
IEE
E P

ro
of

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

DNNOff: Offloading DNN-Based Intelligent IoT
Applications in Mobile Edge Computing

1

2

Xing Chen , Member, IEEE, Ming Li, Hao Zhong , Member, IEEE, Yun Ma , Member, IEEE,
and Ching-Hsien Hsu , Senior Member, IEEE

3

4

Abstract—A deep neural network (DNN) has become in-5
creasingly popular in industrial Internet of Things scenar-6
ios. Due to high demands on computational capability,7
it is hard for DNN-based applications to directly run on8
intelligent end devices with limited resources. Computa-9
tion offloading technology offers a feasible solution by of-10
floading some computation-intensive tasks to the cloud or11
edges. Supporting such capability is not easy due to two12
aspects: Adaptability: offloading should dynamically occur13
among computation nodes. Effectiveness: it needs to be14
determined which parts are worth offloading. This article15
proposes a novel approach, called DNNOff. For a given16
DNN-based application, DNNOff first rewrites the source17
code to implement a special program structure supporting18
on-demand offloading and, at runtime, automatically deter-19
mines the offloading scheme. We evaluated DNNOff on a20
real-world intelligent application, with three DNN models.21
Our results show that, compared with other approaches,22
DNNOff saves response time by 12.4–66.6% on average.

Q1

Q2

23

Index Terms—Computation offloading, deep neural net-24
works (DNNs), intelligent Internet of Things (IoT) applica-25
tion, mobile edge computing (MEC), software adaption.26

I. INTRODUCTION27

R ECENT years have witnessed the remarkable improve-28

ments of a deep neural network (DNN) . As the core

Q3

29

Manuscript received February 22, 2021; revised March 17, 2021 and
March 29, 2021; accepted April 18, 2021. This work was supported in
part by the National Natural Science Foundation of China under Grant
62072108 and in part by the Natural Science Foundation of Fujian
Province for Distinguished Young Scholars under Grant 2020J06014.
Paper no. TII-21-0800. (Corresponding author: Hao Zhong.)

Xing Chen and Ming Li are with the College of Mathematics
and Computer Science and the Fujian Provincial Key Laboratory of
Network Computing and Intelligent Information Processing, Fuzhou
University, Fuzhou 350118, China (e-mail: chenxing@fzu.edu.cn;
N190327047@fzu.edu.cn).

Hao Zhong is with the Department of Computer Science and En-
gineering, Shanghai Jiao Tong University, Shanghai 200240, China
(e-mail: zhonghao@sjtu.edu.cn).

Yun Ma is with the Institute for Artificial Intelligence, Peking University,
Beijing 100871, China, and also with the School of Software, Tsinghua
University, Beijing 100084, China (e-mail: mayun@pku.edu.cn).

Ching-Hsien Hsu is with the Department of Computer Science and
Information Engineering, Asia University, Taichung 41354, Taiwan, and
also with the Department of Computer Science and Information En-
gineering, National Chung Cheng University, Chiayi 621301, Taiwan
(e-mail: robertchh@gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2021.3075464.

