
Detecting Outdated Screenshot from GUI Document

YE TANG, Shanghai Jiao Tong University, China
AOYANG YAN, Shanghai Jiao Tong University, China
HUI LIU, Beijing Institute of Technology, China
NA MENG, Virginia Tech, USA
HAO ZHONG

∗
, Shanghai Jiao Tong University, China

In software development, many documents (e.g., tutorials for tools and mobile application websites) contain
screenshots of graphical user interfaces (GUIs) to illustrate functionalities. Although screenshots are critical
in such documents, screenshots can become outdated, especially if document developers forget to update
them. Outdated screenshots can mislead users and diminish the credibility of documentation. Identifying
screenshots manually is tedious and error-prone, especially when documents are many. However, no existing
tools are proposed to detect outdated screenshots in GUI documents.

To mitigate manual efforts, we propose DOSUD, a novel approach for detecting outdated screenshots. It is
challenging to identify outdated screenshots since the differences are subtle and only specific areas are useful
to identify such screenshots. To address the challenges, DOSUD automatically extracts and labels screenshots
and trains a classification model to identify outdated screenshots. As the first exploration, we focus on Android
applications and the most popular IDE, VS Code. We evaluated DOSUD on a benchmark comprising 10 popular
applications, achieving high F1-scores. When applied in the wild, DOSUD identified 20 outdated screenshots
across 50 Android application websites and 17 outdated screenshots in VS Code documentation. VS Code
developers have confirmed and fixed all our bug reports.

ACM Reference Format:
Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong. 2024. Detecting Outdated Screenshot from GUI
Document. ACM Trans. Softw. Eng. Methodol. 1, 1 (July 2024), 25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Software documents often incorporate screenshots of graphical user interfaces (GUIs) to illustrate
software functionalities and the steps of human-computer interactions. For instance, screenshots
are prevalent in bug reports [38] and tutorials [52], where they convey information more lucidly
and vividly than textual descriptions alone. As a result, many applications provide carefully written
documentation with screenshots. For instance, Microsoft alone maintains more than 700 such
repositories dedicated to such documentation [3]. Each repository has many documents with
screenshots. For instance, VS Code is an open-source IDE implemented by Microsoft. According to
the Stack Overflow 2023 developer survey [12], VS Code is the most popular IDE. Among the 590
∗Manuscript received July, 2024.
(Corresponding author: Hao Zhong.)

Authors’ addresses: Ye Tang, tangye_22@sjtu.edu.cn, Shanghai Jiao Tong University, China; Aoyang Yan, xiaoyan9894@
sjtu.edu.cn, Shanghai Jiao Tong University, China; Hui Liu, liuhui08@bit.edu.cn, Beijing Institute of Technology, China;
Na Meng, nm8247@cs.vt.edu, Virginia Tech, USA; Hao Zhong, zhonghao@sjtu.edu.cn, Shanghai Jiao Tong University,
China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2024/7-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

documents of VS Code, 455 documents have screenshots. Besides Microsoft, other companies also
recognize the importance of screenshots. For instance, a research lead for UX research at Baymard
named Edward Scott wrote an article about screenshots. In this article, he criticized that 35% of
SaaS and digital subscription sites fail to provide sufficient visual information, e.g., screenshots.
Although screenshots are critical for GUI documents, they are misleading and harmful if they

are outdated. For instance, as an experienced developer, Sarah Moir wrote an article to discuss
the benefits and pitfalls of adding screenshots to documentation [64]. On one side, she lists three
benefits of screenshots such as making documents easier to read, providing visual references, and
supplementing complicated task steps. On the other side, she lists five pitfalls of screenshots. As the
first pitfall, she criticizes that outdated screenshots can cause readers to lose trust in documentation.
YC is a well-known incubator, and it invested over 5,000 companies (e.g., AirBnb and Dropbox).
When this article is posted on YC, it raises a hot discussion [26]. A reader endorses the criticism:
“outdated screenshot is one of the fastest ways to lose customer trust”. Another reader also agrees
with the criticism: “I lose a lot more trust when I’ve spent 15 minutes trying to find the damn
option the documentation insists should be there, only to find it doesn’t exist any more”. To handle
the problem, developers have fixed many outdated screenshots. For instance, by searching the
issue tracker of VS Code with the two keywords, “update screenshot” or “outdated screenshot”,
we find more than 210 bug reports. In these bug reports, programmers complain that documents
with outdated screenshots are confusing. Still, we can underestimate the relevance of outdated
screenshots, since programmers can report outdated screenshots without mentioning our keywords.
For instance, Azure is a cloud solution provided by Microsoft. An Azure bug report [2] complains
about an outdated image, and this image is a screenshot. As GUI documents are many, it is tedious
to manually identify outdated screenshots.

Although developers have manually fixed many outdated screenshots, to the best of our knowl-
edge, no prior approach has been proposed to detect such bugs, due to two challenges. First, the
differences between the latest and outdated screenshots are often subtle. Although outdated screen-
shots hinder the understanding of documents, it is difficult for document developers to identify
outdated screenshots if they do not execute applications step by step as described. Second, only
specific areas of screenshots are meaningful for identifying outdated screenshots, but many other
differences can be caused by underlying data. If we encode screenshots to pixels, a tool must know
which areas of pixels indicate outdated screenshots.

To meet the timely need, in this paper, we propose a novel approach named DOSUD (Detecting
Outdated Screenshots in GUI Documents). It is the first approach to detect outdated screenshots.
To handle the first challenge, DOSUD integrates multiple discipline techniques including image
processing and GUI testing. To resolve the second challenge, DOSUD captures screenshots from
multiple versions of applications and trains a classification model upon captured screenshots. Our
built model is a random forest, and it is the combination of many if-statements. If an area is
dynamic generated, it seldom associates with outdated screenshots. As irrelevant areas punish our
training process, our built model unlikely has positive if-statements to check the pixels of such
areas when determining outdate screenshots. This paper makes the following contributions:

• A new research direction of detecting outdated screenshots in documents. Despite the
efforts of manually fixing outdated screenshots, to the best of our knowledge, no approach
can detect outdated screenshots from GUI documents. For the first time, we introduce this
problem to the research community. As screenshots are commonly used in various types of
software engineering documents (e.g., bug reports, and development emails), the research on
this new direction can motivate various useful tools.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 3

Troubleshooting steps
1. Check your user settings. Review these terminal.integrated settings that
could affect the launch: (...)
- terminal.integrated.profiles.platform - The defined shell profiles. Sets the
shell path and arguments. (...)
You can review settings in the Settings editor (File > Preferences >
Settings) and search for specific settings by the setting ID.

Troubleshooting steps
1. Check your settings for any of these settings that could affect the launch:
- terminal.integrated.shell.{platform} (…)
You can review settings in the Settings editor (File > Preferences >
Settings) and search for specific settings by the setting ID.

Outdated document Fixed document

Δfeature
Δfeature

ΔUI

Fig. 1. Our detected bug in VS Code Documentation.

• Anovel approach. To illustrate our new direction, in this paper, we propose a novel approach,
named DOSUD. As the first exploration, we focus on two typical GUI documents such as
the website of Android applications and the documents of VS code. It can detect outdated
screenshots from the documents of Android applications and VS Code. Specifically, it employs
GUI testing to dump screenshots of both the latest and previous versions and then extracts
training data with image processing techniques. From the training data of each application,
it trains a classifier that can predict whether a screenshot is outdated or not.
• Previously undetected outdated screenshots in the wild. To evaluate its effectiveness
in the wild, with DOSUD, we applied DOSUD to the latest websites of 50 applications on
Google Play and VS Code. We discovered 20 instances of outdated screenshots from the
website of 50 Android applications. Moreover, we detected 17 outdated screenshots within
VS Code documentation that were not previously reported by anyone. Remarkably, 17 of
these instances have been fixed by the developers, following the submission of our issue
reports. This result shows the importance and the relevance of our research problem.
• Positive results on our benchmark. We construct a benchmark of captured screenshots.
DOSUD achieves an F1-score ranging from 87% to 100% on this benchmark.

In total, we evaluated DOSUD on 59 Android applications (9 in the benchmark and 50 in the wild).
Additionally, we evaluated DOSUD on a desktop application, VS Code, which was examined both
in the benchmark and in the wild. The subjects are sufficient to ensure the reliability of DOSUD.

Besides Android applications and desktop applications, our approach can be extended to detect
outdated screenshots from the documents of other applications (such as Azure). Although we need
to re-implement our GUI testing tool, it should be feasible given the extensive research on GUI
testing [33] and the availability of alternative tools. Moreover, other types of software engineering
documents may have different formats from web pages (e.g., pdf files and gif files). For these
documents, we need to re-implement our extractors as well. Nevertheless, our approach can be
generalized to other types of applications, as long as their screenshots can be extracted. Detecting
outdated screenshots in applications is a significant and pertinent issue that affects various kinds
of documentation. This paper represents the first exploration of a novel research direction, which
entails some unresolved challenges. We discuss several challenges that arise from more complicated
applications in Section 8.

2 MOTIVATING EXAMPLE
With extensions, VS Code can support the development of many programming languages. To learn
VS Code, Microsoft has a project to maintain its documentation [14]. The documentation has more
than 500 documents. Programmers often read the documentation and report their found bugs. Till
now, programmers have reported 2,589 bugs, and 2,511 bugs have been fixed.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

4 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

Although VS code developers fixed many bugs, as shown in Figure 1, DOSUD detects a new bug
from a document. The description of this document explains how to search for a specific setting
by its ID. When explaining the process, this document introduces an ID, terminal.integrated.-
shell.linux, and provides a corresponding screenshot. If programmers use the latest version of VS
Code and follow the document, they will not find the said setting, since this ID is no longer valid.
As shown in the right side of Figure 1, if programmers need to search this setting in the latest VS
Code, they must use a new ID, terminal.integrated.profiles.linux (highlighted in green).

DOSUD detects that this screenshot is outdated. We reported this bug [16], and it was confirmed
in one day. A developer fixed this bug in three weeks and commented that “Thanks for raising
this.”. The right side of Figure 1 shows the fixed document. The description introduces the latest
ID, and the screenshot shows the latest version. We highlight the new ID in green and show the
modification with a yellow arrow. Besides IDs, the obsolete screenshot has more confusing elements.
For example, the Turn on Settings Sync button (highlighted in red) has been replaced by Backup

and Sync Settings (highlighted in green) button. The fixed document resolves the confusion caused
by the outdated screenshot.
Without DOSUD, developers have to read many documents manually to find this bug. When

developers check whether a screenshot is outdated or not, they have to locate the mentioned GUI
and manually compare the differences. The process is time-consuming and error-prone. DOSUD
can detect this bug, since it extracts screenshots from previous versions of VS Code, and learns a
classification model from captured screenshots. The trained model can predict whether screenshots
are outdated or not.
Direct comparisons between screenshots are inadequate for dealing with complicated cases.

