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Abstract
Computation offloading is a promising way of improving the performance and reducing the battery power consumption, since
it moves some time-consuming computation activities to nearby servers. Although various approaches have been proposed to
support computation offloading, we argue that there is still sufficient space for improvements, since existing approaches cannot
accurately estimate the execution costs. As a result, we find that their offloading plans are less optimized. To handle the problem,
in this paper, given an Android application, we propose a novel approach, called ANDROIDOFF, that supports offloading at the
granularity of objects. Supporting such capability is challenging due to the two reasons: (1) through dynamic execution, it is
feasible to collect the execution costs of only partial methods, and (2) it is difficult to accurately estimate the execution costs of the
remaining methods. To overcome the challenges, given an Android application, ANDROIDOFF first combines static and dynamic
analysis to predict the execution costs of all its methods. After all the costs are estimated, ANDROIDOFF synthesizes an offloading
plan, in which determines the offloading details. We evaluate ANDROIDOFF on a real-world application, with two mobile devices.
Our results show that, compared with other approaches, ANDROIDOFF saves the response time by 8%-49% and reduces the energy
consumption by 12%-49% on average for computation-intensive applications.
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1. Introduction

Given the rise of artificial intelligence and big data, mobile applications are becoming both computation and data
intensive. Meanwhile, with the rapid development of computing and communication technologies, the computation
platform of mobile applications has expanded from smartphones and tablet computers to other devices (e.g., wearable
devices [19], vehicles[77], unmanned aerial vehicles [47]). As a result, although the computation capability of mo-
bile devices increases rapidly in recent years, users are complaining the slow response of their mobile applications,
especially for those compute-intensive applications [53, 83]. Many factors contribute to the slow response of mobile
applications. For example, many obsolete devices are still in use, and an application may be not well configured for
such devices [1, 2, 58, 78]. As another example, most devices are powered by batteries, but the power capacity of
batteries is still a bottleneck for compute-intensive applications [13, 33, 45].

Computation offloading, i.e., moving intensive computing of an application to nearby servers, is a promising way
to improve the performance and to reduce the battery power consumption of a mobile application as well [14, 15, 34,
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37, 44, 59]. In particular, Mobile Cloud Computing (MCC) has been introduced to extend computing capability and
battery capacity of mobile devices, by offloading computation-intensive applications to the cloud. Nevertheless, the
network communication between mobile devices and the cloud can lead to significant execution delay. To cope with
the delay problem, Mobile Edge Computing [62, 68, 42] (MEC) frameworks have been introduced, which provide
servers to nearby mobile devices and enable moving highly demanding computing to such servers. Compared with
MCC, MEC has the potential of offering significantly lower latencies.

To fully release the potential of offloading, a mobile application needs to determine which of its parts shall be
moved to MEC servers. To achieve this, an application has to determine the execution costs of its parts, and after that,
the problem of offloading can be reduced to the traditional optimization problem [54]. In literature, researchers [27,
43, 25] dynamically execute parts of an application to collect the execution costs. Some recent approaches (e.g., [50])
introduce static analysis to determine parts that shall be moved together, but these approaches still need to execute
an application to collect the execution costs of its parts. Due to various technical limitations, it is rather difficult to
achieve high test coverage, especially for a mobile application [24]. As many parts are not executed, it is infeasible to
collect their execution costs, and thus it becomes infeasible to make correct decisions, when offloading such parts.

To handle the problem, in this paper, we propose a novel approach, called ANDROIDOFF, that supports partial
offloading of Android applications. Compared with the prior approaches [27, 43, 25, 50], ANDROIDOFF is able to
predict execution costs of methods, even if they are not executed. Our insight is that we can collect the execution
costs of a subset of all the methods, and then predict the execution costs of the remaining methods, based on
static analysis. To fulfil our insight, we have to overcome two major challenges. First, we have to build a proper model
through static analysis, so that we can accurate predict execution costs. Second, we have to design an optimization
algorithm, so that we can make correct decisions when offloading applications.

To address the challenges, in this paper, we present a novel offloading approach called ANDROIDOFF. Our paper
makes the following major contributions:

• A novel approach, called ANDROIDOFF, that supports offloading Android applications. To predict their ex-
ecution costs, ANDROIDOFF builds a comprehensive model for classes and methods through static analysis.
Given the collected execution costs of a subset of methods, our model can predicts the execution costs of the
remaining methods. Furthermore, based on the collected and estimated costs of all parts, ANDROIDOFF uses
an optimization function to determine which parts shall be moved to MEC serves.

• An evaluation on a real-world license plate recognition application. Our results show that ANDROIDOFF saves
the response time by 8%-49% and reduces the energy consumption by 12%-49% on average for computation-
intensive applications. In addition, our results show that the predicting model’s fitting degree is 0.786, which is
higher than other regression models.

The rest of this paper is organized as follows. Section 2 introduces our offloading framework. Section 3 intro-
duces a motivating example. Section 4 introduces our approach. Section 5 presents our evaluation on a real-world
application. Section 6 introduces related work. Section 7 concludes this paper.

2. Preliminary

In our previous work [84], we implement an adaptive framework, called Dpartner, which supports mobile applica-
tions with the offloading capability in MCC, and then extend it for MEC [22]. The core of this offloading mechanism
is composed of two elements: proxies and endpoints. As shown in Figure 1, NProxy, which is a proxy of the callee N
object. NProxy does not do any computation itself, but forwards its invocations to the caller X object. The Endpoint
is responsible for determining the current location of N and for the crossing network communication from X to N. As
a result, if the location of N is changed, NProxy keeps unchanged so that object X, will not get noticed. When N is
running in a remote virtual machine, the Endpoint will take advantage of a given Remote Communication Service
to get a reference to N, and pass it back to X. After that, and X can use the reference to invoke N remotely. When X and
N both run in the same virtual machine, the Endpoint will directly obtain the in-virtual-machine reference of N, so
that X can invoke N without going through the network stack.

Following the above mechanism, Dpartner has three major steps to offload an application: First, it synthesizes a
proxy class and an endpoint for each class in an application. Second, it compiles all the classes and their endpoints

2



/ The Journal of Systems and Software 00 (2019) 1–13 3

� �

�������

	���
��������������

������ ��������

������
����	�


���
����	�

�����

���������������������	�

Figure 1: On-Demand remote invocation (target structure)

into a jar file, and the compiled file is deployed to a server. Third, it compiles all the classes and the proxies into an
Android apk file, and the file is deployed to a phone. Please note that source files are not offloaded.

We have provided the mechanisms to offload an application in MCC and MEC. With the support of Departner,
ANDROIDOFF offloads at the granularity of objects of Android applications. In our framework, the fields and methods
of an object are offloaded together according to the offloading scheme. Thus, an offloaded method can access fields
of the same class locally. However, it requires programmers to manually determine which parts of an application shall
be offloaded [84] or collect the execution costs of all its parts [22], in order to achieve the optimal offloading decision.
ANDROIDOFF proposes an automatic way to determine which parts shall be offloaded. The details of ANDROIDOFF
are introduced in Section 4.

3. A Motivating Example

In this section, we use a scenario as shown in Figure 2 to illustrate the challenges and the benefits of ANDROIDOFF.
In this scenario, several Unmanned Ground Vehicles (UGVs) are employed to deliver meals in our university. The
software of the UGVs is implemented as an Android application. As shown in Figure 2a, the application has five
major components such as a driver module, a path planning module, an obstacle perception module, a calling module,
and a check module. After a UGV receives a bill, it carries the meal to its customer. As the first step, it has a path
planer to decide the path for the delivery. After the path is determined, the driver module and the obstacle perception
module execute the path. Upon its arrival, it dials the customer to pick up the meal. After that, it checks whether
the bill is paid and the meal is picked up. The computation capability of a UGV is limited. To support the real scale
computation, as shown in Figure 2b, we provide three servers as the computation context. The servers are C, E1, and
E2, which can be used for offloading in different locations.