Digital Object Identifier 10.1109/TII.2021.3075464

machine learning technique [1], the DNN has been applied in 30

industrial Internet of things (IoT) scenarios such as computer 31

vision [2] and self-driving cars [3]. Meanwhile, more and more 32

trained deep learning models have been deployed on intelligent 33

end devices, such as wearable devices [4], vehicles [5], and 34

unmanned aerial vehicles [6]. In this article, we call such trained 35

models as DNN-based intelligent IoT applications. 36

Due to limited resources about computation and storage, 37

complex DNN-based applications cannot be directly run on in- 38

telligent end devices. One feasible solution is to offload all or part 39

of computational tasks to the cloud with sufficient resources [7], 40

[8]. More specifically, DNNs are divided by the granularity of 41

neural network layers [9]. Thus, some computation-intensive 42

neural network layers can be offloaded to the cloud for execution, 43

while other simpler neural network layers are processed locally. 44

However, the network communication between end devices 45

and the cloud is likely to cause significant execution delay, and it 46

seriously affects the user experience. To address this delay prob- 47

lem, mobile edge computing (MEC) has been introduced [10]. 48

The mobile edges provide computing capabilities in close prox- 49

imity to end devices and enable the execution of highly de- 50

manding applications in end devices while offering significantly 51

lower latencies. Although MEC provides new opportunities to 52

offload DNN-based applications among end devices, the cloud, 53

and nearby edges, the prior approaches do not consider how 54

to offload them in the new environment. On the one hand, as 55

the environment is constantly changing, the offloading scheme 56

of the DNN model shall be flexible for the need of adaptation. 57

On the other hand, an offloading scheme shall make tradeoffs 58

between the reduced execution time and the network delay, when 59

it determines which layers will be offloaded and where to offload 60

them, based on the changes of environment. 61

To fully release the potential of offloading, an offloading 62

mechanism shall support on-demand changes for DNN-based 63

applications and shall enable the execution of some parts of 64

the DNN model on different computing nodes (including end 65

devices, cloud, and edge servers). Afterward, there needs to be 66

an efficient estimation model, which can determine which of 67

its layers shall be offloaded. In summary, our main research 68

questions are: 1) How to design a mechanism to support the 69

automatic offloading of DNN-based applications in the MEC 70

environment? 2) How to build an estimation model to determine 71

the optimal offloading schemes? After the above questions are 72

carefully handled, the problem of offloading can be reduced to 73

a traditional optimization problem [11]. 74

1551-3203 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEE
E P

ro
of

2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

To address the aforementioned questions, we present a novel75

approach called DNNOff, which supports offloading DNN-76

based applications in the MEC environment. This article makes77

the following major contributions:78

1) an offloading mechanism that enables DNN-based appli-79

cations to be offloaded automatically and dynamically80

in the MEC environment. To achieve this, DNNOff81

translates a DNN-based application to a target program82

that is easier to offload;83

2) an effective model to predict the latency of offloading84

schemes. DNNOff first extracts the structure and pa-85

rameters of the DNN model and then uses a random86

forest regression model to predict the execution cost of87

each layer. Based on the prediction model, DNNOff can88

determine which parts shall be moved to MEC servers;89

and90

3) an evaluation on a real-world DNN-based application91

with AlexNet, VGG, and ResNet models. Our results92

show that DNNOff reduces the response time by 12.4–93

66.6% for complex DNN-based applications.94

The rest of this article is organized as follows. Section II95

reviews the related work. Section III presents our approach, and96

Section IV evaluates it on a real-world application. Section V97

discusses some issues about applicability. Section VI intro-98

duces industrial applications. Finally, Section VII concludes this99

article.100

II. RELATED WORK101

Mobile devices are generally limited to storage space, battery102

life, and computing power [12]. To improve the performance103

of mobile applications, computation offloading has become the104

most widely used technology. MCC improves the performance105

of applications by sending computing-intensive components106

from end devices to the cloud . These applications are partitionedQ4 107

at different granularities, such as method, thread, and class. For108

example, MAUI [13] supports offloading at the granularity of109

methods. It allows annotating which parts of a program can110

be offloaded to the cloud and makes offloading decisions at111

runtime. CloneCloud [14] is a thread-based computation of-112

floading framework, and it modifies virtual machines to support113

seamless offloading of threads to the cloud. DPartner [15] can114

offload classes, and it uses a proxy mechanism to access class115

instances. Furthermore, it calculates the coupling of classes116

and divides them into two sets. The two sets are deployed on117

the end device and the cloud server, respectively. However,118

MCC has inherent limitations, namely, long latency between end119

devices and remote clouds. Hence, MEC has been proposed, in120

which the service of cloud is increasingly moving toward nearby121

edges [16]. AndroidOff [17] supports mobile applications with122

the offloading capability at the granularity of objects for MEC.123

It provides the mechanism to offload an object-oriented applica-124

tion and determine which parts shall be offloaded. However, the125

proposed works above cannot apply to DNN-based applications.126

Computation offloading for DNN-based applications is fur-127

ther advanced in recent years. Neurosurgeon [9] showed that128

large amounts of data produced by DNN models should be up-129

loaded to the cloud via wireless network, leading to high latency130

Fig. 1. Overview of DNNOff.

and energy consumption. For the sake of better performance and 131

energy efficiency of modern DNN-based applications, Neuro- 132

surgeon designed a light weight scheduler to partition DNN- 133

based applications automatically between end devices and the 134

cloud at the granularity of neural network layers. Edgent [18] is 135

a framework that automatically and intelligently selects the best 136

partition point of a DNN model to satisfy the requirement on the 137

execution latency. Compared with Neurosurgeon, Edgent can of- 138

fload computation-intensive DNN layers to the remote server at 139

a low transmission overhead, namely, nearest computation node. 140

Liu et al. [19] proposed an image recognition framework based 141

on the DNN in the MEC environment and realized the food im- 142

age recognition system by employing an edge-computing-based 143

service infrastructure. It allows the system to overcome some 144

inherent limitations of the traditional MCC paradigm, such as 145

high latency and energy consumption. Zhou et al. [20] proposed 146

a robust mobile crowd sensing framework in the MEC environ- 147

ment. It can reduce the service delay with edge-computing-based 148

local processing. The above approaches assume that end devices 149

use a single remote server for computation offloading and can- 150

not make efficient use of dispersed and changing computing 151

resources in the MEC environment. 152

III. APPROACH 153

Fig. 1 presents the overview of DNNOff. For the nodes, we 154

use rectangles to denote its components and circles to denote 155

its internal data. For the edges, red ones denote data flows, 156

and blue ones denote requests. DNNOff has three main compo- 157

nents, namely, extraction, offloading mechanism, and estimation 158

model. First, the extraction component extracts the structure 159

and parameters of a DNN model (see Section III-A). Second, 160

the offloading mechanism translates a DNN model to a target 161

program that enables offloading (see Section III-B) and deploys 162

it on end devices and remote servers where offloading may occur. 163

Finally, the estimation model component deployed on the end 164

device synthesizes an optimized offloading scheme to execute 165

different parts of the target program on proper locations, based 166

on the DNN network structure information and the surrounding 167

MEC environment (see Section III-C). Moreover, the estimation 168

model will update the offloading decision when the surrounding 169



IEE
E P

ro
of

CHEN et al.: DNNOFF: OFFLOADING DNN-BASED INTELLIGENT IOT APPLICATIONS IN MOBILE EDGE COMPUTING 3

Fig. 2. Example of the DNN model.

MEC environment changes. In Fig. 1, a DNN-based application170

and its MEC environment are presented on the right.171

A. Extracting Structure for the DNN Model172

Fig. 2 shows an example of the DNN model. A DNN model173

consists of layers. In Fig. 2, layers are represented as squares174

in different colors. In particular, the yellow one represents a175

convolution layer, which translates an image to a feature map176

with learned filters. The blue one represents an activation layer,177

which is a nonlinear function. The function accepts a feature map178

and generates an output with the same dimension. The purple179

one represents a pooling layer, which can be defined as a general180

pooling, an average pooling, or a max pooling. The green one181

represents a fully connected layer, which calculates the weighted182

sum of the inputs by learned weights. The top of square is the183

name of layer, such as “conv1” and “relu1,” and the bottom184

of square is the parameters of layer. For example, “channel:3”185

denotes that the corresponding value of the parameter “channel”186

is “3.” The black arrow represents the data flow. DNNOff first187

extracts the structure of a DNN model, and the structure includes188

the parameters of each layer and the data flow between layers.189

Its definitions are as follows.190

Definition 1 (DNN model structure): A DNN model structure191

is a directed graphGD = (L,R) representing data transmissions192

between layers of a DNN D, where L = {l1, l2, . . . , ln} is the193

set of layers of D and R is the set of data flow edges. Each edge194

rij ∈ R represents a data flow from li to lj .195

Definition 2 (DNN layer information): A layer consists of196

type and parameters as li =< type, feature >, where type is197

the type of the layer and feature denotes the set of features of198

the layer.199

In general, the DNN-based application stores its trained model200

in the configuration file, such as prototxt of Caffe2.1 Our ap-201

proach takes this file as the input and gets the DNN model graph202

GD = (L,R) through code analysis.203

B. Offloading Mechanism for the DNN Model204

First, we translate an original application to a target program,205

and the translated target program follows the pipe-and-filter206

style. In this style, DNN layers are modeled as filters that receive207

and send data, and data flows between two layers are modeled as208

pipes that transmit the intermediate results. Second, we propose209

a “Pipe” engine to determine which neural network layer shall210

be offloaded.211

1[Online]. Available: https://caffe2.ai/

Fig. 3. Translation of a DNN program.

