. Effective identification of source code authors using byte-level
information. In Proc. ICSE. 893–896.

[18] Aurélien Géron. 2019. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly
Media.

[19] Siyi Gong and Hao Zhong. 2021. Code authors hidden in file revision histories:
An empirical study. In Proc. ICPC. 71–82.

[20] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2019. Codekernel: A graph
kernel based approach to the selection of api usage examples. In Proc. ASE. 590–
601.

[21] Niels Dalum Hansen, Christina Lioma, Birger Larsen, and Stephen Alstrup. 2014.
Temporal context for authorship attribution. In Proc. IRFC. 22–40.

[22] Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova, and
Alina Matyukhina. 2019. Code authorship attribution: Methods and challenges.
Comput. Surveys 52, 1 (2019), 1–36.

[23] Ivan Krsul and Eugene H Spafford. 1997. Authorship analysis: Identifying the
author of a program. Computers & Security 16, 3 (1997), 233–257.

[24] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. 2021. Boosting coverage-based fault localization via graph-
based representation learning. In Proc. ESEC/FSE. 664–676.

[25] Alan Parker and James O Hamblen. 1989. Computer algorithms for plagiarism
detection. IEEE Transactions on Education 32, 2 (1989), 94–99.

[26] Van L Parsons. 2014. Stratified sampling. Wiley StatsRef: Statistics Reference
Online (2014), 1–11.

[27] S Madeh Piryonesi and Tamer E El-Diraby. 2020. Data analytics in asset man-
agement: Cost-effective prediction of the pavement condition index. Journal of
Infrastructure Systems 26, 1 (2020), 04019036.

[28] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[29] Eugene H Spafford and Stephen A Weeber. 1993. Software forensics: Can we
track code to its authors? Computers & Security 12, 6 (1993), 585–595.

[30] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proc. ASE. 87–98.

[31] Brian H Willis and Richard D Riley. 2017. Measuring the statistical validity of
summary meta-analysis and meta-regression results for use in clinical practice.
Statistics in medicine 36, 21 (2017), 3283–3301.

[32] Wilco Wisse and Cor Veenman. 2015. Scripting dna: Identifying the javascript
programmer. Digital Investigation 15 (2015), 61–71.

[33] Xinyu Yang, Guoai Xu, Qi Li, Yanhui Guo, and Miao Zhang. 2017. Authorship
attribution of source code by using back propagation neural network based on
particle swarm optimization. PloS one 12, 11 (2017), e0187204.

[34] Qiuming Zhu. 2020. On the performance of Matthews correlation coefficient
(MCC) for imbalanced dataset. Pattern Recognition Letters 136 (2020), 71–80.

https://codingcompetitions.withgoogle.com/codejam

	Abstract
	1 Introduction
	2 Methodology
	3 Empirical Results
	3.1 RQ1. The Overall Temporal Effect
	3.2 RQ2. The Effect on Individual Authors
	3.3 Threat to Validity

	4 Work Plan
	Acknowledgments
	References