In Section 6.3.2, as a form of direct comparison, the 1-nearest neighbor classifier fails to classify
the latest screenshot in Figure 1, because the closest match resembles the outdated screenshot in
Figure 1. In contrast, we train an RF classifier for VS Code. We encode screenshots to pixels and
train our model on labeled pixels. The trained model is a random forest of decision trees. Each
tree can be considered as a set of if statements. Taking critical pixels as input, these if statements
determine whether a screenshot is outdated according to specific patterns in its pixels. In Figure 1,
we highlight the differences between the outdated and the latest screenshots. The subtle changes
cause many different pixels. Our classifier is sensitive to the different pixels and can predict the
outdated screenshot accordingly. We next introduce how DOSUD works.

3 PRELIMINARY STUDY
In this section, we conduct a study to explore two research questions:

(RQ1) Who cares about outdated screenshot (Section 3.1)?
(RQ2) Can outdated screenshots be identified by the last modification time (Section 3.2)?

3.1 RQ1. Stockholder
3.1.1 Protocol. We searched the issue tracker of VS Code with the two keywords, “update screen-
shot” and “outdated screenshot”. In total, we obtained 210 bug reports. From them, we randomly
sample 20% of the bug reports and select 44 bugs. These outdated-screenshot bugs are reported by
27 users and are fixed by 18 programmers. All the 44 bugs confuse readers since their reporters are
real users and programmers. When repairing 24 out of the 44 bugs, VS Code programmers modify
both screenshots and their descriptions. The 24 bugs are closely tied to the core content of textural
descriptions. These bugs can significantly affect the understanding of readers.
The GitHub profiles record the organizations and programming experience of users. If no

organization is provided, we examine their personal websites and emails on GitHub profiles, e.g.,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 5

0 2 4 6 8

Counts

vscode-docs

Other VS Code

Microsoft

Academies

Other Companies

3

6

8

7

3

(a) The organizations.

0 2 4 6 8 10
Counts

1–3

4–6

7–9

10–12

13–15

9

5

6

5

2

(b) The coding experience (Years).

Fig. 2. The background of users who report outdated screenshots.

LinkedIn, blogs, and Twitter. If no such links are available, we use Google to search for a personal
website associated with the same name and verify whether it contains information consistent with
the GitHub profile. We released our inspected bugs on our project website. Other researchers can
check our results. For each user, we calculate the duration from the date of the first activity on
GitHub to the date of reporting or fixing the outdated screenshot. We use the durations to measure
the programming experience of users. We classify users and programmers by their organizations
and programming experience. For users, the results are useful for understanding the outreach
impact of outdated screenshots. For programmers, the results are useful for understanding the
required expertise of checking and repairing reported outdated screenshots.

3.1.2 Results. Figure 2 shows the background of users. In particular, Figure 2a shows that users
come from VS Code, Microsoft, academies, and other companies. Here, vscode-docs is a project
for maintaining the documentation of VS Code. Among the 27 users, only 3 bug reporters come
from vscode-docs. For instance, Gre* Van* Lie*, a senior content writer of vscode-docs, submitted
two bug reports about outdated screenshots. Although they are responsible for maintaining the
documents of VS Code, only 8 out of the 44 outdated screenshots are reported by the writers of
vscode-docs. According to the result, most outdated screenshots are not identified by proofreading
of documentation writers but by programmers in real development. For instance, Ben* Pas* is a
programmer from Microsoft. He is a member of the VS Code project since it was called Monaco.
Among our sampled bugs, Ben* Pas* alone reports 7 outdated screenshots. For instance, in one of
his bug reports [28], he complains that “I noticed that (for macOS at least) our screenshot of VS Code
is really outdated. Mainly we do not show our nice custom window title bar.”
Many programmers of VS Code projects come from Microsoft, since VS Code was initially

developed and later donated by Microsoft [30]. In Figure 2a, Microsoft denotes bugs reported by
Microsoft programmers who are not members of VS code projects. For instance, Luc* Abu* is a
Microsoft senior manager, and he leads several Python projects. In our samples bug reports, he
reported three outdated screenshots.
Besides Microsoft programmers, outdated screenshots affect users from other industrial and

academic organizations. For instance, Odi* Dah* is from Linköping University. In a bug report [19],
he complains that “On the ‘Add a JAR’ section of the Java projects documentation is using an outdated
version of the extension where the Java Projects view is still called ‘Java Dependencies’. This could be
confusing for new users”. As another example, Ben* Rog* is a programmer from Employment and
Social Development, Canada. His bug report [29] complains that “Observe that the new setting in
v1.69 is emmet.useInlineCompletions, however the documentation on the Release Notes indicates the
incorrect setting of emmet.inlineCompletions.”
Figure 2b shows the distribution of programming experience. The result shows that outdated

screenshots mainly affect users whose programming experience is less than three years. For instance,
Pol* Pra*, a user from Microsoft, has a year of experience. As described in her bug report [17], she

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

6 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

0 2 4 6 8

Counts

vscode-docs

Other VS Code

Microsoft

Academies

Other Companies

4

5

7

1

1

(a) The organizations.

0 2 4 6 8 10
Counts

1–3

4–6

7–9

10–12

13–15

3

9

5

1

(b) The coding experience (year).

Fig. 3. The background of programmers who repair outdated screenshots.

Fig. 4. A false alarm of threshold.

was confused by the missing button: “for the ‘dismiss this update’ button in the ‘version’ info bar,
hence they will get confused and face difficulties in accessing the ‘dismiss’ button”. Meanwhile, even
experienced users can be confused. For instance, Pin* is a programmer of the VS Code language
model server for Vue.js. He has 12 years of programming experience, and his bug report [31]
complains that “The security tab is changed to the dropdown. Might confuse people.” The above
observations lead to a finding:

Finding 1: Besides Microsoft, outdated screenshots affect users from other organizations, and
33.3% of such users have fewer than 3 years of programming experience.

Figure 3a shows the organizations of programmers. Although only 4 out of the 18 programmers
come from vscode-docs, they fixed 26 out of 44 outdated screenshots. For instance, Gre* Van* Lie*
is a senior content writer of vscode-docs. He fixed 17 outdated screenshots. The programmers
from other VS code projects and other Microsoft programmers fixed 15 bugs. For instance, Joa*
Mor* is a principal software engineer on the VS Code editor. He fixed one outdated screenshot. Jos*
Par* is a senoir content writer for Windows. He fixed three outdated screenshots. Only 3 outdated
screenshots are fixed by outsiders. For instance, Rac* Mac* is a student from Harvey Mudd College.
She fixed an outdated screenshot after she reported the bug [20]. Figure 3b shows the programming
experience of programmers. The result shows that fixing outdated screenshots requires many years
of programming experience even if they are outsiders. For instance, as introduced before, Rac*
Mac* fixed an outdated screenshot. She has five years of programming experience. The above
observations lead to a finding:

Finding 2: Outdated screenshots can confuse experienced programmers since 25.9% of re-
porters have more than 10 years of programming experience, and 83.3% of programmers who
fixed outdated screenshots have more than seven years of programming experience.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 7

Different
versions of
an app

Captured
screenshots
with labels

App
documents
of the app

4.2.2
Training
Screenshot Classifier

4.3.2
Detecting
Outdated Screenshot

Result

App
Screenshot
Extractor

4.2.1
Capturing
App Screenshot

4.3.1
Extracting
Screenshot
of Document

Encoding
Screenshot

Training Process

Predicting Process

Document
Screenshot
Extractor

Screenshot
Handler

Screenshots in
the documents

Encoding
Screenshot

Screenshot
Handler

Screenshot
Classifier

Fig. 5. The overview of DOSUD.

3.2 RQ2: Feasibility of Simple Threshold
3.2.1 Protocols. In this research question, we explore whether it is feasible to accurately identify
outdated screenshots with a simple threshold. First, we extract all commits that repair outdated
screenshots in RQ1. For each commit, we calculate the time interval from this modification to the
previous modification. We find that the median time interval is 297 days. We select this median as
the threshold for identifying outdated screenshots. We use this threshold to determine whether
the latest screenshots are outdated. Like other bugs, only a small portion of screenshots could be
outdated. To build the confidence on this statement, we randomly sample 10% of identified bugs
and manually check whether they are indeed outdated.

3.2.2 Results. When we use 297 days as the threshold, 70.3% of screenshots are determined as
outdated. As the VS Code documentation is under active maintenance, it should not have so many
outdated screenshots. As a result, we suspect that the threshold leads to many false alarms. After
our manual inspection, we found that only 8 out of our sampled 154 screenshots are outdated. For
instance, the screenshot shown in Figure 4 is a false alarm. Although it has not been updated in
1,281 days, it remains accurate and up to date. The observations lead to the following finding:

Finding 3: It is infeasible to use a simple time interval threshold to accurately determine
whether screenshots are outdated.

In summary, outdated screenshots are significant and relevant since they confuse programmers
both fromMicrosoft and other organizations. Although our sample size is limited, our early findings
show that both novice and experienced programmers can encounter outdated screenshots. Although
novice programmers can identify outdated screenshots, a simple threshold is insufficient to detect
outdated screenshots. After they are identified, most outdated screenshots are fixed by professionals
with seven to nine years of programming experience. We next introduce how DOSUD works.