Besides Dpartner [84], there are several other frameworks that support offloading [27, 43, 25, 50]. For example,
MAUI [27] and ThinkAir [43] deploy servers on cloud and modify all the methods of an application to allow its
offloading. In particular, if programmers determine that a method can be offloaded, they have to manually add a
[Remoteable] annotation or a @Remote attribute to the method. At the server side, they provide a linear program
solver to determine the optimal partition strategy. To optimize the process, it needs many facts from an application
(e.g., the execution time of methods). To the best of our knowledge, all the existing approaches rely on dynamic
executions to collect such facts or simply ignore such facts. Due to various limitations, in practice, it is quite difficult
to collect such facts through dynamic analysis. For example, it is difficult to construct test inputs to cover specific
methods, so their execution time cannot be collected. Without accurate facts, it becomes infeasible to correctly decide
which parts of an application shall be offloaded.

The major advantage of ANDROIDOFF lies in that it combines dynamic analysis and static analysis to estimate
the execution costs of all the methods. First, we manually prepare test inputs, and execute an application with our
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(a) Process of a food delivery application.

(b) Context of the UGV in the campus.

Figure 2: The sample scenario.

test cases to collect the execution costs of some methods. Second, ANDROIDOFF builds weighted call graphs for all
the methods. Finally, based on the mined relations between known execution costs and their weighted call graphs,
ANDROIDOFF predict the execution costs of all the methods. Besides this advantage, ANDROIDOFF has other benefits
such as smaller granularity of offloading and dynamically offloading. For this example, ANDROIDOFF determines that
the check module shall be offloaded to remote servers, when UGVs are in our laboratory building where servers are
available, but while it shall not be offloaded when UGVs are in our garden. ANDROIDOFF is able to make the correct
decision, since all the execution costs are predicted.

4. Approach

Figure 3 shows the overview of ANDROIDOFF. For the nodes, we use rectangles to denote its components and
circles to denote its internal data. For the edges, red ones denote data flows, and blue ones denote requests. AN-
DROIDOFF supports offloading at the granularity of objects. To make offloading decisions, ANDROIDOFF has two
major steps. In the first step, ANDROIDOFF trains an estimation model (Section 4.1). Given the execution costs of
some methods and the built weighted call graphs of all the methods, the trained model of ANDROIDOFF is able to
predict the execution costs of all the methods. Based on the predicted cost, in the second step, ANDROIDOFF synthe-
sizes an offloading decision that minus the overall execution cost for a local application (Section 4.2). In this paper,
the execution cost of a method refers to its execution time.

In Figure 3, Einvoke denotes the execution cost of a method, and Sinvoke denotes the execution cost of a
method but subtracts the costs of its called methods. For example, if the m1 method calls the m2 methods for four
times, S invoke(m1) = Einvoke(m1)− 4× Einvoke(m2). When we make offloading decision, we use Sinvoke instead
of Einvoke, since its called methods can be executed on other computation nodes. In such cases, the execution
cost of a method can change significantly. A more concrete example is described as follows: As shown in Figure 4,
in the body of printMax, max is called for twice, the Sinvoke values of printMax and max are calculated as:
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Figure 3: The overview of ANDROIDOFF

S invoke(printMax) = Einvoke(printMax) − 2 × Einvoke(max), S invoke(max) = Einvoke(max). With Sinvoke, we
do not lose information, since we estimate the execution costs for all the methods.

More precisely, Algorithm 1 shows the details of the two above steps. It takes the source code of an application
and an environment context as its inputs. In particular, the environment context is modeled as a graph, whose nodes
denote computation nodes (e.g., local devices and remote servers) and edges denote communication links between
two nodes (e.g., data transmissions and response time). Section 4.2.1 introduces the graph in more details. The output
of Algorithm 1 is the optimal deployment, which shows the locations where each object shall be offloaded. First, Line
2 builds weighted call graphs (WCGs) through static analysis. Line 3 executes the application on all the computation
nodes to obtain the Einvoke of some methods. Line 4 predicts the Einvoke of the remaining methods through
Random Forest Regression. After that, Lines 7 to 19 compare the response time for all the feasible deployment plans
(see Section 4.2.2 for details).

After decision, Dpartner can offload every instance of classes on corresponding compute nodes.

4.1. Estimating Execution Cost

To make the estimation, ANDROIDOFF first builds weighted call graphs (WCGs) for all the methods (Sec-
tion 4.1.1). After that, it predicts execution costs based on built WCGs (Section 4.1.2).

4.1.1. Extracting Weighted Call Graph for Program
ANDROIDOFF builds an WCG for an Android application, and the definition of an WCG is as follow:

Definition 1. A weighted call graph is a directed graph GP = (M,R) representing call relations between methods of
a program P, where M = {m1,m2, · · · ,mn} is the set of method nodes of P and R is the set of method call edges. Each
ri j ∈ R edge represents a method call from mi to m j, and its weight denote the frequencies of the method call.

Computation offloading decision depends mainly on the response time of application, which is associated with the
methods in program. Android applications consist of methods, and there is a main method acting as an entry point
of the application. From the main method, ANDROIDOFF uses Soot [69] to build the WCG. Algorithm 2 shows the

5
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Algorithm 1 The ANDROIDOFF Framework

Input: The source code of an application code; A context architecture GC = (N, E); A set of objects OBJ ={
ob j1, ob j2, · · · , ob jn

}
;

Output: An optimal offloading decision (DEP)optimal = (dep(obj1), dep(obj2), · · · , dep(objn));
1: procedure GENERATE ESTIMATION MODEL
2: Weighted Call Graph GP = (M,R)← Algorithm 2(code)
3: EinvokeI ← Dynamic execute code on every computation nodes
4: EinvokeII ← Predication(EinvokeI)
5: calculate Sinvoke(WCG,Einvoke)
6: end procedure
7: procedure GENERATE DECISION MODEL
8: (DEP)optimal ← φ
9: Tresponse ← 0

10: n← |OBJ|
11: m← |N|
12: for each DEP do
13: if DEP cannot meet the conditions to communicate or offload in Section 4.2.1 then
14: do not modify (DEP)optimal, (Tresponse)smallest

15: else
16: calculate Tresponse ← optimization f unction(S invoke,GC ,OBJ)
17: if (Tresponse)smallest = 0 or (Tresponse)smallest > Tresponse then
18: (DEP)optimal ← DEP
19: (Tresponse)smallest ← Tresponse

20: end if
21: end if
22: end for
23: Dpartner((DEP)optimal)
24: end procedure

process. We use a hash map to store edges. Its keys are in the format of mi@m j, where m j denotes the successor of
mi. The set, Ur =

{
u1

r , u
2
r , · · · , u

n
r

}
, denotes all of statements inside mr, and each ui

r ∈ Ur denotes the ith statement
in Ur. Line 3 iterates Ur. For each element, Line 4 extracts the keywords in ui

r, with Soot. Here, keywords are the
instructions that are defined by Soot. For example, the JAssignStmt keyword indicates an assignment statement;
the JReturnStmt keyword indicates the return statement of a method; the JGotoStmt keyword indicates a jump
statement; and the invoke keyword indicates that a method invocation. The manual of Soot [6, 18] present the
complete definitions of these keywords. For each method invocation, Lines 6 to 14 update the M and R sets according
to keywords. In particular, if ur has a keyword that indicates a call to the ms method (e.g., invoke.ms(parameter)),
we determine that the mr method calls the ms method. In such a case, we add the ms method to the M set. In addition,
we look up the key of hash map R, if the edge mr@ms already existed, the corresponding value rrs add one, else record
the edge into hash map R. After updating, enter the callee ms and do Line 3 again.