1) Target Program: We abstract a DNN program using the 212

pipe-and-filter architecture style, based on which we propose a 213

design pattern to support adaptive offloading in MEC. 214

A DNN program is essentially a data flow software architec- 215

ture [21]. Each layer can be regarded as a filter, and the data 216

transmission between layers can be regarded as a pipe. In a 217

typical DNN program, each filter performs the calculation of a 218

layer, whereas the pipe uses the result of the preceding layer as 219

the input data of the succeeding layer. 220

In order to support adaptive offloading of DNN applications, 221

the pipe should decide whether to transfer the data to the local 222

filter or to the remote filter for the successive computation 223

tasks. The filter should decide whether to perform the current 224

computation task (calculation of the current layer) or directly 225

return the results. 226

The left-hand side of Fig. 3 shows the source program of 227

a DNN-based application. It starts from the first layer and 228

receives the initial data (i.e., an image). The result of each 229

layer, namely the intermediate result, is hidden, and the out- 230

put of the last layer is the return value. The statement, li = 231

li.type(li−1, li.feature), indicates that the li layer takes the 232

result of li−1 as its input. The right-hand side of Fig. 3 presents 233

the translated target program. It uses “Pipe” functions to connect 234

each layer, such that the DNN model can be offloaded at the 235

granularity of layers. 236

2) Code Translation: Our translation has three steps. 237

Step 1 (Adding the parameters such as “InitL” and “EndL” 238

after “InitData”): For a given program, DNNOff automatically 239

adds “InitL” and “EndL” into the list of parameters. The two 240

parameters represent the labels of the initial and the last layers, 241

respectively. In addition, DNNOff adds “CurrentL,” which de- 242

notes the label of the layer to be executed. Meanwhile, “InitData” 243

is assigned to the result of lInitL−1, and used as an input to lInitL. 244

Here, when the “DP” program runs, the layers between lInitL and 245

lEndL shall be executed. 246



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Algorithm 1: Pipe.
Input: m—the label of the “Pipe” function
Output: CurrentL—the label of the layer to be executed
Declare:
config—the offloading scheme that records execution
locations of each layer;
EndL—the label of the last layer that is executed at
Local;
li—the result of the ith layer
1: if m < CurrentL then
2: return CurrentL
3: end if
4: if m == CurrentL and config[m] == Local then
5: return CurrentL
6: end if
7: if m == CurrentL and config[m] != Local then
8: k ← calculate the label of the next layer that
9: shall be executed at Local

10: if k == Null then
11: k ← EndL+ 1
12: end if
13: lk−1 ← remote(lCurrentL−1, CurrentL, k − 1)
14: CurrentL← k
15: return CurrentL
16: end if

Step 2 (Adding a “Pipe(i)” function before each layer li):247

This function determines whether the layer li shall be offloaded248

(see Section III-B3 for details).249

Step 3 (Adding two if statements to check each layer li): The250

first statement is “ifCurrentL == i,” where li represents the251

ith layer. It checks whether the layer li is to be executed currently.252

The second statement is “ifCurrentL− 1 == EndL.” If the253

layer lEndL has been executed, its result shall be returned, and254

the layers after lEndL are skipped.255

3) Computation Offloading at Runtime: At runtime, the256

“Pipe” functions connect each layer that can be executed locally257

or remotely, according to the offloading scheme. Algorithm 1258

shows how the “Pipe” function works. Pipe(m) denotes the pipe259

between the layers lm−1 and lm, config is the offloading scheme260

that records execution locations of each layer, and CurrentL261

denotes the label of the layer to be executed.262

When m < CurrentL, it indicates that the layer lm has been263

executed and does not need to be repeated (lines 1–3). Therefore,264

the layer lm will be skipped.265

When m == CurrentL and config[m] == Local (Local266

is a keyword, representing the local node), it means that the267

layer lm is to be locally executed (lines 4–6). Therefore, lm is268

executed and the value of CurrentL is added by 1.269

When m == CurrentL and config[m] != Local, it means270

that the layer lm is to be remotely executed (lines 7–15).271

Then, we calculate the label of the next layer that shall be272

executed at local (line 8), and if k does not exist, we assign273

“EndL+1” to it (lines 9–11). Finally, we run the program274

DP (lCurrentL1, CurrentL, (k − 1) on the remote node ac-275

cording to config[m] and assign its result to lk−1 (line 12).276

Fig. 4. Proposed design pattern of DNN programs.