4 APPROACH
Figure 5 shows the overview of DOSUD. It consists of a training process and a predicting process.
In the training process, DOSUD captures the screenshots of both the latest version and the past

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

8 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

Algorithm 1: Screenshot Extractor and Handler
Input: All versions of an app, 𝐴𝑃𝑃𝑠
Output: 𝑡𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎

1 𝑡𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎 ← [];
2 foreach 𝑎𝑝𝑝 ∈ 𝐴𝑃𝑃𝑠 do
3 𝑠𝑐𝑟𝑒𝑒𝑛𝑠ℎ𝑜𝑡𝑠 ← ScreenshotExtractor(𝑎𝑝𝑝);
4 foreach 𝑠𝑐𝑟𝑒𝑒𝑛𝑠ℎ𝑜𝑡 ∈ 𝑠𝑐𝑟𝑒𝑒𝑛𝑠ℎ𝑜𝑡𝑠 do
5 𝑣𝑒𝑐𝑡𝑜𝑟 ← ScreenshotHandler(𝑠𝑐𝑟𝑒𝑒𝑛𝑠ℎ𝑜𝑡);
6 if 𝑎𝑝𝑝.𝑣𝑒𝑟𝑠𝑖𝑜𝑛 is brand-new then
7 𝑣𝑒𝑐𝑡𝑜𝑟 .𝑙𝑎𝑏𝑒𝑙 ← false;
8 else
9 𝑣𝑒𝑐𝑡𝑜𝑟 .𝑙𝑎𝑏𝑒𝑙 ← true;

10 if 𝑣𝑒𝑐𝑡𝑜𝑟 ∈ 𝑙𝑎𝑡𝑒𝑠𝑡 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ∧ 𝑣𝑒𝑐𝑡𝑜𝑟 ∈ 𝑜𝑙𝑑 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 then
11 𝑣𝑒𝑐𝑡𝑜𝑟 .𝑙𝑎𝑏𝑒𝑙 ← false;

12 𝑡𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎.append(𝑣𝑒𝑐𝑡𝑜𝑟);

13 return 𝑡𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎;

versions as inputs, and trains a classification model. In the predicting process, it uses the trained
model to detect outdated screenshots from the app websites.

4.1 Problem Definition
Let 𝑣1, 𝑣2, · · · , 𝑣𝑛 denote all versions of an application, where 𝑣𝑛 is the latest one, and let 𝑆𝑖 =

{𝑠𝑖1, 𝑠𝑖2, · · · } represent the set of all screenshots in version 𝑣𝑖 . In the latest documents of 𝑣𝑛 , a
screenshot 𝑠 is considered outdated, if it satisfies the following condition:

𝑠 ∈
𝑛−1⋃
𝑖=1

(
𝑆𝑖 − 𝑆𝑛

)
. (1)

According to our definition, if the latest version of the documentation contains a screenshot but
the latest implementation does not have such a screenshot, we consider that it is outdated. In our
target problem, we consider only outdated screenshots in documents.

Although our definition is precise, when detecting outdated screenshots in the wild in Section 5,
we find that outdated screenshots intertwine with descriptions. For instance, even if screenshots
are fresh, descriptions can be outdated. In addition, screenshots and descriptions can be outdated
at the same time. Zhong and Su [81] detect outdated descriptions in documents, e.g., outdated code
references and samples. As outdated screenshots intertwine with descriptions, it could be interesting
to integrate our approach with Zhong and Su [81] to detect more types of bugs. Meanwhile,
outdated screenshots may not hinder the understanding of documents if updated GUI elements are
minor, e.g., changing icons. We do not discuss GUI elements for a concise definition. It could be
interesting if follow-up researchers identify and prioritize the obsolete GUI elements according to
their relationship with descriptions.

4.2 Training Model
DOSUD takes the latest and past versions of an app as its inputs, and trains a classifier for each
app. We train a separate classifier for each app because the features and layouts of each app vary
considerably and influence the appearance of the screenshots. To handle this challenge, we train a

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 9

Algorithm 2: Random Forest Classifier Training
Input: 𝑡𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎
Output: 𝑡𝑟𝑒𝑒𝑠

1 𝑡𝑟𝑒𝑒𝑠 ← [];
2 for 𝑏 = 1 to 𝐵 do

// We set 𝐵 to 100.

3 𝑧
bootstrap 𝑁
←−−−−−−−−−− 𝑡𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎;

4 𝑇𝑏 ← tree(𝑧);
5 while 𝑇𝑏 has a terminal node with both labels do

6 𝑉𝑚
randomly select𝑚
←−−−−−−−−−−−−−−− 𝑉𝑝 ;

// We set 𝑚 to
√
𝑝.

7 𝑉 ← Gini(𝑉𝑚, 𝑛𝑜𝑑𝑒);
8 𝑇𝑏 .split(𝑛𝑜𝑑𝑒,𝑉);

9 𝑡𝑟𝑒𝑒𝑠 .append(𝑇𝑏);

10 return 𝑡𝑟𝑒𝑒𝑠 ;

classifier for each app individually to capture the specific characteristics of each app and enhance
the accuracy of the classification.

4.2.1 Capturing App Screenshot. It is tedious and time-consuming to manually extract screenshots
from an app, especially when it has complicated GUIs. To streamline this process, we categorize
applications into two categories:

1. Applications with testing scripts. Some applications, e.g., Visual Studio Code, have GUI test cases.
When we execute test cases, we utilize Open Broadcaster Software (OBS) [11], an open-source
software for video recording, to capture screenshots. It captures screenshots at a rate of 60 frames
per second.

2. Applications without testing scripts. To automate the process, we use a GUI testing tool, called
Fastbot [37]. It takes an APK as its input and captures its screenshots by traversing its GUIs with
the Upper Confidence Bound (UCB) algorithm [39] and reinforcement learning (RL). UCB favors
less-visited actions with higher uncertainty.

After DOSUD extracts screenshots from the apps, it encodes the screenshots as integer vectors
and assigns labels to them automatically. Algorithm 1 illustrates the steps of capturing, encoding,
and labeling screenshots. In Lines 6 to 9, screenshots from the latest version are labeled as false,
indicating that they are not outdated, while screenshots from other versions are labeled as true,
indicating that they are outdated. If a screenshot appears in both the latest version and an old
version, it means that it has not changed, so Line 11 labels it as false as well. The output of this
algorithm is the training set for Screenshot Classifier.

Although testing tools can fail to capture complete screenshots, the impact of missing screenshots
can be minor, since many GUI documents show typical scenarios. The implications of incomplete
screenshots are further discussed in Section 7. In addition, our trained model does not require
exactly matched screenshots, and it works when similar screenshots are captured, owing to the
utilization of a screenshot encoder.

4.2.2 Training Screenshot Classifier. Screenshot Classifier is based on a Random Forest (RF) clas-
sifier [36], which is an ensemble learning method that constructs multiple decision trees and
aggregates their predictions by majority vote. To enable the classification, DOSUD encodes each
screenshot into an integer vector. A screenshot is an image that is composed of a matrix of color

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

10 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

Algorithm 3: Random Forest Classifier Predicting
Input: 𝑥
Output: 𝑎𝑛𝑠

1 for b = 1 to B do
2 𝑇𝑏 (𝑥) ← 𝑡𝑟𝑒𝑒𝑠 [𝑏].predict(𝑥);
3 𝑎𝑛𝑠 ← majority vote {𝑇𝑏 (𝑥)}𝐵1 ;
4 return 𝑎𝑛𝑠;

pixels, and each pixel encodes the color at a specific point with a color mode. A common color
mode is RGB, where a pixel is represented by a triple of integers between 0 and 255, indicating
the intensity of red, green, and blue components. For example, (255, 0, 0) denotes pure red. We
convert each screenshot into a 3D matrix by replacing each pixel with its corresponding RGB triple,
and flatten the 3D matrix into a fixed-length integer vector.
Screenshots in GUI documents can have different resolutions. To enable the comparison, our

Screenshot Handler resizes screenshots to a specific target resolution 𝑐×𝑟 . A higher target resolution
preserves more details, but it increases the training and predicting time. Based on our empirical
results in Section 6.5, we choose optimal target resolutions of 𝑐 = 36 and 𝑟 = 64 for the Android
platform, and 𝑐 = 64 and 𝑟 = 36 for desktop environments.
The screenshots in GUI documents can have other resolutions. In image processing, image

scaling [54] is the task of resizing digital images. If the target resolution is higher than the original
resolution, image interpolation techniques [68] are used to generate new pixels. If the target
resolution is lower than the original resolution, as in our case, sample-rate conversion [46] is
applied to reduce the image size. This process involves information loss, and the Whittaker-
Shannon interpolation formula [53] can construct a perfectly bandlimited signal. We use Lanczos
filtering [44], an approximation to this formula, based on a Lanczos kernel:

𝐿(𝑥) =

1, 𝑥 = 0
2 sin(𝜋𝑥) sin(𝜋𝑥/2)

𝜋2𝑥2 , −2 ≤ 𝑥 < 2, 𝑥 ≠ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Given a one-dimensional signal ®𝑠 , the value at an arbitrary location 𝑥 is obtained through the
following equation:

𝑆 (𝑥) =
⌊𝑥 ⌋+𝛼∑︁

𝑖=⌊𝑥 ⌋−𝛼+1
𝑠𝑖𝐿(𝑥 − 𝑖), (3)

where 𝛼 is the filter size parameter, ⌊·⌋ is the floor function, and 𝐿 is the Lanczos kernel. This filter
smoothly interpolates the values of a window of 𝛼 samples. We choose this filter because it is more
effective than other filters [74].

Screenshots on Android platforms have status bars at the top and navigation bars at the bottom.
These sections display irrelevant or changing information during extracting process, such as battery
percentage. Such information introduces noise and does not reflect outdated screenshots. To avoid
inaccurate predictions, we crop them out of the images. Based on our empirical trials, DOSUD
crops the top pixels and the bottom pixels to remove the status and navigation bars, respectively.

We present the Random Forest Classifier Training algorithm in Algorithm 2. The algorithm takes
a set of training data as input and outputs a list of decision trees. Line 1 initializes an empty list
of trees. Lines 2 to 9 iterate over a predefined number of trees (𝐵). The bootstrap sample [45] is a
classical sampling strategy. It randomly selects an instance from a pool, and returns the selected
instance to the pool, before the next selection. With this strategy, Line 3 selects 𝑁 instances. Line 4

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 11

creates an empty tree. Lines 5 to 8 recursively split the nodes of the tree until all terminal nodes
have a single label. Line 6 randomly selects𝑚 variables from the 𝑝 variables. The value of𝑚 is
usually the square root of 𝑝 or a value that is smaller than 𝑝 . This makes the trees more general.
Line 7 computes the Gini index for each variable and chooses the one with the lowest value as the
best variable to split the node:

𝐺𝑖𝑛𝑖 (𝐷) = 1 −
𝑛∑︁
𝑗=1

𝑝2𝑗 , (4)

where 𝐷 is a dataset that is divided into 𝑛 classes and 𝑝 𝑗 is the probability of an element being in
the 𝑗-th class. The best split is the one that minimizes the Gini index. Line 8 splits the node into
two child nodes based on the best variable. Line 9 adds the tree to the list of trees. Line 10 returns
the list of trees as the output. In our implementation, we use the RandomForestClassifier from the
scikit-learn library [25]. We use its default hyperparameters, i.e., 𝐵 = 100 and𝑚 =

√
𝑝 .