Besides the call relations, for each method, ANDROIDOFF extracts features such as block depths, the number of
statements, and its complexity:

Definition 2. mi =< blockDepth, percentBranchS tatements, complexity, statements, calls >: blockDepth denotes
the depth of function, which is calculated as the nesting levels of branches in mi. percentBranchStatements denotes
the proportion of branch statements, which is branch statements such as if, for, while and switch over the total
statements. complexity denotes the number of paths in mi, which is calculated as:

complexity = e − n + 2 (1)

where e is the number of edges and n is the number of nodes . statements denote the number of statements and
calls denote the times of external invocations in mi.

6
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public void printMax(int a,int b){

int c = max(a,b);

System.out.println("The maximum between 

"+a+"and "+b+" is"+c);

int d = max(666,999);

}

public int max(int num1,int num2){

int result;

 if (num1 > num2)

   result = num1;

 else

 result = num2;

 return result; 

}

Figure 4: An example of method invocation.

Figure 5: An example of weighted call graphs.

4.1.2. Predicting Execution Costs
If the mi method is executed on the nk node, we define its execution cost as follows:

Definition 3. Einvokemi
nk =< Etime, Edatasize >: the Etime time denotes the execution time from first statement to

last statement, and Edatasize denotes the amount of data transmission.

To guarantee the validity of our recorded Einvoke values, we execute each program ten times and take the average
as its Einvoke value. Here, we calculate the relative error between the ten values and their average value. If the relative
error of a value is greater than 10%, we determine that the value is accidental. When this happens, we recalculate the
average, after we remove the accidental values. The execution costs are different on different nodes. To handle this
issue, we execute the program on all the nodes. It is worth noting that we could only record 80% of methods after exe-
cuting the program. The execution costs of the remaining 20% methods are estimated according to our static analysis
and the costs of those executed methods.

A simple linear regression model can be insufficient to reveal the relation between features and execution costs.
ANDROIDOFF uses the Random Forest Regression Algorithm [39] of WEKA [28], which is effective to handle imbal-
anced data with satisfactory robustness. Brieman [20] proposed Random Forest (RF) and proved it can carry out the
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Algorithm 2 The WCG Generation Algorithm

Input: A main method mr,its statement Ur =
{
u1

r , u
2
r , · · · , u

n
r

}
Output: A weighted call graph GP = (M,R);
1: M ← M + mr

2: R← φ
3: for each ui

r ∈ Ur do
4: keywords← S oot(ui

r)
5: if ∃“invoke” ∈ keywords then
6: ms ← getMethodName(keywords)
7: M ← M + {ms}

8: if “mr@ms” ∈ R.key then
9: + + rrs

10: else
11: rrs ← 1
12: R← R + rrs

13: end if
14: mr ← ms

15: end if
16: end for

nonlinear relation between the variables. It is a non-linear model-building tool, which is widely used in some popular
fields such as data mining and bioinformatics [79, 26]. Moreover, RF can give the ranking for the importance of the
variables, and the error rate for out of bag (OOB) data can give a good estimation for generalization ability of RF.
Therefore, RF is a good tool to encode the nonlinear relation between the features of methods and execution costs,
and will be effective for predicting those remaining methods.

Random Forest Regression(RFR) algorithm:
Random forest for regression consists of a collection of regression trees {h(X, θk), k = 1, · · · ,K}, where X is the

observed input vector and θk are independent, identically distributed random vectors. Y as output prediction values are
numerical. The training data is assumed to be independently drawn from the joint distribution of (X,Y), the random
forest prediction is unweighted average of all regression tree prediction:h̄(X) = (1/K)

∑K
1 h(X, θk), where K is the

number of regression models of the decision tree for each sample to get K regression prediction results. The process
of random forests regression algorithm is as follows [20]:

1. If the number of cases in the training set is n , sample b cases randomly by using bootstrap and grow b regression
trees accordingly. Each time the samples that are not selected form b out-of-bag data are used as random forests
test samples.

2. If there are p variables in the original data, a number of mtry variables mtry ≤ p are specified at each node of
a regression tree as alternate branch variables. Then select the best branch according to the branching optimum
rule.

3. Each tree then begins to branch recursively from top to bottom. Set the node with the least size as the condition
for the tree to stop growing.

4. Build a random forests model with b regression trees generated. Its effect is assessed with residual mean square,
which is predicted by out-of-bag (OOB) data, as shown in Formula 2 and 3, where yi is the actual value of
the dependent variable in OOB, y̌i is the predicted value by random forests to OOB and σ̌2

y is the variance by
random forests to OOB predicted value.

MS EOOB = n−1
n∑
1

{
yi − y̌OOB

i

}2
(2)

8
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Figure 6: Context architecture.

R2
RF = 1 −

MS E00B

σ̌2
y

(3)

Definition of prediction model:
A regression model for predicting execution costs is obtained by training RF with the important variables and the

parameters Ntree, Mtry. Thus, the final model is defined as follow:
(1) The variables: blockDepth, percentBranchStatement, complexity, statements, calls, Parm
(2) The type of a random forest: regression
(3) The number of regression trees grown based on training data(Ntree): 50
(4) The number of different predictors tested at each node(Mtry): 3
(5) The mean of squared residuals(MS EOOB): 200.76 ms
In training procedure, when building the training data, for each collected execution, we extract its features as

listed in Definition 2, and consider its execution cost as the label. Set Parm = {Parm1, Parm2, · · · , Parmn} denotes
parameter types in mi. And the value of Parmk ∈ Parm is collected by code analysis, which denotes the num-
ber of Parmk ∈ Parm. We take parameter types into consideration, since a complicated type often leads to more
data transmissions among computation nodes. Our evaluation results show that this feature is the best one for pre-
dicting. After the model is trained, ANDROIDOFF can estimate the execution costs of the remaining methods (i.e.
Einvokemi

nk =< Etime, Edatasize >).
Formally, we define the Sinvoke cost of a mi method in the nk computation node as follows:

Definition 4. S invokemi
nk =< S time, S datasize >: the time Stime denotes the execution time and Sdatasize denotes the

amount of data transmission except external invocations in mi executed in nk,which should be calculated by:

S invokemi
nk
= Einvokemi

nk
−

∑m j∈Post(mi)
Einvokem j

nk ∗ ri j (4)

where ri j denotes the frequencies of a method call from mi to m j and Post(mi) denotes all the successors of mi.

For a method (m j), all its called methods are extracted through static analysis. As these called methods can be
offloaded to other computation nodes, their execution costs shall not be included in the local execution cost of m j, i.e.,

9
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Table 1: The factors that can influence the offloading decision

Symbol Description
OBJ the set of core movable objects

INVOKE the set of call relations between objects
N the set of compute nodes including DS, ME and RC

nk ∈ N the compute nodes nk

vnin j the data transmission rate between ni and n j

rttnin j the round-trip time between ni and n j

Tob ji the total offloading time of ob ji
Te(ob ji) the execution time of ob ji
Td(ob ji) the data transmission time of ob ji
Tresponse the response time of application

S invokemi
nk the execution cost except external invocations of mi in nk

invokepq a object call from ob jp to ob jq
dep(ob ji) the offloading node for ob ji

Einvokemi
nk . To handle this issue, the execution costs of called methods are subtracted from Einvokemi

nk , which is equal
to the sum of each m j ∈ Post(mi). During rumtime, the actual cost of m j ∈ Post(mi) is calculated as its Einvokem j

nk

multiplied by the weight of ri j, i.e., the frequencies of the method call. Algorithm 2 describes the details.
As a result, the execution cost except external invocations of methods in all compute nodes(i.e., S invokemi

nk =<
S time, S datasize >) could be achieved.