Fig. 4 shows the example of adaptive offloading of the five- 277

layer DNN, which is executed on three computation nodes. 278

Layers l1 and l5 are to be executed on end device, layers l2 and l3 279

are to be executed on Node A, and layer l4 is to be executed on 280

Node B. First, the DNN programDP (InputData, 1, 5) runs on 281

end device, while CurrentL is 1 and EndL is 5, and l0 is set to 282

InputData; Pipe(1) and l1 are executed, as config[1] is end 283

device; Pipe(2) is executed and the remote service is invoked, 284

as config[2] is Node A. Second, the DNN programDP (li, 2, 4) 285

runs on the Node A; Pipe(1) and l1 are skipped, as CurrentL 286

is 2; Pipe(2), l2, Pipe(3), and l3 are executed in sequence, as 287

config[2] and config[3] are both Node A; Pipe(3) is executed 288

and the remote service is invoked, as config[4] is Node B. Third, 289

the DNN program DP (l3, 4, 4) runs on the Node B; Pipe(1), 290

l1, Pipe(2), l2, Pipe(3), and l3 are all skipped, as CurrentL 291

is 4; Pipe(4) and l4 are executed as config[4] is Node B; then, 292

CurrentL is 5 and thus return the calculation result to the DNN 293

program on end device. Finally, l5 is executed on end device and 294

the output is produced. 295

C. Estimation Model for the Offloading Scheme 296

1) Predicting Cost With Random Forest Regression: The 297

execution time of each layer is an essential factor in the esti- 298

mation model. If the layer li is executed on the node nk, we 299

define its execution cost as follows. 300

Definition 3 (Execution cost): Costlink
=< time, 301

datasize >: time denotes the execution time from setting 302

input data to generating output data, which depends on the 303

performance of the execution node, while datasize denotes the 304

amount of data transmission, which is a fixed value obtained by 305

the extraction component. 306

With the number of layers and the diversity of computing 307

nodes, it is difficult to get execution time of each layer on each 308

computing node. Thus, we used the random forest regression to 309

build prediction models for different layer types and computing 310

nodes, which is to predict Costlink
.time. The RF regression 311

model is proposed by Brieman [22] and is proved to carry out 312

the nonlinear relation between the variables. It is a nonlinear 313

model-building tool, which is widely used in classification [23] 314

and prediction [24]. 315



IEE
E P

ro
of

CHEN et al.: DNNOFF: OFFLOADING DNN-BASED INTELLIGENT IOT APPLICATIONS IN MOBILE EDGE COMPUTING 5

TABLE I
FACTORS THAT CAN INFLUENCE THE OFFLOADING DECISION

Definition of the prediction model:316

Y = predict(X) (1)

Xconv = (channel, ksize, knumber, stride, padding)

Xpooling = (channel, ksize, stride)

Xrelu = (innumber, outnumber)

Xfc = (innumber, outnumber). (2)

We use the dataset of history data to train the prediction317

model, which is collected from DNN applications, including318

Alexnet [25], VGG16, VGG19 [26], ResNet-50, and ResNet-319

152 [27]. The RF regression prediction model is represented320

as Equation (1). The input(X) depends on the type of layers321

as Equation (2), and the layer types include convolution layer,322

pooling layer, activation layer, and fully connected layer.323

2) Contributory Factor: In this subsection, we introduce a324

context model that describes the environment (e.g., computation325

nodes) and the factors that affect the offloading decision.326

The context architecture consists of an end device (ED), sev-327

eral nearby edges (NE), and a remote cloud (RC). We use a graph328

to present this network GC = (N,E), where N denotes a set of329

compute nodes, including end device and remote servers, and E330

represents a set of communication links among nodes ni ∈ N .331

Each edge(ni, nj) ∈ E is associated with a data transmission332

rate vninj
and a round-trip time rttninj

between ni and nj . A333

typical offloading scenario is as follows: The data are generated334

on the end device (the only nED), and the layers can be offloaded335

to nearby edges (some nodes of nNE) or the remote cloud (nRC).336

Table I shows our factors for estimating an offloading scheme.337

Among them, nk ∈ N, vninj
and rttninj

are defined before. We338

next introduce DEP = (dep(l1), dep(l2), . . . , dep(ln)), where339

DEP denotes the offloading scheme. Each li ∈ L is executed340

on a computation node dep(li) ∈ N . Let Te(li) denote the341

execution time of li and let Td(lk, lm) denote the data trans-342

mission time between layer lk and layer lm. The response time343

of application can be represented by Tresponse, which is equal to344

the moment after the execution of the last layer (tn). In addition,345

an objective function is constructed to calculate Tresponse and346

estimate the offloading scheme.347

3) Objective Function: Our objective function makes predic-348

tions, based on contributory factors. In particular, based on the349

factors in Section III-C2, we construct the objective function350

as shown in Equation (3). Here, we consider that a scheme is351

optimal, if its objective value is the smallest. As Table I shows352

Algorithm 2: Calculation of Response Time.

Input: P li—the set of parent nodes of the layer li
Output: tn—the response time of an offloading scheme
Declare:
li—the ith layer
ti—the moment after the execution of the layer li;
tmax—the maximum sum of the time at the moment after
the execution of each parent layer with the addition of the
8: transmission time between two layers;
9: Td(lk, lm)—the data transmission time between the

layer
lk and the layer lm;
Te(li)—the execution time of the layer li
1: function currentTimeP li , li
2: for each plij ∈ P li do
3: if t

p
li
j

not calculated then

4: t
p
li
j

← currentT ime(P p
li
j , plij )

5: end if
6: tmax ← max{tmax, tpli

j

+ Td(p
li
j , li)}

7: end for
8: ti ← tmax + Te(li)
9: return ti

10: end Function
11: t0 ← 0
12: tn ← currentT ime(P ln , ln)
13: return tn

that ti is the moment after the execution of layer li, the total 353

response time is obtained when the last layer ln is executed 354

Tresponse = tn (3)

ti = max
{
t
p
li
j

+ Td(p
li
j , li)

}
+ Te(li), ∀plij ∈ P li

(4)

Te(li) = Costlidep(li).time (5)

Td(p
li
j , li) =

Costp
i
j .datasize

vdep(pi
j)dep(li)

+ rttdep(pi
j)dep(li)

. (6)

The description of Equation (4) is expounded as follows: 355

First, the moment before the execution of current layer li is 356

calculated as the moment after the execution of previous layer 357

(t
p
li
j

) with the addition of the transmission time between two 358

layers (Td(p
li
j , li)). Second, according to the characteristic of the 359

DNN, the current layer can only be executed when all branches 360

from previous layers have already been executed. Hence, ti 361

includes the execution time of layer li, and the maximum sum 362

of the time at the moment after the execution of each parent 363

layer with the addition of the transmission time between two 364

layers. Among them, the execution time of layer li is represented 365

as Equation (5) (Costlidep(li).time is mentioned in Definition 366

3) and the transmission time with previous layer is represented 367

as Equation (6). 368



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

TABLE II
DEVICE CONTEXTS IN DIFFERENT LOCATIONS

As a result, given an offloading scheme, the calculation of369

response time is shown in Algorithm 2. According to line 11 of370

Algorithm 2, we first initialize the value of t0. Then, we use the371

“currentTime” function to calculate tn recursively according to372

line 12. The calculation principle of the “currentTime” function373

corresponds to Equation (4).374

IV. EVALUATION375

We implemented DNNOff and conducted evaluations to ex-376

plore the following research questions.377
� (RQ1) To what degree does DNNOff improve perfor-378

mance of DNN-based applications (see Section IV-A)?379
� (RQ2) How does DNNOff perform in cost prediction of380

each neural network layer (see Section IV-B)?381
� (RQ3) How much extra overhead does DNNOff introduce382