4.3 Detecting Outdated Screenshot
In this section, we introduce how DOSUD detects outdated screenshots. Given an app document,
Document Screenshot Extractor first extracts its screenshots, and DOSUD uses its trained classifier
to determine whether a screenshot is outdated.

4.3.1 Extracting Screenshot of Document. Our Document Screenshot Extractor extracts the screen-
shots from app documents. Most Android application documents are presented in the form of web
pages on Google Play. Similarly, the majority of desktop application documents, such as those
for Visual Studio Code, are typically maintained in GitHub repositories. Our extractor crawls the
screenshots on the web page or the repository and saves the screenshots to a local directory. If an
app document is in different formats (e.g., PDF), a new extractor should be implemented, but that is
a one-time effort.

4.3.2 Detecting Outdated Screenshot. After screenshots are extracted from application documents,
Algorithm 3 illustrates the prediction process of detecting outdated screenshots. It is a random
forest classifier. The input of the algorithm is a vector 𝑥 that is encoded from a given screenshot.
The output of the algorithm is the predicted class label for 𝑥 , i.e., outdated or not. A trained random
forest is a set of built decision trees. The algorithm feeds 𝑥 to each decision tree and stores the
prediction in𝑇𝑏 (𝑥), where 𝑏 is the index of a current tree. After all predictions are obtained, it takes
the majority vote as the final output. If the majority vote is outdated, DOSUD marks the screenshot
as outdated.

5 EVALUATION IN THEWILD
On benchmarks, it is infeasible to evaluate the usefulness of a tool. In addition, even if benchmarks
are all real data, their settings can be different from the real situations. As a result, the effectiveness
of an approach can be significantly reduced if it is deployed in the wild [69]. To resolve these
concerns, in this section, we use DOSUD to detect outdated screenshots for 50 Android apps and
VS Code in the wild.

Meanwhile, as we cannot identify all bugs of an application, in the wild, we cannot calculate the
measures like f-score. We present a study on benchmarks in Section 6 and report such measures.

5.1 Setup
Pendlebury et al. [69] criticize that many approaches are not effective when they are evaluated in
the wild. This evaluation is to answer this concern. To evaluate its effectiveness in the wild, we apply
DOSUD to detect outdated screenshots from the latest app websites on VS Code documentation and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

12 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

Table 1. Outdated screenshots detected by DOSUD.

App Name ΔScreenshot Category Issue URL Status PR URL Text changedImproved UI Feature Setting
Frequency Generator +Mode buttons, +LR button ✓

n/a n/a n/a n/a

CPU-Z ΔTrophy button ✓
Trigonometry ΔLayout, +function icons ✓
Perfect Ear Δ“Theory” icon ✓
Midifun Karaoke +Buttons at the top, Δrecord button ✓ ✓
Maths Formulas Free ΔButtons at the top, +formulas ✓
Physics Formulas Free ΔButtons at the top ✓
Calculator +Buttons at the top, Δbutton style ✓ ✓
Mi Calculator +“Investment” button, Δ“Loan” button ✓
Free scientific calculator ΔButtons ✓
MyObservatory +Buttons at the bottom ✓
Chinese Handwriting Recog ΔBackground image, Δcolor style ✓
Fractions ΔOperator buttons ✓
Thermonator +Icon, +settings, +drop-down button ✓ ✓
Math Tests +“Theory” button, +“More subjects” button ✓
Master for Mi Band Δversion number
Remote for Samsung TV Smart +Settings ✓
Voice Recorder ΔLayout, Δbuttons ✓
Simple Alarm Clock ΔLayout ✓
Compass +Settings, +prompt text ✓

Visual Studio Code

+“Create an Azure Account” item, Δlayout, Δicons ✓ ✓ [5] fixed [21] yes
Δ“Azure App Service” install layout, Δicons ✓ [5] fixed [21] yes
Δ“Remote Breakpoint” layout, Δicons ✓ [5] fixed [21] yes
Δ“Start Remote Debugging” layout, Δitems, Δicons ✓ ✓ [5] fixed [21] yes
Δ“Notebook” layout, Δicons ✓ [6] fixed [24] yes
Δ“Notebook” layout, Δicons ✓ [6] fixed [24] yes
Δ“Notebook” layout, Δicons ✓ [6] fixed [24] yes
Δ“Notebook” layout, Δicons ✓ [6] fixed [24] yes
+“High Contrast” theme option, Δlayout, Δicons ✓ ✓ [7] fixed [13] no
Δ“Extensions View Filter Menu” layout, Δitems ✓ ✓ [8] fixed [23] yes
Δ“Ignore Recommendation” button, Δlayout ✓ ✓ [8] fixed [23] yes
+info of “More” Button ✓ [8] fixed [23] yes
Δ“Dropdown” items ✓ [8] fixed [23] yes
Δ“Recommendations” layout, Δicons ✓ ✓ [8] fixed [23] yes
Δ setting ID, Δ“Backup and Sync Settings” button ✓ ✓ [16] fixed [27] yes
Δ“Backup and Sync Settings” button ✓ [16] fixed [27] yes
Δ“MongoDB” configuration layout, Δ buttons ✓ ✓ [15] fixed [22] yes

+: additions; Δ: modifications.

Google Play. VS Code documentation contains around 1,500 screenshots. For Android applications
on Google Play, we select our subjects based on three criteria: (1) the website must contain at least
one screenshot without decorations, and (2) the subjects must represent different app categories.
In total, we randomly select the websites of 50 apps. To examine the generality of DOSUD, we
choose different apps from those in Section 6. The websites should provide screenshots of the
latest versions. If a screenshot does not appear in the latest version but in a previous version, we
determine it as outdated.

We collect major versions for each application and train our model on them. Then, DOSUD takes
the website address as its input and checks whether the website contains outdated screenshots. We
manually verify the obsolescence of each identified screenshot by the following steps. First, we
interact with the application by pressing buttons and switching between graphical user interfaces
(GUIs) of all versions to understand its functionalities and workflows. Next, we inspect the outdated
screenshot and learn when and where it can appear. Finally, we navigate to the corresponding
GUI, compare the outdated screenshot with the latest GUI, and identify any major changes, such
as a new button. If there are major changes, we further compare the screenshots with those from
older versions. If a screenshot from an older version is identical to the detected screenshot, we
confirm that the screenshot is outdated. Our identified screenshots are truly outdated because they
do not require much programming expertise to verify whether they are true positive. We list all
our detected bugs on our project website for other researchers to validate them.

Due to the lack of available contact information from Android app authors for their issue trackers,
or instances where responses are not received, we were unable to report the Android bugs we
detected. Although a reviewer suggested reporting them through their Android Marketplaces,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 13

latest

outdated

Δicon

ΔUI

(a) Better UI.

Δfeature

latest

outdated

(b) Changed feature.

+settings

outdated

latest
(c) More settings.

Fig. 6. The categories of our detected bugs.

our reports to their websites were overwhelmed by comments from other users. Although we
cannot obtain feedback from application programmers, VS code provides a channel to report our
found bugs. Through this channel, we reported our detected VS Code bugs. In our bug reports, we
provided the latest screenshots to allow developers to check and fix bugs.

5.2 Result
Among the 50 sampled Android apps, DOSUD detected 20 outdated screenshots from 20 apps. In
addition, it detected 17 instances from the VS Code documentation. Across our reported 17 outdated
screenshots, the programmers of the VS code documentation identified no false positives, and the
precision could be considered as 100%. Table 1 shows our results. Column “App name” indicates the
name of the app. Column “ΔScreenshot” illustrates the difference between the outdated screenshot
and the corresponding latest screenshot. The “+” symbol means that the item is added to the latest
version. The “Δ” symbol means that the item is altered. Column “Category” indicates the category
of the bug. Based on the symptoms, we classify bugs into three categories:
1. 70% of our found bugs miss improved UI of apps. For example, as explained in this

document [10], if users want to install the Azure App Service extension, they can search for “azure
app service” to filter the results. Upon locating the desired extension, users can proceed to install it.
The document has an embedded screenshot as shown in Figure 6a, but this screenshot is outdated.
Its keyword is “app service”. As shown in Figure 6a, in the latest version, three icons (highlighted in
red) in VS Code have been replaced by their updated counterparts (indicated in green). Furthermore,
the latest screenshot presents the UI for extension search within Visual Studio Code. The latest
screenshots have more extension details (e.g., new icons, stars, and download counts).
2. 49% of our found bugs miss important changed features. For example, as explained in

this document [9], if users want to ignore the recommendation of an extension, they can click the
Manage gear button to display the context menu, and select the Ignore Recommendation menu
item. To help programmers understand the steps, this document provides the screenshot as shown
in the upper half of Figure 6b. However, instead of explaining the steps, this screenshot causes
confusion. In specific, this screenshot does not have the Manage gear button, and programmers
cannot display the said context menu. DOSUD detects that this screenshot is outdated. The lower
half of Figure 6b shows the latest one. We highlight the mentioned Manage gear button and context
menu in green boxes. Furthermore, the yellow arrow presents the evolution.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

14 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

Outdated document Fixed document

+themes

High Contrast theme
We support a High Contrast color theme on
all platforms. Use File > Preferences >
Color Theme to display the Select Color
Theme dropdown and select the High
Contrast theme.

High Contrast theme
VS Code supports a High Contrast color
theme on all platforms. Use File >
Preferences > Theme > Color Theme to
display the Select Color Theme dropdown
and select the High Contrast theme.

ΔUI

Fig. 7. An outdated path of the theme setting.

3. 8% of our found bugs miss changes on settings. For example, Samsung TV Smart [4] is an
app that enables users to customize the Samsung TV. Figure 6c shows the latest version of the app,
but the screenshot on its website is outdated. The difference between the two screenshots reveals
that the latest version has more settings (e.g., disabling rotation).

These examples highlight the usefulness and relevance of DOSUD for enhancing app documen-
tation quality.

Finding 4: The negative impacts of outdated screenshots include failing to show improved
UIs (70%), new features (49%), and changed settings (8%).