4.2. Offloading with Estimated Costs

In this section, we presents our estimation model for offloading, and the model calculates the response time of each
offloading decision. It determines the minimum cost of all the decisions as the optimal offloading. We first introduce
the factors that affect the offloading decision and a context model that describes the environment (e.g., computation
nodes). After that, we introduce our fitness function.

4.2.1. Contributory Factor
In the offloading-decision process, ANDROIDOFF determines which objects shall be moved, and which compute

nodes shall be moved to. The optimized decision shall minimize the overall execution cost of a program.
Figure 6 shows our context architecture, which consists of a device in different scenarios (DS), several mobile

edges (ME) and a remote cloud (RC). We use a graph to present this network GC = (N, E), where N denotes a set of
compute nodes including local device and remote servers, and E represents a set of communication links among nodes
ni ∈ N. Each edge(ni, n j) ∈ E is associated with a data transmission rate vnin j and a round-trip time rttnin j between ni

and n j. A typical offloading scenario is as follow: First, objects are created in a local device (the only nDS ). In this
location, the created objects can be moved to computation nodes (some nodes of nME) and the remote cloud (nRC).
When device moves to the other location, objects can be moved among the local device, the nearby computation nodes
and the remote cloud according to decision. As mobile edges are not connected in our setting, if transmission occurs
between two objects, they will not be deployed in different nME .

Table 1 shows our factors for predicting which objects shall be offloaded. Among them, nk ∈ N, vnin j and rttnin j are
defined before. We next introduce DEP = (dep(ob j1), dep(ob j2), · · · , dep(ob jn)), where DEP denotes the offloading
decision. Each ob ji ∈ OBJ has an offloading node dep(ob ji) ∈ N. Let Te(ob ji) denotes the total execution time of
ob ji and let Td(ob ji) denotes the data transmission time of ob ji in dep(ob ji). The response time of application can be
represented by Tresponse, which is equal to the sum of T(ob ji). i.e., the total offloading time consisting of Te(ob ji) and
Td(ob ji). In addition, a fitness function is constructed to calculate Tresponse and evaluate the offloading decision.

10
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Table 2: The device contexts in different locations

Garden Playground Teaching Building Laboratory Building

E1 X
RTT = 40ms
V = 1.5Mb/s

RTT = 40ms
V = 1.5Mb/s X

E2 X X
RTT = 70ms
V = 1Mb/s

RTT = 40ms
V = 1.5Mb/s

Cloud
RTT=200ms
V=200Kb/s

RTT=200ms
V=200Kb/s

RTT=200ms
V=200Kb/s

RTT=70ms
V=1Mb/s

4.2.2. Optimization Function
Based on the factors in Section 4.2.1, we construct the optimization function as shown in Formula 5. Here, we

consider that a decision is optimal, if its fitness value is the smallest.

Tresponse =

ob jn∑
ob j1

T (ob ji),∀ob ji ∈ OBJ (5)

where T (ob ji) is determined by:
T (ob ji) = Te(ob ji) + Td(ob ji) (6)

Then we have the following calculations for Te(ob ji) and Td(ob ji):

Te(ob ji) =
∑(

S invokeinvokepi.callee
dep(ob ji)

.S time ∗ invokepi.invokeT imes
)

(7)

Td(ob ji) =
∑

S invokeinvokepi.callee
dep(ob ji)

.S datasize

vdep(ob jp)dep(ob ji)
+ rttdep(ob jp)dep(ob ji)

 ∗ invokepi.invokeT imes

 (8)

where ob jp ∈ OBJ is the caller of ob ji and invokepq should satisfy the following constraint:

q = i,∀invokepq ∈ INVOKE (9)

The formulation description is expounded as follows: We traverse the INVOKE set and find the relationship
invokepq, where ob jq is ob ji. For each invokepi, we obtain Stime of the callee method on the compute node dep(ob ji)
in Section 4.1. After that, Te(ob ji) is calculated as the sum of Stime multiplied by invokeTimes in each invokepi

as shown in Formula 7. A single data transmission time between ob jp and ob ji consists of two parts. One part is the
Sdatasize of the callee in the compute node dep(ob ji), which is obtained in Section 4.1, divided by vdep(ob jp)dep(ob ji).
The other is the round trip time between two compute nodes, which are the locations of ob jp and ob ji. Thus, Td(ob ji)
is the sum of single one multiplied by invokeTimes in each invokepi, as shown in Formula 8.

As a result, T (ob ji) could be calculated and the accumulation of each T (ob ji) is the response time of application.
The result can help to make offloading decision in Algorithm 1.

5. Evaluation

We implemented ANDROIDOFF, and conducted evaluations to explore the following research questions:

(RQ1) To what degree does ANDROIDOFF improve the state of the art (Section 5.1)?

(RQ2) Which parameters are the best? (Section 5.2)?

(RQ3) Which features matter in the prediction? (Section 5.3)?

(RQ4) To what degree does ANDROIDOFF makes correct predictions (Section 5.4)?
11
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(RQ5) How effective is our internal Random Forest compared with other classifiers (Section 5.5)?

For RQ1, our results show that ANDROIDOFF saved 8%-49% response time and reduced 12%-49% energy con-
sumption on average. For RQ2, we find that the best results are achieved when ntree is 50 and mtry is 3. For RQ3, we
present the rank of features, as far as their importance is considered. For RQ4, our results show that the model’s fitting
degree is 0.786. For RQ5, our results show that the fitting degree of RF is higher than the other regression models.

5.1. RQ1. The Improvement Over The State Of The Art

5.1.1. The Setting
In our evaluation, the network context consists of five computation nodes such as two mobile devices and three

remote servers, which is an MEC environment. MEC is different from MCC, since MEC includes edge nodes, which
provide computing power for mobile terminals. In particular, MCC has only a strong cloud center, but the connection
between the center and mobile devices is relatively poor. For MEC, edge nodes provide weaker computing power, but
have better network connection to nearby mobile devices. We have four locations such as the garden, the playground,
the teaching building and the laboratory building. Table 2 lists the connections among our computation nodes. The
column and the row of a cell denotes the round-trip time and the data transmission rate between a mobile and corre-
sponding nodes. We obtain the two measures with the WLAN RTT tool [7]. A smaller rtt and a higher v denotes a
better signal strength.

The two mobile devices include two mobile phones: 1) Honor MYA-AL10 [3] with 1.4GHz 4 core CPU, 2GB
RAM, and 2) Honor STF-AL00 [4] with 2.4GHz 4 core CPU, 4GB RAM.

The three remote servers include two mobile edges (E1 and E2) and one cloud, which can be used for offloading
in different locations. E1 is a server with 2.5GHz 8 core CPU and 4GB RAM, and it provides the wifi connections
to the playground and the teaching building. E2 is a server with 3.0GHz 8 core CPU, 8GB RAM, and it provides the
wifi connection to the teaching building and laboratory building. The cloud is a server with 3.6GHz 16 core CPU and
16GB RAM, which is accessed from all the locations.