(see Section IV-C)?383

For RQ1, our results show that DNNOff saved 12.4–66.6% re-384

sponse time compared with other approaches. For RQ2, DNNOff385

achieved high accuracy for predicting execution time in different386

layer types and computing nodes. For RQ3, the overhead of our387

offloading mechanism is acceptable.388

A. RQ1 Improvement Over the State of the Art389

1) Experimental Settings:390

a) Network environment: The network context con-391

sists of four computation nodes: one end devices and three392

remote servers. We simulate four locations, which are named393

community, traffic road, parking lot, and store. Table II lists394

the connections among our computation nodes. The column395

and the row of a cell denote the round-trip time and the data396

transmission rate between computation nodes. We utilize the397

network simulation tool Dummynet2 to control the available398

bandwidth. A smaller rtt and a higher v denotes a better signal399

strength.400

b) Devices: We take three desktop computers to emulate401

the Elastic Compute Service (ECS) and edge serversE1 andE2.402

The ECS is equipped with a 3.6-GHz 16-core CPU and 16-GB403

RAM, server E1 is equipped with a 2.5-GHz eight-core CPU404

and 8-GB RAM, and server E2 is equipped with a 3.0-GHz405

eight-core CPU and 8-GB RAM. We further use a smartphone406

to act as the end device, and the end device is equipped with a407

2.2-GHz CPU and 4-GB RAM.408

c) Application: We use a real-world DNN-based image409

recognition application in the evaluation. It is written in Python410

and powered by the Caffe2 deep learning framework.411

2[Online]. Available: http://info.iet.unipi.it/luigi/dummynet/

We mainly concern with three models, which are the core 412

of the DNN-based application, including AlexNet, VGG16, 413

and ResNet-50. The most complex model is ResNet-50, while 414

AlexNet is the simplest one. The inference latency and recogni- 415

tion accuracy are increasing as the model is more complex. 416

d) Compared approaches: In our evaluation, we com- 417

pared DNNOff with four other approaches. 418

The original application is executed on end device, without 419

any offloading. 420

Neurosurgeon [9] selected the best DNN partition point and 421

sent the remaining DNN layers from end device to the cloud. 422

Edgent [18] is similar to Neurosurgeon [9], but offloads 423

computation-intensive DNN layers to the remote server at a low 424

transmission overhead, namely, nearest computation node. 425

For the ideal plan, it has to get execution time of each layer on 426

each computing node and choose the fastest one after executing 427

all the schemes in reality. The ideal plan is infeasible in practice 428

since it needs to get the execution time at different levels in 429

advance and try all the possibilities. We introduce the ideal plan 430

to illustrate how close DNNOff is to the ideal one. 431

e) Measurement: To show the effectiveness of 432

DNNOff, we define the following metrics. 433

1) Total response time: We use the total response time as the 434

metric for performance. To make a fair comparison, we 435

pick ten different images from the video in each location 436

and calculate their averages for comparison. Here, the 437

start time is recorded when the image is input, and the end 438

time is recorded when the recognition result is output. It 439

includes local inference, data transmission, and remote 440

inference. The less response time indicates better results. 441

2) Local inference: This is the time about inference process 442

on the end device. The inference on remote servers is 443

usually more efficient than end device. 444

3) Remote inference: This is the time about inference process 445

on the remote servers. 446

4) Data transmission: This is the time to transmit the feature 447

vectors result by the partitioned layers of DNN model, and 448

it is often slow under poor network connection. 449

2) Results: The total response time consists of the inference 450

time and the transmission time. Fig. 5 shows the time of com- 451

pared approaches in the four locations. For each approach, the 452

blue bar denotes the local inference time, the orange one denotes 453

the data transmission time, while the gray one denotes the remote 454

inference time. 455

Compared with the original application, DNNOff reduces the 456

total response time by 30.4–66.6%. The result also shows that the 457

more complex the model, the better the optimization of DNNOff. 458

In general, the optimization of community is better than that of 459

store, because community is closer to the better performing edge 460



IEE
E P

ro
of

CHEN et al.: DNNOFF: OFFLOADING DNN-BASED INTELLIGENT IOT APPLICATIONS IN MOBILE EDGE COMPUTING 7

Fig. 5. Process of a DNN-based image recognition application.
(a) Image recognition with the AlexNet model. (b) Image recognition with
the VGG16 model. (c) Image recognition with the ResNet-50 model.