We report our found bugs to VS Code. Table 1 shows the result. Column “Issue URL” lists our bug
reports. We report bugs at the granularity of files, and each file may encompass multiple outdated
screenshots. Columns “Status” and “PR URL” list the feedback from developers. Column “Text
changed” lists the cases when both descriptions and screenshots are modified. Only one pull request
modifies screenshots without changing the accompanying text. Although this pull request also
affects reader comprehension, our other bug reports can have a deeper impact since developers
need to modify both screenshots and textual descriptions to fix them. All the pull requests are
submitted by their developers, highlighting the significance of outdated screenshots.

As DOSUD does not report the versions of screenshots, we do not list the versions of screenshots
in Table 1. When the developers of the VS Code documentation determine whether a bug is true,
they do not need the versions of screenshots. They can compare our reported screenshots with
those of the latest version to make the decision. All our reported bugs have been confirmed by
the developers. Section 2 already introduced an example of a fixed bug. We next introduce two
additional bug reports:
1. An outdated path of the high-contrast themes. As shown in the left side of Figure 7, if

programmers need to set the high contrast theme, they will read an outdated document, since
this document provides an outdated path, File > Preferences > Color Theme. To understand
this path, this document provides a screenshot. However, if programmers use the latest version of
VS Code, they will be confused by the document, since there is no longer a Color Theme under
Preferences. In the latest version, Preferences has another option called Theme, and Color
Theme is now located under Theme. Specifically, programmers should navigate to the path File >
Preferences > Theme > Color Theme and select the desired theme. Developers fixed this issue
by updating the description but failed to update the accompanying screenshot. After we reported

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 15

Outdated document Fixed document

Δicon +folder

Connect to Azure
…sign in to your Azure Account. If you don‘t
have an account, select Create a Free Azure
Account... to create a free account and get
$200 in Azure Credits to try out any
combination of Azure services.

Connect to Azure
…sign in to your Azure Account. If you don't
have an account, select Create an Azure
Account... to create an Azure free account to
try out any combination of Azure services.

Δfeature

ΔUI

Δicon

Δicon

Fig. 8. Outdated Azure account actions.

this bug, the developers of VS Code fixed the screenshot. The right side of Figure 7 shows the fixed
document. The fixed screenshot shows the latest interface. In specific, The dropdown now includes
more theme choices, categorized into dark themes, high-contrast themes, and others (highlighted
in green boxes). Moreover, the “High Contrast” theme has been split into two categories: dark and
light (highlighted by the yellow arrow). Our bug report [7] was confirmed in one day. Three days
later, a developer fixed this bug and commented that “Excellent, Thanks!”

2. Outdated Azure account actions. As shown in the left side of Figure 8, if programmers need
to connect to Azure but have no account, they will read an outdated document. This document
mentions a button called “Create a Free Azure Account” and uses a screenshot to explain its location.
However, if programmers use the latest VS Code, they will be confused, since they cannot find the
button as illustrated by the left side of Figure 8. The current version of VS Code splits the “Create
a Free Azure Account” button into two new buttons: “Create an Azure Account” and “Create an
Azure Account for Student Account”. After we reported this bug, VS Code developers fixed this
bug. The right side of Figure 8 shows the fixed document. Besides the above modifications, the
outdated screenshots lose other modifications. For example, the AZURE:APP_SERVICE tag is renamed
to AZURE. In Figure 8, we highlight the modifications with the yellow arrows. As this bug is critical,
a developer of VS Code added our bug report [5] to the project milestones [18], signifying its
substantial impact on the entire documentation.

The feedback from developers leads to a finding:

Finding 5: In total, we report 17 outdated screenshots, and 17 of them are already fixed.

In summary, our detected outdated screenshots fall into missing improved UIs, new features,
and changed settings. From the latest version of the most popular IDE, we detected 17 outdated
screenshots, and 17 of them are already fixed.

6 EVALUATION ON BENCHMARK
Our evaluations on benchmark explore the following research questions:
(RQ3) How effective is DOSUD (Section 6.2)?
(RQ4) What are the impacts of classifiers (Section 6.3)?
(RQ5) What are the impacts of filters (Section 6.4)?
(RQ6) What are the impacts of resolutions (Section 6.5)?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

16 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

Table 2. Dataset.

App name Category Description Versions Screenshots Reviews

Frequency Generator Tool It generates sounds with specified frequencies. v2.0 v3.0 v4.0 723 19,090
CPU-Z Tool It reports information about the device. v1.0 v1.20 v1.28 v1.33 v1.38 748 358,565
920 Productivity A text editor. v2.16.7.15 v2.16.9.7 v2.17.8.30 594 887
QR Productivity A QR code scanner. v1.4.2 v2.0.2 v2.3.3 v2.6.7 617 851,148
Trigonometry Education It teaches trigonometry visually. v3.1 v3.23 218 4,187
EveryCircuit Education A circuit simulator. v2.14 v2.20 v2.25 454 50,959
2048 Game A casual game. v1.0 v2.0 v2.8 76 279,160
BBTAN Game A casual game. v2.3 v3.0 v3.27 108 477,242
Cube Solver Game A puzzle game. v3.3.1 v4.1.4 v4.3.0 v4.4.1 140 1,107,017
VS Code IDE A code editor v17.0 v18.4 1,889 -

In RQ3, DOSUD achieved 0.87 to 1 F1-score values on a benchmark of 10 applications. Here, as
there are no prior approaches, we cannot compare DOSUD with baselines. To shed light on future
research, in RQ4, RQ5, and RQ6, we conduct ablation studies to explore the impact of our internal
techniques. Our results show that internal classifiers have a more visible impact than resampling
filters and target resolutions.

6.1 Benchmark
Table 2 shows our benchmark. It consists of 9 Android apps and a desktop app, VS Code. As the
first exploration on this research topic, we select these applications since most GUI elements of
them are standard and easy to enumerate. We focused on four categories from the Google Play
Store, selecting both popular and lesser-known apps. We omitted Android applications if they do
not provide their previous versions. Column “Versions” shows the versions of the app that we use.
To reduce the training effort of our model, we only choose major versions. We select these versions
within approximately equal time intervals of no more than one month. Column “Screenshots”
shows the total number of unique screenshots that we capture from these apps using DOSUD. We
set the time interval between any two actions as 300 ms and the time limit for the capturing process
of each APK as 5 minutes. We empirically determine these limits based on their sufficiency to obtain
enough screenshots of our subject apps. For Visual Studio Code (VS Code), OBS captures a video
of approximately 8 to 10 minutes for testing scripts of each version. To capture all the scenarios,
we process the video at a rate of 60 frames per second. Although we capture many duplicated
screenshots, we remove duplicated screenshots to mitigate the potential bias by matching identical
ones. In our datasets, all screenshots are unique. Column “Reviews” shows the number of reviews
of each app on the Google Play page. We include both popular (e.g., Cube Solver) and less popular
ones (e.g., 920). Here, 2048, BBTAN, and Cube Solver are games, and their workflows are more
complicated than the other applications.
We do not need manual effort to build labels. DOSUD assigns labels (i.e., true for outdated

screenshots and false for the latest screenshots) to captured screenshots according to whether
they are extracted from the latest version or an outdated version. Here, if a screenshot appears in
both versions, it is labeled as false, since it indicates the absence of any modifications between the
two iterations. Thus, it reflects the layout of the latest version.
As the GUIs of an application typically follow the same style, as expected, we found that some

captured screenshots are similar. The observation highlights the challenges of our target research
problem, since the screenshots of the latest versions can be similar to obsolete ones. The changes
between versions may be subtle and not easily noticeable. Therefore, we propose to train a classifier
that can detect outdated screenshots, rather than a simple “distance” metric that measures the
similarity between screenshots. Meanwhile, from the applications like 2048, we captured limited
screenshots. Although our underlying testing tool can fail to enumerate all possible GUIs, this

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 17

Table 3. Overall effectiveness.

App name Accuracy Precision Recall F1-score

Frequency Generator 1.00 1.00 1.00 1.00
CPU-Z 0.95 0.95 0.98 0.97
920 0.99 0.99 1.00 1.00
QR 0.93 0.94 0.95 0.95
Trigonometry 0.99 0.99 0.99 0.99
EveryCircuit 1.00 1.00 1.00 1.00
2048 0.91 0.90 0.88 0.89
BBTAN 0.98 0.98 0.98 0.98
Cube Solver 0.85 0.81 0.92 0.87
VS Code 0.98 0.97 0.98 0.98

limitation may not introduce a significant negative impact, since GUI documents often provide
typical screenshots and our approach works for screenshots with subtle differences.

6.2 RQ3. Overall Effectiveness
6.2.1 Setup. For each application in Table 2, we train a model to predict its outdated screenshots.
In particular, we apply a 10-fold cross-validation method [1] to our extracted data. The screenshot-
label pairs are shuffled and equally divided into 10 subsets. Each subset serves as the test set once
while the remaining 9 subsets constitute the training set. In each iteration, we use one of the 10
subsets as the testing data and the rest as the training data. We compare the predictions with the
ground truth and categorize them into four groups: The true positive (TP) is the number of outdated
screenshots that are correctly predicted as outdated. The false positive (FP) is the number of latest
screenshots that are incorrectly predicted as outdated. The true negative (TN) is the number of
latest screenshots that are correctly predicted as the latest. The false negative (FN) is the number of
outdated screenshots that are incorrectly predicted as the latest. We use accuracy, precision, recall,
and F1-score as our metrics. For all the metrics, a value that is closer to 1 indicates a better result.

6.2.2 Result. Training a model requires less than ten minutes. We demonstrate the effectiveness
of our trained models in Table 3. Except for 2048 and Cube Solver, most applications have F1-score
values that are close to 1. Nevertheless, these results do not imply that our target research problem
has been solved completely. The majority of our selected apps have GUIs that are easy to enumerate,
and such GUIs usually consist of standard or slightly modified menus, buttons, and other simple
GUI elements so that it takes the GUI testing tool a short time to enumerate most of the GUIs.
Based on our observations, we derive a finding:

Finding 6: The F1-scores of DOSUD are close to 1 when the apps have classical GUIs.

However, the effectiveness of DOSUD is reduced if applications have more complicated GUIs.
For instance, our F1-score values of 2048 and Cube Solver drop to 0.89 and 0.87, respectively. Both
applications are dynamic animation-based games, and their screenshots are complicated. Figure 9
shows a false positive and a true negative when DOSUD predicts screenshots for Cube Solver. Both
screenshots in Figure 9 are captured from the latest version. DOSUD wrongly identifies that the
screenshot in Figure 9a is outdated but correctly identifies that the screenshot in Figure 9b is not
outdated. The number of similar screenshots can affect the results. The screenshot in Figure 9a has
only 3 similar screenshots, but the screenshot in Figure 9b has 140 similar screenshots. As a result,
DOSUD correctly identifies the latter screenshot.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

18 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

(a) false positive (b) true negative

Fig. 9. Two cases of Cube Solver .