We use an Android application in the evaluation. It is a License Plate Recognition System (LRS). We installed
the application on our mobile devices. With both devices, we walked around the garden, the playground, the teaching
building, and the laboratory building; record the video continuously of parked cars; and identified their license plates.
There are five main computation tasks in this application: shooting, framing, preprocessing, ocr processing, and in-
formation storing. The LRS translated a video into images, frame by frame. From these images, the LRS recognizes
the plate number and stores it locally. The application needs to connect with other servers to check whether a plate
number is legal or not. We went through the whole process for ten times. To reduce the total execution time and the
transmission time, we transformed images in grey before being transmitted to the server according to Wang et al. [70].

Because we concern whether the difference between ANDROIDOFF and other approaches is significant, Mann-
Whitney U test is used to compare whether ANDROIDOFF saved response time and reduced energy consumption
significantly. As introduced by McKnight and Najab [52], the Mann-Whitney U test is more general than many other
tests, since it does not require normal distribution.

5.1.2. Compared Approaches
In our evaluation, we compared ANDROIDOFF with the three other approaches such as the baseline, the ideal

approach and Logger [17]. In particular, for the baseline, the application is executed on mobile device locally, without
any offloading and scheduling. For the ideal approach, all the movable objects in application are offloaded with fastest
scheme after executing all object deployment in reality. The ideal approach is infeasible in practical, since it needs to
exhaustively iterate all the paths and the effort is often unacceptable. Indeed, the exhaustive search before the evalua-
tion takes non-trivial effort. For example, for the ideal approach, when we move a phone inside the teaching building,
we have to execute 243 times to compare the response time among 243 possible deployments. Each deployment
takes more than 20,000 ms, and those worse cases take even more time. We introduce the ideal approach to illustrate
how close ANDROIDOFF is to the ideal one. The goal of Logger is to reduce the computation costs with the lowest
overhead of data transmission. As a result, Logger offloads all the movable objects to nearby servers, according to
their network connections (i.e., the smallest rtt and the highest v).

12
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Figure 7: The performance comparison in four locations

5.1.3. Measurement
To show the effectiveness ofANDROIDOFF , we define the following metrics:
Total response time: We use the total response time of executing the five tasks in application as the metric for

performance. To make a fair comparison, we executed the five tasks for ten times, and calculate their averages for
comparison. Here, the start time is recorded when the shoot button is pressed and the end time is recorded when park-
ing plate numbers are recognized. It includes execution time and transmission time. The less response time indicate
better results.

Execution time: This is the time to compute tasks process on the mobile device or remote servers. The computa-
tion on remote servers is usually more efficient than mobile device.

Transmission time: This is the time to transmit data among computation nodes, and it is often slow under poor
network connection [71]. The transmission time should be minimized.

Energy consumption: We measure the energy consumption with the PowerTutor [5]. The tool records the de-
tails of the energy consumption for each target application. Intuitively, the lower energy consumption indicate better
results.

P value: We reject H0 and accept H1 only when p is less than 0.05. On the contrary, H0 is accepted and H1 is

0
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Figure 8: The energy consumption comparison in four locations.

rejected when p ≥ 0.05. Here p is a value without units, which is used to compare with the critical value “0.05”. The
hypothesis is usually defined as follows:

-(H0) The difference between two approaches is not statistically significant.
(H1) The difference between two approaches is statistically significant.

5.1.4. Results
In this section, the compared approaches will be measured according to the metrics from Section 5.1.3.

1. Total response time. The total response time consists of the execution time and the transmission time. Figure 7
shows the time of the compared approaches in the four locations. As the response time includes the time of shooting,
framing, preprocessing, ocr processing, and storing, it is reasonable to take 15s-35s. “B”, “L”, “A”, and “I” denote the
baseline, the Logger, the ANDROIDOFF and the ideal respectively. For each approaches, the blue bar denotes the ex-
ecution time and orange one denotes the transmission time. Compared with the baseline on Mobile 1, ANDROIDOFF
reduces 29%, 32% and 39% in the playground, the teaching building, and the laboratory building respectively. In
addition, compared with baseline, ANDROIDOFF reduces 8% and 23% respectively on Mobile 2. The performance of

1
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Table 3: The differences among offloading approaches

the ideal approach Logger the baseline
ANDROIDOFF 0.6454 0.0274 0.0060

the ideal approach 0.0218 0.0075
Logger 0.7553

Logger is better than the baseline, except in the garden. In this location, movable objects are all offloaded to the Cloud,
and the overhead of transmission between the device and the Cloud is expensive. In particular, according to Table 2,
Logger offloads objects to Cloud in the garden, but offloads objects to E1 or E2 in other locations. In contrast, based
on the trade-off between execution time and network delay, ANDROIDOFF decides to execute such objects locally.
Compared with Logger, ANDROIDOFF reduces the response time by 34% on Mobile 1, and 52% on Mobile 2 in the
garden. Specially, the total time of ANDROIDOFF is slightly more than the baseline, when offloading is not needed.
Because ANDROIDOFF runs locally as the baseline does, its performance is close to the baseline. However, it takes
200 more ms, which are consumed by the proxies. For both devices, the total response time of ANDROIDOFF is close
to the ideal approach, with a gap of only 100 ms.
2. Execution time. In Figure 7, the blue bars denote the execution time. They are affected by the performance of
computation nodes (Cloud > E1 > E2 > Mobile1 > Mobile2). The baseline takes more execution time than others
in the playground, the teaching building, and the laboratory building, because it does not offload any objects. In the
garden, as Logger offloads more objects than other approaches, it takes the shortest execution time. As the execution
time in 7a is longer than 7b, the execution time is significantly shorten on the low-end device.
3. Transmission time. The transmission time depends on the data sizes and the network connection between com-
putation nodes. For Logger, the same amount of data (offloaded objects) are transmitted slower with the decreasing
of the network connection. Although the execution time of Logger is the shortest, its transmission time is five times
longer than our execution time.
4. Energy consumption. The energy consumption of ANDROIDOFF is less than the baseline and Logger while of-
floading, as shown in Figure 8. The enerygy consumption decreases by 26%-49% on Mobile 1 and by 12%-31% on
Mobile 2. However, Logger reduce only 39% and 17% respectively. When we use Mobile 2 in the garden and the
playground, the energy consumption of the ideal is close to that of the baseline, albeit with an overhead of approxi-
mately 300 mJ, which originates from the proxies. While Logger will consume more energy in transmitting when the
network connection is poor.
5. ANDROIDOFF is significantly different from the baseline and Logger. The first row of Table 3 shows the results.
In Table 3, the column and the row of a cell denote two compared offloading approaches. For each cell, the grey back-
ground indicates that p < 0.05 and H1 is accepted. The results show that ANDROIDOFF significantly improves the
results of the baseline and Logger, since their p values are less than 0.05. The results confirm the effectiveness of
ANDROIDOFF, and highlight the importance of the offloading decision.
6. H0 is accepted and ANDROIDOFF is close to the ideal approach. In Table 3, for the first cell, p > 0.05 and
H0 is accepted. The result shows that the difference between ANDROIDOFF and the ideal approach is not statistically
significant. However, we reject H0 for the second row. Therefore, the baseline and Logger still have a gap compared
with the ideal approach while the effectiveness of ANDROIDOFF is close to it.

In summary, our evaluation results show that ANDROIDOFF is able to extend the battery lifetime of mobile device
and reduce the overall response time. Our appendix lists more details of our offloading plan.