server, which can significantly reduce the reference time. In the461

traffic road, the ResNet-50 is optimized to 66.6% with DNNOff,462

since the data transfer volume between the layers in ResNet-50463

is small and the location is connected to all remote servers, so464

that the offloading can alleviate the bottleneck of local inference465

time and, meanwhile, guarantee a lower data transmission time.466

It should be noted that the parking lot is only connected to the467

cloud server, so the performance improvement is not as obvious468

as that in other locations, but it can still reduce the time by469

30.4–47.1%. Hence, DNNOff is still effective even if there are470

no edge servers.471

Compared with Neurosurgeon, DNNOff reduces the total472

response time by 26.5–53.2%. The results show that DNNOff473

significantly outperforms Neurosurgeon in the traffic road with474

the VGG model. Because traffic road has the best network475

connection with remote servers, which provide more choices476

to DNNOff for offloading . While in the parking lot, DNNOff
Q5

477

can keep the same performance as Neurosurgeon . Due to the
Q6

478

poor network connection, multiple partitions will increase the479

TABLE III
SAMPLE ITEMS

data transmission time instead. In this case, DNNOff makes the 480

same offloading scheme as Neurosurgeon does. 481

Compared with Edgent, DNNOff reduces the total response 482

time by 12.4–39.3%. Although Edgent considers the use of 483

nearest computation node, DNNOff can cut the DNN at multiple 484

points and execute different parts over the end device, edges, and 485

the cloud. 486

Compared with the ideal plan, DNNOff can achieve compa- 487

rable performance in different cases, and the performance gap 488

between them is about 5%. 489

In summary, DNNOff saved 12.4–66.6% of the total response 490

time compared with other approaches. Meanwhile, the results 491

show that DNNOff achieves optimal/near-optimal performance 492

of offloading. 493

B. RQ2 Accuracy for Cost Prediction of DNN Layers 494

1) Experimental Settings: 495

a) Model training: We use the dataset of history data 496

to train the random forest regression prediction model, which 497

is collected from DNN-based applications running on different 498

computing nodes. In total, we collected the layer information 499

about convolution layers, pooling layers, activation layers, and 500

fully connected layers of 425 items, 320 items, 582 items, and 501

96 items, respectively. Table III shows some convolution layer 502

items, which is collected on the end device, as an example. 503

Column “Channel” lists the number of channels of convolution 504

kernel. “ksize” and “knumber” list the size and the number of their 505

filters, respectively. Columns “Stride” and “Padding” list the 506

stride and the padding with which the filters are being applied. 507

The inputs (X) include the channel, ksize, knumber, stride, and 508

padding. The output (time) is denoted as the predicted value of 509

layer latency. Based on the dataset, we randomly split the data 510

items into two categories: 70% for training the prediction model 511

and 30% for testing the quality of our model. 512

b) Measurement: We regard root-mean-square error 513

(RMSE) and R-squared (R2) as the evaluation measures of the 514

prediction model 515

RMSE =

√√√√ 1
N

N∑
t=1

(observedt − predictedt)
2 (7)

R2 = 1−
∑

(observedt − predictedt)
2

∑
(observedt −meant)2

. (8)

RMSE is the sample standard deviation of the differences 516

between predicted and observed values. R2 is commonly used 517

to evaluate the quality of regression models. They are calculated 518

according to Equations (7) and (8). 519

2) Results: Table IV shows the accuracy of the random 520

forest regression prediction model. It illustrates the RMSE and 521



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

TABLE IV
RMSE AND R-SQUARED OF THE PREDICTION MODEL ON THE TEST SET

Fig. 6. Optimization of random forest parameters using RMSE.

R2 results for predicting in different layer types and computa-522

tion nodes. For RMSE, the smaller RMSE indicates the better523

model’s fitting degree [28], [29]. For R2, an acceptable value of524

R2 is greater than 0.5 [30], and the closer to 1, the better the525

model is. Table IV shows that the RMSE of the model is small526

and R2 is greater than 0.5, illustrating that the prediction model527

is acceptable. And the high accuracy of prediction model lays528

the foundation for scheme estimation.529

In addition, there are two parameters in random forest:Ntree,530

the number of regression trees grown based on a bootstrap sam-531

ple of the collected layers, and Mtry, the number of different532

predictors tested at each node. The two parameters (Ntree and533

Mtry) are optimized based on the RMSE of calibration. Take the534

training of convolution layers on the end device as an example.535

Ntree values from 500 to 4000 with intervals of length 50 were536

tested, and Mtry was tested from 1 to 5. The results of random537

forest parameters (Ntree and Mtry) are shown in Fig. 6, which538

clearly indicates that random forest parameters affect the error539

of prediction. The optimization was done using the calibration540

dataset (n = 297) and RMSE. The result Ntree = 2000 and541

Mtry = 3 yielded the lowest RMSE (0.289 ms). In this case,542

we chose Ntree = 2000 and Mtry = 3 as the best parameters.543

C. RQ3 Extra Overhead544

1) Experimental Settings:545

a) Setting: We use a simple AlexNet [25] application546

with 24 layers, which is a state-of-the-art DNN for image547

TABLE V
FIVE OFFLOADING SCHEMES FOR ALEXNET

Fig. 7. Overhead of DNNOff and manual-modified one.