More advanced testing and static tools can capture more screenshots. With more screenshots,
we can train more reliable models. We further discuss this issue in Section 8.

6.3 RQ4. Impact of Classifiers
6.3.1 Setting. In this research question, we explore the impact of our underlying classifier. We
compare the underlying classifier with the nearest neighbor classifier (NN), the logistic regression
classifier (LR), the Support Vector Classifier (SVC), the decision tree classifier (DT), and the multi-
layer perceptron classifier (MLP) [70]. For each classifier, we conduct a 10-fold cross-validation on
all the apps in our dataset. We use the default parameters for all the classifiers except KNN and MLP.
KNN requires specifying the number of neighbors. For the 𝑘 value NN, we selected 1, 3, and 5. MLP
requires specifying the size of each hidden layer and learning rate. We set the hidden_layer_sizes

as (128, 64) and learning_rate as 0.001. We compare F1-score values to determine the best one.
Additionally, we conduct t-tests to evaluate the statistical significance of differences between the
F1-score values of each two classifiers.

6.3.2 Result. Figure 10a presents the box plots of F1-score values. The horizontal axis represents
the classifiers, where “1NN”, “3NN”, and “5NN” indicate the outcomes of the KNN classifier when 𝑘
is 1, 3, and 5 respectively. The vertical axis shows F1-score values. According to our analysis of the
KNN classifier, the optimal result is obtained when 𝑘 equals one. The observations lead to a finding:

Finding 7: Among our evaluated classifiers, RF is the best one for detecting outdated screen-
shots, but DT can achieve similar results.

Among all the combinations of classifiers, the minimum p-value is 0.033. We obtain this value
when comparing SVC with RF. Only the difference of this pair is significantly different. The p-
values between RF and other classifiers are all more than 0.26, indicating that the differences are
insignificant. Our compared classifiers are classical, but researchers have proposed more advanced
classification techniques (e.g., [47]). Notably, we also included a deep learning classifier, MLP, in our
comparison. Despite its increased model complexity, MLP does not outperform classical classifiers
such as RF and DT in our setting. Finding 1 demonstrates that DOSUD is already a highly accurate
classifier when apps use GUIs that are easy to enumerate. For these apps, a better classifier may not
introduce significant improvements. Finding 1 also mentions that it is challenging to detect outdated

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 19

1NN 3NN 5NN RF LR SVC DT MLP

Classifiers

0.75

0.80

0.85

0.90

0.95

1.00

F
1-

sc
or

e

(a) Internal classifiers.

NEAREST BOX BILINEAR HAMMING BICUBIC LANCZOS

Resampling filters

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F
1-

sc
or

e

(b) Resampling filters.

9x16 18x32 36x64 72x128 135x240 270x480 540x960 1080x1920

Target resolutions

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F
1-

sc
or

e

(c) Target resolution.

Fig. 10. The result of our ablation studies.

screenshots for more complicated apps (e.g., games). For these applications, GUI elements are much
more flexible. For example, many mobile games are built upon various game frameworks (e.g.,
unity [55]). As their screenshots can be infinite, a more sophisticated classifier alone is insufficient
to address the challenges, and we discuss this issue in Section 8.

6.4 RQ5. Impact of Resampling Filters
6.4.1 Setting. In this research question, we compare our resampling filter with the other filters.
Given a one-dimensional signal, the filters select the value at a location with 6 following strategies.
1) LANCZOS is our underlying filter. 2) NEAREST picks the pixel that is the nearest to the selected
location from an image. 3) BOX generates a pixel that is the mean of input pixels. 4) BILINEAR
generates a pixel with linear interpolation [61] on all input pixels. 5) HAMMING generates a pixel
with the Hamming network [56] on all input pixels. 6) BICUBIC generates a pixel with cubic
interpolation [61] on all input pixels.

For each filter, we conduct a 10-fold cross-validation on all the apps in Table 2 and use F1-score
as the metric. Additionally, we conduct t-tests to evaluate the statistical significance of differences
between the F1-score values of each two resampling filters.

6.4.2 Result. Figure 10b shows the results. The horizontal axis lists the filters. For all the measures,
the filters do not introduce significant differences. The minimum p-value observed between different
filters is 0.79. It is obtained whenwe compare BOXwith LANCZOS. It indicates that the performance
differences among the filters are not statistically significant. The observation leads to a finding:

Finding 8: Empirically, we find that LANCZOS is the best filter, but the differences are minor.

According to this finding, in other research questions, we set the resampling filter as LANCZOS.

6.5 RQ6. Impact of Target Resolutions
6.5.1 Setting. In this research question, we explore the impacts of our target resolution. We
compare our target resolution (36 × 64 as described in Section 4.2.2) with several alternatives. For
each resolution, we conduct a 10-fold cross-validation on all the apps in Table 2, and draw the box
plots of their F1-score. Additionally, we conduct t-tests to evaluate the statistical significance of
differences between the F1-score values of each two target resolutions.

6.5.2 Result. Figure 10c shows the box plots of F1-score values. The storage space required for a
screenshot increases with its resolution. Consequently, higher-resolution screenshots entail longer
training and prediction times for a model. However, lower-resolution screenshots may compromise
the quality of the information captured. Therefore, all the measures except the time deteriorate

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

20 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

with lower resolutions. Moreover, we observe that beyond 36× 64, further increasing the resolution
does not improve the performance, but only adds to the time cost. For all measures, the target
resolutions do not introduce significant differences. The minimum p-value observed between
different resolutions is 0.80 (between 36 × 64 and 72 × 128). This observation leads us to a finding:

Finding 9: The optimal target resolution is 36 × 64, but the differences are minor.

According to this finding, in other research questions, we set the target resolution as 36 × 64.

7 LIMITATION AND THREAT
In this section, we discuss the limitations and threats of our work.

1. GUI documents can contain rare screenshots. Our approach can fail to identify outdated
screenshots if documents contain rare screenshots or if captured screenshots are insufficient.
Although DOSUD can fail in such rare cases, its impact can be minor. GUI documents often describe
typical scenarios, and they may not use rare screenshots. Furthermore, although 2048 has only
76 screenshots, our model still achieved a relatively high F1-score of 0.89. This result shows the
robustness of our approach. We agree that we can train a more reliable model if more screenshots
are captured. The current implementation of DOSUD uses Fastbot to capture screenshots and build
training data. When we build the training data for VSCode, we use its manually written testing
scripts. Besides the two sources, we envisage that more advanced testing and static tools are useful
for capturing screenshots. For instance, GUI testing is intensively studied [49, 67]. Furthermore,
some applications are open source. Through static analysis, we can extract GUI elements from
source code and metadata [62]. It is challenging to capture new screenshots, since most testing
scripts are written for regression testing. The above approaches are useful for capturing new
screenshots if they contain new features. With a larger dataset, we can train a more reliable model,
but more screenshots are insufficient to handle more complicated applications. For instance, if a
GUI page has a box to display dynamic text contents, it is infeasible to capture all its screenshots. In
this case, our model can determine which pixels are useful for determining outdated screenshots.
2. We must train a model for each application and retrain it when a new version is

released. In our evaluations, we train a model for each project. Although training a unified model
is an ambitious research goal, it is quite difficult to achieve the goal, since applications can have
quite different GUIs. This limitation is shared with all other approaches. For instance, researchers
have proposed various approaches to detect bugs, but a survey [50] shows that in most cases,
the effectiveness of cross-project learning is still significantly poorer than in-project learning. In
addition, a trained model can decay over time. If a new version is released, to achieve the best
results, users need to re-train the model. As noted in Section 6.2.2, training takes less than ten
minutes. Although the cost of a single update is low, the cumulative effort required for numerous
historical versions can be burdensome. However, if two updates occur within a short time interval,
the GUI elements may remain largely unchanged, thereby reducing the practical retraining cost. A
potential solution is transfer learning, a technique in machine learning that uses domain adaptation
to address the problem of concept drift [59, 65, 66]. Although it is infeasible to train a unified model,
we can transfer trained models to new projects and versions. In addition, if we analyze the UI
changes in revision histories, it could be feasible to train more effective models. Alternatively, we
can extract reliable rules from revision histories to prioritize the obsolete elements of screenshots.
3. We did not obtain the feedback from Android programmers. Our selected Android

applications provide no channel to report bugs, and their programmers did not reply to our emails.
As a result, our found Android bugs in Table 1 have no feedback from Android programmers.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Detecting Outdated Screenshot from GUI Document 21

However, unlike other types of bugs, it does not require much programming experience to determine
whether a screenshot is outdated. As shown in Figure 2b, most reporters have less than three
years of programming experience when they identify outdated screenshots. Detecting outdated
screenshots is challenging, since there are many screenshots in documents and applications that
have complicated GUIs. Still, after they are detected, programmers are unlikely to introduce human
errors when determining whether they are truly outdated. As shown in Table 1, all our reported VS
Code bugs are confirmed and fixed. As a result, although we found Android bugs with no feedback,
they are unlikely to be wrong. To further reduce the threat, we release our found bugs on our
website, and other researchers can check them.

Besides the two limitations, we have other threats that appear in all studies. For instance, one
external threat to validity is the limited number of subjects. The effectiveness of DOSUD on more
complex applications (e.g., games) may vary. While our analysis includes 50 Android applications
and Visual Studio Code in Section 5, alongside 9 Android applications and Visual Studio Code in
Section 6, this threat could be mitigated by analyzing a greater number of subjects.

8 FUTURE RESEARCH OPPORTUNITY
Besides tuning our approach [32, 57], some other future research directions are as follows:
Handling more complicated applications. Our results on benchmarks can be significantly

reduced, if applications produce more complicated screenshots. There are many research opportu-
nities to handle complicated screenshots. For example, a game can have various characters that can
move around scenes. After its screenshots are captured by corresponding testing techniques [34],
face recognition techniques [80] can be useful for detecting outdated ones. As another example,
some screenshots can be triggered by complicated inputs (e.g., usernames). As it is difficult to
extract complete screenshots, the screenshots in the training set can have different configurations
and themes from those in the testing set. More advanced testing techniques can be useful to trigger
such screenshots. In some documents, screenshots can be decorated or incomplete. Image segmenta-
tion [48] is the task of identifying the meaningful parts of an image, and these techniques may help
address these problems. Moreover, computer vision algorithms such as SIFT [60] and SURF [35]
can extract image features that are invariant to positions, scales, and rotations. These algorithms
may be useful for handling decorated or incomplete screenshots. When programmers determine
whether a reported outdated screenshot is a true bug, they need to compare the screenshot with
only the latest version. Although they do not need the version of the screenshot, it could be helpful
if a tool predicts the precise versions of screenshots. Programmers can have more confidence to
determine whether a screenshot is outdated.