5.1.5. Generalization
To show the generalization of our results, we add another application called Voice Recognition System(VRS) as

our subject. The application recognizes textual contents from voices. The network context, locations, devices and re-
mote servers are the same as described in Section 5.1.1. There are three main computation tasks in this application: a
preprocessor, a recognizer, and a decoder. The data size of VRS is smaller than LRS, since they contain only voices.
We compare our approach with the baseline and Logger. In particular, we change the input data size, and observe the
changes of the total response time. Figure 9 shows the results in the laboratory building on Mobile 1. The red lines
represent the results of LRS, and the blue lines represent the results of VRS. The solid lines represent the results of

2
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ANDROIDOFF , and the dotted lines represent the results of Logger. The figure shows that there is a notable decrease
with the increasing of the input data size. ANDROIDOFF reduces 39%-62% for the results of VRS, and the improve-
ment for LRS is even more significant, due to the smaller amount of transmission data. Hence, ANDROIDOFF achieves
better results, when the data size of applications becomes smaller. Logger reduces 62% response time when the input
data size is small, but it reduce only 28% when the input data size becomes larger (3000KB) in VRS. Furthermore,
there is a sharp decline from 3000KB to 9000KB in LRS, and the results of Logger even become negative. LRS re-
quires a large data size, and the results of ANDROIDOFF decrease to about 20% in 6000 KB, since a larger input data
size leads to longer transmission time. However, between 6000 KB and 9000 KB, its decrease is at a much slower
pace than Logger. Because the baseline has to take longer execution time with large data size while ANDROIDOFF
can make a trade-off and transmission time will not become bottleneck. The improvement is relatively stable at 18%.
ANDROIDOFF is able to deal with applications with a large input data size, where Logger is less effective.

5.2. RQ2. The Best Parameters

5.2.1. The Setting
To prepare the data of this evaluation, we execute License Plate Recognition System (LRS) ten times and calculate

their averages to record Einvoke and extracts features by ANDROIDOFF in Section 4.1.1. Table 4 shows the results of
some sample methods. Column “ClassName” lists class names. “ClassType” lists whether the class can be offloaded.
Column “M” the ids of methods. Column “MethodName” lists the names of methods. Column “Complexity” lists
the number of paths in methods. Column “Statements” lists the number of total statements in methods. Column
“blockDepth” lists the depth of methods. Column “Calls” lists the times of external invocations in methods.

The inputs (X) include the blockDepth (B), percentBranchStatement (PE), complexity (CO), statements (S), calls
(CA), Parm = {int, double, S tring, int[], double[]} (PA) of method. The outputs (Etime and Edatasize) are denoted as
the predicted values (P) of execution costs. In total, we collected the execution costs of 94 methods. For example,
Table 5 shows one of the items. In method “onCreate”, the complexity is 3, the number of statements is 14, the depth
is 5 and the calls is 12, which are shown in the first row of Table 4. The percentBranchStatement is 0.3258 since
the number of branch statements is 5. Parm = {1, 0, 2, 0, 0} denotes that the number of parameter type “int” is 1 and
“String” is 2. The P = {20ms, 0.89Kb} denotes the Einvoke we have recorded in Section 4.1.2. We randomly split

3
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Table 4: The features of methods

ClassType ClassName M MethodName Complexity Statements MaximumDepth Calls
Anchored UAV m1 onCreate 3∗ 14 5 12

Anchored Patrol
m2 capture 4∗ 8 5 5
m3 getMap 3∗ 9 4 6
m4 patrol 2∗ 2 3 1

Movable ImageProcess m5 imageProcess 2∗ 4 3 3
Anchord TakePhoto m6 takePhoto 3∗ 8 4 5

Movable GrayProcess m7 grayProcess 9∗ 15 6 6
m8 resize 5∗ 9 6 5

Movable OcrProcess m9 getTarget 5∗ 10 6 3
m10 ocrAnalysis 6∗ 13 4 6

Movable Store m11 store 1∗ 2 2 2

Anchored Fly

m12 down 2∗ 4 2 2
m13 up 2∗ 4 2 2
m14 left 2∗ 4 2 2
m15 right 2∗ 4 2 3
m16 speedup 2∗ 4 2 2
m17 speedDown 2∗ 4 2 2

Movable PathPlanning m18 A∗ 10∗ 18 7 10

Table 5: A sample item

Sample No B PE CO S CA PA P
1 5 0.3258 3 14 12 {1,0,2,0,0} {20ms,0.89Kb}

the 94 data items into two categories: 70% for training and 30% for testing. The training set was used to train the
prediction model, and the testing set was used to test the quality of our model.

Two parameters need to be optimized in RF: ntree, the number of regression trees grown based on a bootstrap
sample of the collected methods; mtry, the number of different predictors tested at each node. To find ntree and mtry
values that can best predict the uncollected methods, the two parameters (mtry and ntree) were optimized based on the
mean squared error (MSE) of calibration. ntree values from 10 to 210 with intervals of length 40 were tested, and
mtry was tested from 1 to 5. The parameter values (ntree and mtry) were optimized to find the values that could
best predict the Etime and Edatasize. The ntree and mtry values that yielded the lowest MSE were selected. The
RF regression model was conducted as described in [55].

5.2.2. The Measurement
We regard MS E as the evaluation measure of Random Forest Regression Algorithm. Mean Squared Error (MSE)

is an average of the squares of the difference between the actual observations and those predicted:

MS E =
1
N

N∑
t=1

(observedt − predictedt)2 (10)

5.2.3. The results
The results of random forest parameters (ntree and mtry) are shown in Figure 10, which clearly indicates that

RF random forest parameters (ntree and mtry) affect the error of prediction. The optimization was done using the
calibration dataset (n=65) and MSE. The result ntree = 50 and mtry = 3 yielded the lowest MSE (200.76 ms).

According to Brieman [20], the default value of ntree is 500, and the default value of mtry is 2. However, Figure 10
shows mtry = 2 is not the optimal point. When we use the default values mtry = 2, MS E is about twice longer than
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our result mtry = 3. Besides, we found the results are convergence and nearly stable when ntree = 50, but it takes long
time to predict when ntree = 500. In this case, we choose ntree = 50 and mtry = 3 as the best parameters.

5.3. RQ3. The Importance of Features

5.3.1. The Setting
In this evaluation, we reuse the dataset as introduced Section 5.2.1. As in the previous section, we find that the

best results are achieved when mtry is 3 and ntree is 50, we set the two parameters as 3 and 50, respectively.

5.3.2. Measurement
The Out-of-bag (OOB) estimation is a method of measuring the prediction error of random forests and is the

mean prediction error on each training sample [40]. The OOB estimates of error rate were used to measure the
importance of features. The random forest model was able to explore and rank the features by their importance in
estimating Edatasize. Since the feature importance measured in terms of the increase of OOB error, which represents
the deterioration of the predictive performance of the model when each feature is permuted.

5.3.3. Results
Figure 11 shows the feature importance measured in terms of the increase of OOB error. The %OOB error of

Parms as 20.8% is higher than other features. Therefore, Parms as the predictors contributed most to the estimation
of Edatasize. And we take Parms into consideration when build the predication model for Edatasize.

5.4. RQ4. The Effectiveness of Predicting Execution Costs

5.4.1. The Setting
In this evaluation, we reuse the dataset of Section 5.2.1. We use the dataset to test the quality and reliability of the

prediction model.