classification, and simulate five typical offloading schemes, 548

which represent device-cloud, device-edge, and device-edge- 549

cloud offloading, as shown in Table V. 550

b) Compared approaches: We evaluate the overhead 551

of DNNOff by comparing the performance of the adaptive of- 552

floaded application with the manual-modified offloaded applica- 553

tion for five typical offloading schemes. The adaptive offloaded 554

application is dynamically offloaded according to the offloading 555

scheme, which is supported by our framework. The manual 556

modified one is implemented by separating the code according 557

to the offload scheme case by case. 558

2) Results: We run the application in the five typical offload- 559

ing schemes and, respectively, record their average response 560

time, as shown in Fig. 7. We can see that the response time 561

of DNNOff is similar to the manual modified one, but with an 562

overhead of 120–150 ms. The slight increase of response time 563

(under 10%) is due to the condition statements of pipes that are 564

needed to go through for each layers execution in our framework. 565

For instance, the overheads in cases 1–3 are all about 120 ms 566

because the cutoff points of three offloading scheme are the 567

same. The overhead in cases 4 and 5 are both 150 ms because 568

there are two cutoff points in each offloading scheme, for which 569

more condition statements need to be executed. Overall, the 570

overhead is acceptable. 571

V. DISCUSSION 572

Some issues about applicability need to be further discussed. 573

A. Online Decision 574

For online decision, DNNOff uses the estimation model to 575

calculate the response time given an offloading scheme, based 576

on which the problem of online decision can be reduced to 577

a traditional optimization problem. Some algorithms can be 578

used to reduce overhead. For instance, it takes about minutes 579

to determine the offloading decision for the genetic algorithm, 580



IEE
E P

ro
of

CHEN et al.: DNNOFF: OFFLOADING DNN-BASED INTELLIGENT IOT APPLICATIONS IN MOBILE EDGE COMPUTING 9

while it just takes milliseconds to determine for the greedy581

algorithm; considering the performance and overhead of two582

algorithms, they are suitable to work in different situations [31].583

However, this study mainly focuses on supporting DNN-based584

applications with the offloading capability in an MEC envi-585

ronment, and the issue above is orthogonal to the problem in586

this study. For future work, some state-of-the-art algorithms587

can be introduced to enhance our framework, such as deep588

reinforcement learning [32].589

B. Energy Saving590

Complex applications usually have many computation-591

intensive tasks and consume a great deal of energy. Although592

the battery capacity of end devices keeps growing continuously,593

it still cannot keep pace with the growing requirements of594

intelligent applications. Computation offloading is a popular595

technique to help reduce the energy consumption of intelligent596

application as well as improve its performance [10]. Because of597

space limitation, this article mainly focuses on performance im-598

provement by offloading. For future work, energy consumption599

can be introduced to the objective function (see Section III-C)600

of our framework, wherein energy consumption reduced by601

offloaded computing and extra energy consumption caused by602

communication should be both considered [13], [14], [33].603

VI. INDUSTRIAL APPLICATIONS604

Recently, unmanned aerial/ground vehicles have begun to be605

applied in industrial IoT scenarios [34], such as patrolling the606

forest and delivering meals. These intelligent IoT applications607

have to rely on computer vision, whose cores are large-scale608

and complex DNNs, and thus, they commonly require sufficient609

resources and lead to high energy consumption. In the MEC610

environment, some computationally complex DNN layers are611

offloaded to the cloud or edges, while other tasks with simpler612

DNN layers are processed locally. This paradigm can improve613

performance of DNN-based intelligent IoT applications.614

DNNOff first automatically translates the DNN-based ap-615

plication to a target program that is easier to offload. As the616

unmanned vehicle shifts during the day, its context (e.g., loca-617

tions, network conditions, and available mobile edges) keeps618

changing. When the context changes, DNNOff synthesizes an619

optimal scheme for the intelligent application and then offloads620

its DNN layers according to the scheme.621

VII. CONCLUSION622

The DNN has become increasingly popular in intelligent IoT623

applications. Due to limited resources about computation and624

storage on end devices, complex DNN-based applications can-625

not be directly run on end devices. Although many researchers626

have considered partitioning DNN models between end devices627

and the cloud, we believe that it can completely release the628

potential of offloading DNN if an application can be partitioned629

at more cut-points and determine which parts shall be offloaded630

to MEC servers. With this insight, this article presents DNNOff,631

a novel approach that supports offloading DNN-based applica- 632

tions in MEC. DNNOff can enable a DNN-based application to 633

run its different parts over the end device, the cloud, and edges 634

and automatically determine the offloading scheme based on 635

cost estimation. We evaluate DNNOff on a real-world intelligent 636

IoT application with three DNN models. Results show that 637

DNNOff can significantly reduce the response time. 638

REFERENCES 639

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of 640
deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, 641
pp. 2295–2329, Dec. 2017. 642

[2] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to 643
convolutional neural networks for computer vision,” in Synthesis Lectures 644
on Computer Vision, San Rafael, CA, USA: Morgan & Claypool, 2018, 645
pp. 1–207. 646

[3] V. B. Cardoso et al., “A large-scale mapping method based on deep neural 647
networks applied to self-driving car localization,” in Proc. Int. Joint Conf. 648
Neural Netw., 2020, pp. 1–8. 649

[4] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, “DeepWear: 650
Adaptive local offloading for on-wearable deep learning,” IEEE Trans. 651
Mobile Comput., vol. 19, no. 2, pp. 314–330, Feb. 2020. 652

[5] F. Yang, J. Li, T. Lei, and S. Wang, “Architecture and key technologies 653
for internet of vehicles: A survey,” J. Commun. Inf. Netw., vol. 2, no. 2, 654
pp. 1–7, 2017. 655

[6] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV- 656
mounted cloudlet: Optimization of bit allocation and path planning,” IEEE 657
Trans. Veh. Technol., vol. 67, no. 3, pp. 2049–2063, Mar. 2018. 658

[7] H.-J. Jeong, I. Jeong, H.-J. Lee, and S.-M. Moon, “Computation offloading 659
for machine learning web apps in the edge server environment,” in Proc. 660
Int. Conf. Distrib. Comput. Syst., 2018, pp. 1492–1499. 661

[8] B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven off- 662
loading for DNN-based applications over cloud, edge, and end devices,” 663
IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5456–5466, Aug. 2020. 664

[9] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the 665
cloud and mobile edge,” in Proc. Int. Conf. Architectural Support Program. 666
Lang. Oper. Syst., 2017, pp. 615–629. 667

[10] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: 668
A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018. 669

[11] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and com- 670
putational resources for energy efficiency in latency-constrained applica- 671
tion offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4738–4755, 672
Oct. 2015. 673

[12] A. Yousafzai, A. Gani, R. M. Noor, A. Naveed, R. W. Ahmad, and 674
V. Chang, “Computational offloading mechanism for native and android 675
runtime based mobile applications,” J. Syst. Softw., vol. 121, pp. 28–39, 676
2016. 677

[13] E. Cuervo et al., “MAUI: Making smartphones last longer with code 678
offload,” in Proc. Int. Conf. Mobile Syst., Appl. Services, 2010, pp. 49–62. 679

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: Elas- 680
tic execution between mobile device and cloud,” in Proc. Conf. Comput. 681
Syst., 2011, pp. 301–314. 682

[15] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refactoring 683
android java code for on-demand computation offloading,” ACM Sigplan 684
Notices, vol. 47, no. 10, pp. 233–248, 2012. 685

[16] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile 686
edge computing: The communication perspective,” IEEE Commun. Surv. 687
Tut., vol. 19, no. 4, pp. 2322–2358, Oct–Dec. 2017. 688

[17] X. Chen, J. Chen, B. Liu, Y. Ma, Y. Zhang, and H. Zhong, “AndroidOff: 689
Offloading android application based on cost estimation,” J. Syst. Softw., 690
vol. 158, 2019, Art. no. 110418. 691

[18] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learning 692
model co-inference with device-edge synergy,” in Proc. Workshop Mobile 693
Edge Commun., 2018, pp. 31–36. 694

[19] C. Liu et al., “A new deep learning-based food recognition system for 695
dietary assessment on an edge computing service infrastructure,” IEEE 696
Trans. Services Comput., vol. 11, no. 2, pp. 249–261, Mar./Apr. 2018. 697

[20] Z. Zhou, H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and J. Rodriguez, “Ro- 698
bust mobile crowd sensing: When deep learning meets edge computing,” 699
IEEE Netw., vol. 32, no. 4, pp. 54–60, Jul./Aug. 2018. 700

[21] P. G. Whiting and R. S. Pascoe, “A history of data-flow languages,” IEEE 701
Ann. Hist. Comput., vol. 16, no. 4, pp. 38–59, Winter 1994. 702



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

[22] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,703
2001.704

[23] Z. Chai and C. Zhao, “Enhanced random forest with concurrent analysis of705
static and dynamic nodes for industrial fault classification,” IEEE Trans.706
Ind. Informat., vol. 16, no. 1, pp. 54–66, Jan. 2020.707

[24] I. A. Ibrahim, M. Hossain, and B. C. Duck, “An optimized offline random708
forests-based model for ultra-short-term prediction of PV characteristics,”709
IEEE Trans. Ind. Informat., vol. 16, no. 1, pp. 202–214, Jan. 2020.710