Handling more complicated documents. Some documents may include both updated screen-
shots and screenshots of a specific version. For instance, a report of a recurring bug may have
screenshots of a previous version. Since such screenshots often contain contextual natural lan-
guage descriptions, natural language processing techniques [41] may help determine whether
the screenshots of a specific version are appropriate for a bug report. It may even be possible to
detect some outdated screenshots from the documents alone. For example, if a tutorial mentions
a button that does not appear in the screenshots, this may indicate a discrepancy between the
descriptions and the screenshots. It can become challenging for programmers to check outdated
screenshots manually even if our tool identifies them. In addition to processing screenshots at the
pixel level, researchers have explored encoding app screenshots considering GUI widgets [51, 84]
and migrating GUI test cases based on widgets [79]. If we extend our approach to work on widgets,
programmers can understand our results more easily. For instance, besides reporting the bug in
Figure 6b, the envisaged approach can detect that the two GUI elements, such as “License” and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

22 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

“Repository”, are missing. Programmers can determine whether this screenshot is truly outdated by
checking the two GUI elements.

9 RELATEDWORK
Detecting bugs in software engineering documents. Software engineering documents (e.g.,
bug reports) differ from natural language texts in that they often contain code elements that need
to be consistent and accurate. Therefore, traditional methods for bug detection are not suitable
for these documents. Previous studies have addressed this challenge by focusing on specific types
of bugs, such as outdated or broken code names [71, 81], uncertainty cues [72], outdated API
names [58], wrong directive defects [82], missing descriptions [40], and errors in Solidity smart
contract API documentation [83]. These studies rely on identifying code samples and matching
them with natural language texts or code changes. However, they do not consider bugs that involve
images in documents, which can also convey important information. We are the first to detect
outdated screenshots in GUI documents by leveraging computer vision and machine learning
techniques, complementing the prior approaches.
Screenshots in software engineering. Screenshots are visual representations of software

applications that can be used for various purposes in software engineering research. For example,
Yeh et al. [77] employ screenshots as queries to search documents. Deka et al. [43] construct a
large dataset of app screenshots to support the design of new apps. Souza et al. [73] propose an
approach to generate user guides with captured screenshots. Martens et al. [63] use screenshots
to collect fake reviews in app stores. Yu et al. [78] use screenshots to prioritize crowdsourced test
reports. Wang et al. [75] utilized both textual data and screenshots to identify duplicate bug reports
within bug management systems. Cooper et al. [42] and Yan et al. [76] extract visual features
from screenshots, which are sampled from videos, to detect duplicate video-based bug reports.
Furthermore, Yan et al. [76] employ vision transformers to discern subtle visual and textual patterns,
thereby enhancing the detection of duplicate video-based bug reports. The quality and accuracy
of screenshots can affect the effectiveness of these approaches. Therefore, detecting outdated
screenshots is an important task that can improve the quality of software engineering documents.

10 CONCLUSION
Screenshots can enhance the understanding of these documents, but they may become outdated
when the applications change over time. The problem of outdated screenshots is prevalent in
the documents of popular software projects, and it requires considerable effort from developers
to update them manually. However, this problem has received little attention from the research
community. Detecting outdated screenshots is a challenging task that involves interdisciplinary
techniques from various research fields. In this paper, we propose DOSUD, the first approach
that automatically detects outdated screenshots from documents. We evaluated our approach on
benchmarks and in the wild. The results show that DOSUD is effective on benchmarks and it detects
new bugs in the wild.

DATA-AVAILABILITY STATEMENT
More details are presented on our website: https://anonymous.4open.science/r/DOSUD-FDD3.

REFERENCES
[1] K-folds cross-validator. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html, 2020.
[2] Content is inconsistent with images. https://github.com/MicrosoftDocs/azure-docs/issues/73030, 2021.
[3] Microsoft Documentation. https://github.com/MicrosoftDocs/, 2021.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://anonymous.4open.science/r/DOSUD-FDD3
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://github.com/MicrosoftDocs/azure-docs/issues/73030
https://github.com/MicrosoftDocs/

Detecting Outdated Screenshot from GUI Document 23

[4] Remote for Samsung TV | Smart & WiFi Direct. https://play.google.com/store/apps/details?id=smart.tv.wifi.remote.
control.samcontrol, 2021.

[5] /docs/azure/remote-debugging.md has outdated screenshot. https://github.com/microsoft/vscode-docs/issues/6866,
2023.

[6] /docs/datascience/jupyter-notebooks.md has outdated screenshots. https://github.com/microsoft/vscode-docs/issues/
6878, 2023.

[7] /docs/editor/accessibility.md has outdated screenshot. https://github.com/microsoft/vscode-docs/issues/6883, 2023.
[8] /docs/editor/extension-marketplace.md has outdated screenshot. https://github.com/microsoft/vscode-docs/issues/

6884, 2023.
[9] Ignoring recommendations. https://github.com/microsoft/vscode-docs/blob/main/docs/editor/extension-marketplace.

md#ignoring-recommendations, 2023.
[10] Install the extension. https://github.com/microsoft/vscode-docs/blob/main/docs/azure/remote-debugging.md#install-

the-extension, 2023.
[11] Open Broadcaster Software (OBS). https://obsproject.com/, 2023.
[12] Stack Overflow 2023 Developer Survey. https://survey.stackoverflow.co/2023/, 2023.
[13] Update high-contrast theme image. https://github.com/microsoft/vscode-docs/pull/6893, 2023.
[14] Visual studio code documentation. https://github.com/microsoft/vscode-docs, 2023.
[15] /docs/azure/mongodb.md has outdated screenshot. https://github.com/microsoft/vscode-docs/issues/7285, 2024.
[16] /docs/supporting/troubleshoot-terminal-launch.md has outdated screenshot. https://github.com/microsoft/vscode-

docs/issues/7204, 2024.
[17] Focus is not visible for the dismiss this update button in the version info bar. https://github.com/microsoft/vscode-

docs/issues/7418, 2024.
[18] Milestones: April 2024. https://github.com/microsoft/vscode-docs/milestone/131?closed=1, 2024.
[19] Outdated gif for “add a jar”. https://github.com/microsoft/vscode-docs/issues/4948, 2024.
[20] Outdated screenshot in word count extension tutorial. https://github.com/microsoft/vscode-docs/issues/1405, 2024.
[21] Refresh azure remote debugging content. https://github.com/microsoft/vscode-docs/pull/7222, 2024.
[22] Refresh azure/mongodb screenshots. https://github.com/microsoft/vscode-docs/pull/7318, 2024.
[23] Refresh extensions marketplace screenshots & content. https://github.com/microsoft/vscode-docs/pull/7024, 2024.
[24] Refresh notebooks screenshots. https://github.com/microsoft/vscode-docs/pull/7435, 2024.
[25] scikit-learn: machine learning in python. https://scikit-learn.org/, 2024.
[26] Should you add screenshots to documentation? https://news.ycombinator.com/item?id=38639629, 2024.
[27] Update terminal troubleshooting screenshots. https://github.com/microsoft/vscode-docs/pull/7260, 2024.
[28] Update website main screenshots. https://github.com/microsoft/vscode-docs/issues/1124, 2024.
[29] Vs code 1.69 release notes - emmet - inline completions setting - incorrect setting name. https://github.com/microsoft/

vscode-docs/issues/5465, 2024.
[30] Vs code microsoft software license terms. https://code.visualstudio.com/License, 2024.
[31] vscecli doc outdated. https://github.com/microsoft/vscode-docs/issues/550, 2024.
[32] N. A. Al-Thanoon, O. S. Qasim, and Z. Y. Algamal. Tuning parameter estimation in SCAD-support vector machine

using firefly algorithm with application in gene selection and cancer classification. Computers in biology and medicine,
103:262–268, 2018.

[33] E. Alégroth, R. Feldt, and L. Ryrholm. Visual GUI testing in practice: challenges, problemsand limitations. Empirical
Software Engineering, 20(3):694–744, 2015.

[34] S. Ariyurek, A. Betin-Can, and E. Surer. Automated video game testing using synthetic and humanlike agents. IEEE
Transactions on Games, 13(1):50–67, 2019.

[35] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. Springer-Verlag, 2006.
[36] L. Breiman. Random Forests. Machine Learning, 2001.
[37] T. Cai, Z. Zhang, and P. Yang. Fastbot: A Multi-Agent Model-Based Test Generation System. In Proc. AST, pages 93–96,

2020.
[38] Z. Cao, X. Wang, S. Yu, Y. Yun, and C. Fang. STIFA: Crowdsourced Mobile Testing Report Selection Based on Text and

Image Fusion Analysis. In Proc. ASE, pages 1331–1335, 2020.
[39] A. Carpentier, A. Lazaric, M. Ghavamzadeh, R. Munos, and P. Auer. Upper-Confidence-Bound Algorithms for Active

Learning in Multi-Armed Bandits. Springer Berlin Heidelberg, 2011.
[40] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus, G. Bavota, and V. Ng. Detecting missing information

in bug descriptions. In Proc. ESEC/FSE, pages 396–407, 2017.
[41] K. Chowdhary and K. Chowdhary. Natural language processing. Fundamentals of artificial intelligence, pages 603–649,