5.4.2. Measurement
We regard MS E, MAE and R2 as the evaluation measures of prediction model. Mean Squared Error (MSE) is

discribed in Formula 10.
Mean Absolute Error (MAE) is an average of the absolute difference between the actual observations and those

predicted:
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MAE =
1
N

N∑
t=1

|observedt − predictedt | (11)

R-Squared is a more intuitive index to evaluate model, which is between 0 and 1:

R2 = 1 −
∑

(observedt − predictedt)2∑
(observedt − meant)2 (12)

In the above equations, N denotes the number of samples in test set. t denotes the current sample. observedt

denotes the value of actual observations and predictedt denotes the value of predicted. meant denotes the mean value.
Intuitively, the smaller MSE and MAE indicate the prediction model is more accurate. An acceptable value of R2

is greater than 0.5 [36]. We use 10-fold cross validation to ensure the reliability of our results.

5.4.3. Results
It is worth to note that the MSE generally decreased while all of predictors (blockDepth, percentBranchStatemen-

t,complexity, statements,calls) were taken into account to train the model for Etime. The entire features produced
lowest MSE using 10-fold cross validation (289.54 ms) as shown in Figure 12. Here, we select the features with the
backward elimination search function.

Figure 12 shows that the MSE is 289.54 ms. And the MAE is 50.307ms, which we can regard as a small error
when the response time of application is more than 20,000ms. R-Squared, as an intuitive index to evaluate model, is
0.786 in this paper.

In summary, the small error radio shows that our predication model can predict the execution costs of the remain-
ing methods accurately. Based on this, ANDROIDOFF can synthesize an offloading decision that minus the overall
execution cost for application.

5.5. Comparison with Other Classifiers
5.5.1. The Setting

To show the effectiveness of Random Forest Regression, we use the same variables (blockDepth (B), percent-
BranchStatement (PE), complexity (CO), statements (S), calls (CA), Parm = int,double,String,int[],double[] (PA) of
method.) and data items(Table 5) to train the SVM regression model and the Boosting regression model, and compare
their accuracies.
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Table 6: Evaluation index of the three regression models for train set and test

model subset MAE R2

SVM train set 29.743ms 0.841
test set 59.552ms 0.737

Boosting train set 52.660ms 0.764
test set 66.529ms 0.715

Random Forest train set 18.965ms 0.934
test set 50.307ms 0.786

5.5.2. Measurement
Mean absolute error (MAE) and R-Squared (R2) are used to evaluate prediction accuracy. MAE is a comprehen-

sive measure of the deviation between the observed and predicted values of a sample. R2 is commonly used to evaluate
the quality of regression models. They are calculated according to Formula 11 and 12. Some research [65, 30, 56]
shows that the smaller MAE indicates models fitting degree is better. For R-squared, the closer to 1 the better model
is. We also use 10-fold cross validation to compare the results.

5.5.3. Result
The evaluation index of the three regression models for train set and test set are shown in Table 6. The value of

MAE is sorted as Boosting > S V M > RandomForest while the value of R2 is sorted as RandomForest > S V M > Boosting.
The optimal regression model yields the lowest MAE and highest R2, hence Random Forest performs best in predict-
ing execution costs.

5.6. Threat to validity

The threat to internal validity includes the measurement of response time and energy consumption. To make a
fair comparison, we execute tasks for many times and calculate averages for comparison. Zhang [82] shows that
PowerTutor [5] provides accurate, real-time power consumption estimates for power-intensive target application. In
addition, the correlation between features and execution costs of methods in RQ3 may cause the threat to internal
validity. However, our results show that MSE generally decreased while all of features were used to train the model
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for execution costs. We should use a larger dataset to select more relevant features so as to improve the accuracy of
model and reduce the threat.

The threat to external validity includes that selected Android application and network behavior in RQ1 may not
fully reflect all real-world environment. The threat to construct validity include our network behavior. In our exper-
iment, we set up a network environment to simulate the real-world environment as closely as possible. For instance,
the two mobile devices separately represent low-end and high-end devices, and the network conditions between the
mobile devices and the remote servers are different in different locations. Results exactly show the effectiveness of
our approach. The differences of our simulated environment from the real-world environment are 1) the application is
running in a single-user environment, so that the execution time for each invocation of the same class method on the
same computation node is usually close to their average; and 2) the mobility model of mobile devices is not complex,
so that the network conditions between the mobile devices and the same remote server in the same location are usually
close to their average as well. Therefore, our framework can still work in the real-world environment but the perfor-
mance improvement may be slightly different. However, this paper mainly focuses on determining which parts shall
be offloaded in mobile edge computing, and the two issues above are orthogonal to the problem in this paper. Some
related approaches can be introduced to reduce this threat, such as supporting multi-user cases via game-theoretic
model [21, 23] and supporting complex mobility models via other offloading decision algorithms [72, 46]. The threat
to external validity also includes the selected calibration dataset in RQ3. The calibration dataset was randomly split
from dataset. The threat could be further reduced by training the prediction model many times.

6. Related Work

6.1. Offloading Mechanism

Offloading is a technique which aims at mitigating limitations of energy or QoS by delegating the execution of
certain application software to remote resource rich infrastructures [80] like Clouds. Mobile Cloud Computing (MCC)
is a promising approach to improve the performance and the battery consumption of mobile devices by previous
offloading mechanisms, which can be classified into two broad categories [9] such as frameworks based on virtu-
al machine cloning and frameworks based on code offloading. The former frameworks suspend and transfer mobile
executions to VM clones on the cloud, and the latter frameworks offload intensive application components by invok-
ing a remote procedure call (RPC) with annotations, special compilations, or binary modification. Some works [60,
38, 85, 25, 32] are VM/phone clone migration, which needs the same hardware platform as the server to retain a
working synchronized image. Paranoid android [60] uses QEMU to perform attack detection on a remote server in
the cloud where the execution of the software on the phone is mirrored in a virtual machine with minimal impact
on phone performance and battery life. Virtual smartphone [38] uses Android x86 port to create virtual smartphone
images in the mobile cloud efficiently on VMWare ESXi virtualization platform and requires developers to program
applications that can interact and utilize the full power of the cloud resources. Phone mirroring [85] proposed a
distinct augmentation framework which keeps a mirror for each smartphone on a computing infrastructure in the
telecom network by providing different types of service, including computation offloading. CloneCloud [25] proposes
cloud-augmented execution using a cloned VM image as a powerful virtual device and the application partition is
offloaded as from a mobile device to the clone in the cloud. COMET [32] allows threads to migrate freely between
machines depending on ALVMs that require massive modifications for different hardware platforms. Some works [27,
35, 75, 42, 61] are code migration, which should annotate code or follow specific programming models. In the
MAUI system [27], parts of the application code with [Remoteable] annotation are offloaded to the server. And
offloading problem is modeled to provide an optimal partitioning at runtime. Saab et al [35] replicates the application
binary or source code at the server with a dynamic minimum-cut algorithm and an FSP-based protocol to transform
the theory of mobile application partitioning into a practical solution. In Phone2Cloud [75], the remote execution
manger gets required input data, it executes offloading computation on the cloud server, and sends back results to the
offloading proxy. Cuckoo [42] makes partition based on the existing activity model in Android, and the framework
receives method calls and evaluates whether to offload the method using heuristics information. The same as our work,
Jade [61] checks the application and device status by monitoring the communication costs, work load variation, and
energy status. Then an application is partitioned at the class level but a class must implement one of two interfaces to be
offloadable. However, our work based on DPartner [84], which can transfer less granular object-threads from a mobile
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device to a server by automatically refactoring Android code instead of abstracting massive threads. In addition, it
can enable the on-demand offloading for an given Android app in a MCC as well as Mobile Edge Computing(MEC).