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification711
with deep convolutional neural networks,” in Proc. Int. Conf. Neural Inf.712
Process. Syst., 2012, pp. 1097–1105.713

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for714
large-scale image recognition,” in Proc. Int. Conf. Learn. Representations,715
2015.Q7 716

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image717
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,718
pp. 770–778.719

[28] R. Silhavy, P. Silhavy, and Z. Prokopova, “Analysis and selection of a re-720
gression model for the use case points method using a stepwise approach,”721
J. Syst. Softw., vol. 125, pp. 1–14, 2017.722

[29] M. Khodayar, O. Kaynak, and M. E. Khodayar, “Rough deep neural723
architecture for short-term wind speed forecasting,” IEEE Trans. Ind.724
Informat., vol. 13, no. 6, pp. 2770–2779, Dec. 2017.725

[30] H. Jahangir et al., “A novel electricity price forecasting approach based on726
dimension reduction strategy and rough artificial neural networks,” IEEE727
Trans. Ind. Informat., vol. 16, no. 4, pp. 2369–2381, Apr. 2020.728

[31] Z. Chen, J. Hu, X. Chen, J. Hu, X. Zheng, and G. Min, “Computation729
offloading and task scheduling for DNN-based applications in cloud-edge730
computing,” IEEE Access, vol. 8, pp. 115537–115547, Jun. 2020.731

[32] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning732
for offloading and resource allocation in vehicle edge computing and733
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 158–11168,734
Nov. 2019.735

[33] J. Wang, Y. Wang, D. Zhang, and S. Helal, “Energy saving techniques736
in mobile crowd sensing: Current state and future opportunities,” IEEE737
Commun. Mag., vol. 56, no. 5, pp. 164–169, May 2018.738

[34] T. Yang, Z. Jiang, R. Sun, N. Cheng, and H. Feng, “Maritime search and739
rescue based on group mobile computing for unmanned aerial vehicles and740
unmanned surface vehicles,” IEEE Trans. Ind. Informat., vol. 16, no. 12,741
pp. 7700–7708, Dec. 2020.742

Xing Chen (Member, IEEE) received the B.S.743
and Ph.D. degrees from Peking University, Bei-744
jing, China, in 2008 and 2013, respectively.Q8 745

Since 2020, he has been a Professor with746
Fuzhou University, Fuzhou, China, where he is747
also the Deputy Director of the Fujian Provincial748
Key Laboratory of Network Computing and In-749
telligent Information Processing and leads the750
Systems research group. His current projects751
cover the topics from self-adaptive software,752
computation offloading, model-driven approach,753

and so on. He has authored or coauthored more than 50 journal and754
conference articles. His research interests include software systems and755
engineering approaches for cloud and mobility.756

Dr. Chen was awarded two First Class Prizes for Provincial Scientific757
and Technological Progress, separately, in 2018 and 2020.758

759

Ming Li received the B.S. degree in computer760
science and technology in 2019 from Fuzhou761
University, Fujian, China, where he is currently762
working toward the M.S. degree in computer763
technology with the College of Mathematics and764
Computer Science.765

Since September 2019, he has also been a766
part of the Fujian Key Laboratory of Network767
Computing and Intelligent Information Process-768
ing, Fuzhou University. His current research769
interests include system software and edge770
computing.771

772

Hao Zhong (Member, IEEE) received the Ph.D. 773
degree from Peking University, Beijing, China, in 774
2009. Q9775

After graduation, he worked as an Assistant 776
Professor with the Institute of Software, Chinese 777
Academy of Sciences, and became an Asso- 778
ciate Professor in 2012. From 2013 to 2014, 779
he was a Visiting Scholar with the University 780
of California, Davis, CA, USA. Since 2014, he 781
has been an Associate Professor with Shang- 782
hai Jiao Tong University, Shanghai, China. His 783

research interests include software engineering, with an emphasis on 784
empirical software engineering and mining software repositories. 785

Dr. Zhong is a recipient of the ACM SIGSOFT Distinguished Paper 786
Award 2009, the Best Paper Award of the 2009 IEEE/ACM International 787
Conference on Automated Software Engineering, and the Best Paper 788
Award of the 2008 Asia-Pacific Software Engineering Conference. His 789
Ph.D. dissertation was nominated for the distinguished Ph.D. disserta- 790
tion award of China Computer Federation. He is a Member of the ACM. 791

792

Yun Ma (Member, IEEE) received the B.S. and 793
Ph.D. degrees from the School of Electron- 794
ics Engineering and Computer Science, Peking 795
University, Beijing, China, in 2011 and 2017, 796
respectively. 797

He is currently a Postdoctoral Researcher 798
with the School of Software, Tsinghua Univer- 799
sity, Beijing. Currently, he focuses on synergy 800
between the mobile and the Web, trying to im- 801
prove the mobile user experience by leveraging 802
the best practices from native apps and Web 803

apps. His research interests include mobile computing, Web technolo- 804
gies, and service computing. 805

806

Ching-Hsien Hsu (Senior Member, IEEE) is 807
currently a Chair Professor and the Dean of 808
the College of Information and Electrical Engi- 809
neering, Asia University, Taichung, Taiwan. He 810
is also a Professor with the Department of Com- 811
puter Science and Information Engineering, Na- 812
tional Chung Cheng University, Chiayi, Taiwan. 813
He has authored or coauthored 200 papers 814
in top journals such as IEEE TRANSACTIONS 815
ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE 816
TRANSACTIONS ON SERVICES COMPUTING, ACM 817

Transactions on Multimedia Computing, Communications, and Applica- 818
tions, IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS 819
ON EMERGING TOPICS IN COMPUTING, IEEE SYSTEM, and IEEE NETWORK, 820
top conference proceedings, and book chapters in these areas. He has 821
been acting as an Author/Co-Author or an Editor/Co-Editor for ten books 822
from Elsevier, Springer, IGI Global, World Scientific, and McGraw-Hill. 823
His research interests include high-performance computing, cloud com- 824
puting, parallel and distributed systems, big data analytics, and ubiqui- 825
tous/pervasive computing and intelligence. Q10826

Prof. Hsu is a Fellow of the Institution of Engineering and Technology. 827
828