6.2. Offloading Strategy

Due to the resource heterogeneity of mobile devices and cloud services, the complexity of mobile applications
and the characteristic of transferring a large amount of data, previous works focus on what computational tasks and
data(what) at what place(where) to offload(i.e., offloading strategy). To copy with what to offload, Ma et al[49] and
Xian et al[76] do no partition for application and the entire application is either executed on the mobile system or
offloaded. Some state-of-the-art computational offloading frameworks [8] employ adaptive algorithm in which elastic
mobile applications dynamically distribute intensive partitions to the cloud server nodes. Ou et al[57] proposes an
adaptive partitioning algorithm that partitions a given application into 1 unoffloadable partition and k offloadable
partitions statically. While the result of [16], a dynamic partitioning, is the joint dynamic allocation of radio resources
and offload scheduling. To deal with where to offload, some works[73],[74] combine the methods of analytic hierarchy
process (AHP) and fuzzy technique to do offloading decision in cloud computing. MAUI[27] reduces latency by using
a single-hop network and potentially saves battery by using WiFi or short-range radio, which belongs to cloudlet-based
decision making. Ma et al[49] proposes a Cloud Assisted Mobile Edge computing (CAME) framework to optimize
the usage of cloud resources and balance the workloads between the cloud and the mobile edge. According to Akher-
fi et al[9], the strategies can be classified as static and dynamic. In Phone2Cloud [75], the offloading decision is
based on delay-tolerance threshold of user, which belongs to static strategy. In this paper, ANDROIDOFF implements
an offloading decision by dynamically and automatically determining which portions of the application should be
offloaded to the cloud, mobile edges or mobile device. Compared to traditional partitions, most of which are based
on high-level abstractions of programs rather than actual applications, offloading at the granularity of objects can be
applied directly and flexibly to the mobile offloading systems. In addition, ANDROIDOFF belongs to hybrid offloading
decision-making, which determines where to perform each application task (locally, cloud or cloudlet) such that the
energy consumption is minimized with a low delay penalty.

6.3. Code Analysis

Code analysis techniques are mostly used for application security [63, 67, 86] and bug detection [29, 81]. In the
field of application security, [11] shows that a 17% cost reduction for reported security bugs is possible by using
a static analysis tool. [12] shows that developers can correctly identify a warning from a static analysis tool(SAT)
as a security threat that needs to be corrected. In terms of bug detection, [12] also shows that SAT is an effective
early fault or vulnerability detector. SymbexNet[66] uses a combination of code analysis and symbol execution to
automatically generate high coverage test packages in a rule-based network protocol specification and finds semantic
errors in network protocol implementation. [10] shows that FindBugs, a static-analysis tool, can look for coding
defects with fairly trivial analysis techniques in Java programs. While in this paper, code analysis techniques are used
to analyze code in Android applications for cost estimation, which is not combined with offloading in previous work.
Code analysis is applied in two aspects. First, ANDROIDOFF gets the call relations between methods and generate
WCG based on Soot [69], a static code analysis tool. Second, ANDROIDOFF combine static analysis and running
program dynamically to do cost estimation. However, most of previous works are only based on high-level program
abstractions to build adaptive offloading decision algorithms.

7. Conclusion And Future Work

Although MCC and MEC have been introduced in general computation offloading to extend computing capability
and battery capacity of mobile devices, we argue that it can fully release the potential of offloading if an application can
determine the execution costs of its parts and which of parts shall be moved to MEC servers. To handle the problem,
this paper proposes a novel approach, called ANDROIDOFF, that supports offloading at the granularity of objects
of Android applications. For a given Android application, ANDROIDOFF first trains an estimation model to predict
the execution costs of all methods through static analysis. Furthermore, based on the predicted cost, ANDROIDOFF
synthesizes a decision model that minus the overall execution cost and determines which parts shall be moved to MEC
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serves. We evaluate ANDROIDOFF on a real-world application. Results show that ANDROIDOFF can significantly
improve the performance and save energy consumption, and predicting model is proved to be accurate.

In this paper, we consider that the execution costs of the method is mainly related to blockDepth, percentBranch-
Statements, complexity, statements, calls, and external calls, which can predict the execution costs of the method in
most cases. While in the case of recursive calls, it is no easy to obtain the average frequency of executions about the
code block since it shall be available at runtime. Some related work has been done to handle such problems [64, 51],
which can be used in future work.

In addition, we intend to consider the overhead incurred by offloading the application as next steps of our research.
For the prediction, it belongs to offline estimation model. And we should take the comparison of more models and
affection factors into account to improve accuracy in the future work. For the online decision, some algorithm, such
as Greedy Algorithm [41] and Genetic Algorithm [31], can be used to reduce overhead. To our knowledge, it takes
about one minute to determine the offloading decision for Genetic Algorithm, while it just takes milliseconds to deter-
mine for Greedy Algorithm. Considering the performance and overhead of two algorithms, they are suitable to work
in different situations. For instance, mobile devices are relatively static when we use VRS application, and Genetic
Algorithm is more suitable and can achieve better application performance. In contrast, mobile devices are relatively
dynamic when we use LRS application, and we shall use Greedy Algorithm for less decision time. Besides, because
the decision algorithm is orthogonal to our model, other related works can be introduced to enhance ANDROIDOFF ,
such as PSO algorithm [48].
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Appendix

Table 7 shows the WCGs that were extracted by ANDROIDOFF. Its columns list the callers, the callees, and weight
of each method call. ANDROIDOFF extracts features for each method in subject application in Definition 2.
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Table 7: Call relations between methods

R Caller CallerMethodName Callee CalleeMethodName Weight
r1,4 m1 onCreate m4 patrol 1
r2,6 m2 capture m6 takePhoto 1
r2,5 m2 capture m5 imageProcess 1
r2,11 m2 capture m11 store 1
r4,12 m4 patrol m12 down 1
r4,13 m4 patrol m13 up 1
r4,14 m4 patrol m14 left 1
r2,15 m4 patrol m15 right 1
r4,16 m4 patrol m16 speedUp 1
r4,17 m4 patrol m17 speedDown 1
r4,18 m4 patrol m18 A∗ 1
r4,3 m4 patrol m3 getMap 1
r5,2 m5 patrol m2 capture 5
r5,7 m5 imageProcess m7 grayProcess 1
r5,8 m5 imageProcess m8 resize 1
r5,9 m5 imageProcess m9 getTarget 1
r5,10 m5 imageProcess m10 ocrAnalysis 1

Table 8: Offloading decision

Device MovableObject Location
Garden playground TeachingBuilding LaboratoryBuilding

Mobile1

pathPlanning Local Local Local Edge2
imageProcessing Local Edge1 Edge2 Cloud

grayProcess Local Edge1 Edge2 Cloud
ocrProcess Local Edge1 Edge2 Cloud

store Local Local Local Local

Mobile2

pathPlanning Local Local Local Local
imageProcessing Local Local Edge2 Cloud

grayProcess Local Local Edge2 Cloud
ocrProcess Local Local Edge2 Cloud

Store Local Local Local Local

Table 8 shows the offloading plan of ANDROIDOFF. The results show that the effectiveness of ANDROIDOFF
is close to that of the ideal approach. In addition, the application can also completes all tasks and runs as normal
with this deployment. So our plan is correct. The Logger depends a lot on network conditions. Particularly, overall
offloading can not weight transport latency against execution time. The ideal approach is our target. It means we hope
the result of our plan calculated in theory and the ideal approach executed in practical is as close as possible.
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