2020.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://play.google.com/store/apps/details?id=smart.tv.wifi.remote.control.samcontrol
https://play.google.com/store/apps/details?id=smart.tv.wifi.remote.control.samcontrol
https://github.com/microsoft/vscode-docs/issues/6866
https://github.com/microsoft/vscode-docs/issues/6878
https://github.com/microsoft/vscode-docs/issues/6878
https://github.com/microsoft/vscode-docs/issues/6883
https://github.com/microsoft/vscode-docs/issues/6884
https://github.com/microsoft/vscode-docs/issues/6884
https://github.com/microsoft/vscode-docs/blob/main/docs/editor/extension-marketplace.md#ignoring-recommendations
https://github.com/microsoft/vscode-docs/blob/main/docs/editor/extension-marketplace.md#ignoring-recommendations
https://github.com/microsoft/vscode-docs/blob/main/docs/azure/remote-debugging.md#install-the-extension
https://github.com/microsoft/vscode-docs/blob/main/docs/azure/remote-debugging.md#install-the-extension
https://obsproject.com/
https://survey.stackoverflow.co/2023/
https://github.com/microsoft/vscode-docs/pull/6893
https://github.com/microsoft/vscode-docs
https://github.com/microsoft/vscode-docs/issues/7285
https://github.com/microsoft/vscode-docs/issues/7204
https://github.com/microsoft/vscode-docs/issues/7204
https://github.com/microsoft/vscode-docs/issues/7418
https://github.com/microsoft/vscode-docs/issues/7418
https://github.com/microsoft/vscode-docs/milestone/131?closed=1
https://github.com/microsoft/vscode-docs/issues/4948
https://github.com/microsoft/vscode-docs/issues/1405
https://github.com/microsoft/vscode-docs/pull/7222
https://github.com/microsoft/vscode-docs/pull/7318
https://github.com/microsoft/vscode-docs/pull/7024
https://github.com/microsoft/vscode-docs/pull/7435
https://scikit-learn.org/
https://news.ycombinator.com/item?id=38639629
https://github.com/microsoft/vscode-docs/pull/7260
https://github.com/microsoft/vscode-docs/issues/1124
https://github.com/microsoft/vscode-docs/issues/5465
https://github.com/microsoft/vscode-docs/issues/5465
https://code.visualstudio.com/License
https://github.com/microsoft/vscode-docs/issues/550

24 Ye Tang, Aoyang Yan, Hui Liu, Na Meng, and Hao Zhong

[42] N. Cooper, C. Bernal-Cárdenas, O. Chaparro, K. Moran, and D. Poshyvanyk. It takes two to tango: Combining visual
and textual information for detecting duplicate video-based bug reports. In Proc. ICSE, pages 957–969. IEEE, 2021.

[43] B. Deka, Z. Huang, C. Franzen, J. Hibschman, and R. Kumar. Rico: A Mobile App Dataset for Building Data-Driven
Design Applications. In Proc. UIST, pages 845–854, 2017.

[44] C. Duchon. Lanczos Filtering in One and Two Dimensions. Journal of Applied Meteorology and Climatology, 18:1016–
1022, 08 1979.

[45] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC press, 1994.
[46] G. Evangelista. Design of digital systems for arbitrary sampling rate conversion. Signal processing, 83(2):377–387, 2003.
[47] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time series classification: a review.

Data Mining and Knowledge Discovery, 33(4):917–963, 2019.
[48] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-Based Image Segmentation. International Journal of

Computer Vision, 59(2):167–181, 2004.
[49] T. Fulcini, R. Coppola, L. Ardito, and M. Torchiano. A review on tools, mechanics, benefits, and challenges of gamified

software testing. ACM Computing Surveys, 55(14s):1–37, 2023.
[50] S. Hosseini, B. Turhan, and D. Gunarathna. A systematic literature review and meta-analysis on cross project defect

prediction. IEEE Transactions on Software Engineering, 45(2):111–147, 2017.
[51] Y. Hu, J. Gu, S. Hu, Y. Zhang, W. Tian, S. Guo, C. Chen, and Y. Zhou. Appaction: Automatic GUI Interaction for Mobile

Apps via Holistic Widget Perception. In Proc. ESEC/FSE, pages 1786–1797, 2023.
[52] T. K. Huang. Investigating user acceptance of a screenshot-based interaction system in the context of advanced

computer software learning. In Proc. HICSS, pages 4956–4965, 2014.
[53] A. J. Jerri. The Shannon sampling theorem—Its various extensions and applications: A tutorial review. Proceedings of

the IEEE, 65(11):1565–1596, 1977.
[54] C.-H. Kim, S.-M. Seong, J.-A. Lee, and L.-S. Kim. Winscale: An image-scaling algorithm using an area pixel model.

IEEE Transactions on circuits and systems for video technology, 13(6):549–553, 2003.
[55] S. L. Kim, H. J. Suk, J. H. Kang, J. M. Jung, T. H. Laine, and J. Westlin. Using Unity 3D to facilitate mobile augmented

reality game development. In Proc. WF-IoT, pages 21–26, 2014.
[56] K. Koutroumbas and N. Kalouptsidis. Generalized Hamming networks and applications. Neural Networks, 18(7):896–913,

2005.
[57] A. Kulkarni, V. K. Jayaraman, and B. D. Kulkarni. Support vector classification with parameter tuning assisted by

agent-based technique. Computers & chemical engineering, 28(3):311–318, 2004.
[58] S. Lee, R. Wu, S. C. Cheung, and S. Kang. Automatic Detection and Update Suggestion for Outdated API Names in

Documentation. IEEE Transaction on Software Engineering, pages 1–1, 2019.
[59] S. Liu, G. Lin, L. Qu, J. Zhang, O. De Vel, P. Montague, and Y. Xiang. CD-VulD: Cross-domain vulnerability discovery

based on deep domain adaptation. IEEE Transactions on Dependable and Secure Computing, 19(1):438–451, 2020.
[60] D. G. Lowe. Object recognition from local scale-invariant features. In Proc. ICCV, 1999.
[61] E. Maeland. On the comparison of interpolation methods. IEEE transactions on medical imaging, 7(3):213–217, 1988.
[62] J. Mahmud, N. De Silva, S. A. Khan, S. H. Mostafavi, S. H. Mansur, O. Chaparro, A. Marcus, and K. Moran. On Using

GUI Interaction Data to Improve Text Retrieval-based Bug Localization. In Proc. ICSE, pages 1–13, 2024.
[63] D. Martens and W. Maalej. Towards Understanding and Detecting Fake Reviews in App Stores. Empirical Software

Engineering, pages 3316–3355, 2019.
[64] S. Moir. Should you add screenshots to documentation? https://thisisimportant.net/posts/screenshots-in-

documentation/, 2023.
[65] V. Nguyen, T. Le, O. de Vel, P. Montague, J. Grundy, and D. Phung. Dual-component deep domain adaptation: A new

approach for cross project software vulnerability detection. In Proc. PAKDD, pages 699–711, 2020.
[66] V. Nguyen, T. Le, T. Le, K. Nguyen, O. DeVel, P. Montague, L. Qu, and D. Phung. Deep domain adaptation for vulnerable

code function identification. In Proc. IJCNN, pages 1–8, 2019.
[67] L. Nie, K. S. Said, L. Ma, Y. Zheng, and Y. Zhao. A systematic mapping study for graphical user interface testing on

mobile apps. IET Software, 17(3):249–267, 2023.
[68] P. Parsania and P. Virpari. A review: Image interpolation techniques for image scaling. International Journal of

Innovative Research in Computer and Communication Engineering, 2(12):7409–7414, 2014.
[69] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro. {TESSERACT}: Eliminating experimental bias in

malware classification across space and time. In Proc. USENIX Security, pages 729–746, 2019.
[70] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis. Multilayer perceptron and neural networks. WSEAS

Transactions on Circuits and Systems, 8(7):579–588, 2009.
[71] P. C. Rigby and M. P. Robillard. Discovering Essential Code Elements in Informal Documentation. In Proc. 35th ICSE,

page 11, 2013.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://thisisimportant.net/posts/screenshots-in-documentation/
https://thisisimportant.net/posts/screenshots-in-documentation/

Detecting Outdated Screenshot from GUI Document 25

[72] K. Shumaiev and M. Bhat. Automatic Uncertainty Detection in Software Architecture Documentation. In Proc. ICSAW,
pages 216–219, 2017.

[73] R. Souza and A. Oliveira. GuideAutomator: Continuous Delivery of End User Documentation. In Proc. ICSE, 2017.
[74] K. Turkowski. Filters for common resampling tasks. Graphics Gems I, pages 147–165, 1990.
[75] J. Wang, M. Li, S. Wang, T. Menzies, and Q. Wang. Images don’t lie: Duplicate crowdtesting reports detection with

screenshot information. Information and Software Technology, 110:139–155, 2019.
[76] Y. Yan, N. Cooper, O. Chaparro, K. Moran, and D. Poshyvanyk. Semantic GUI Scene Learning and Video Alignment for

Detecting Duplicate Video-based Bug Reports. In Proc. ICSE, pages 1–13, 2024.
[77] T. Yeh, T. H. Chang, and R. C. Miller. Sikuli: Using GUI screenshots for search and automation. In Proc. UIST, pages

183–192, 2009.
[78] S. Yu, C. Fang, Z. Cao, X. Wang, T. Li, and Z. Chen. Prioritize crowdsourced test reports via deep screenshot

understanding. In Proc. ICSE, pages 946–956, 2021.
[79] Y. Zhang, W. Zhang, D. Ran, Q. Zhu, C. Dou, D. Hao, T. Xie, and L. Zhang. Learning-based Widget Matching for

Migrating GUI Test Cases. In Proc. ICSE, pages 1–13, 2024.
[80] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A literature survey. ACM computing surveys,

35(4):399–458, 2003.
[81] H. Zhong and Z. Su. Detecting API documentation errors. In Proc. OOPSLA, pages 803–816, 2013.
[82] Y. Zhou, X. Yan, T. Chen, S. Panichella, and H. Gall. DRONE: A Tool to Detect and Repair Directive Defects in Java

APIs Documentation. In Proc. ICSE, pages 115–118, 2019.
[83] C. Zhu, Y. Liu, X. Wu, and Y. Li. Identifying Solidity Smart Contract API Documentation Errors. In Proc. ASE, pages

1–13, 2022.
[84] P. Zhu, Y. Li, T. Li, W. Yang, and Y. Xu. Gui widget detection and intent generation via image understanding. IEEE

Access, 9:160697–160707, 2021.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminary Study
	3.1 RQ1. Stockholder
	3.2 RQ2: Feasibility of Simple Threshold

	4 Approach
	4.1 Problem Definition
	4.2 Training Model
	4.3 Detecting Outdated Screenshot

	5 Evaluation in the Wild
	5.1 Setup
	5.2 Result

	6 Evaluation on Benchmark
	6.1 Benchmark
	6.2 RQ3. Overall Effectiveness
	6.3 RQ4. Impact of Classifiers
	6.4 RQ5. Impact of Resampling Filters
	6.5 RQ6. Impact of Target Resolutions

	7 Limitation and Threat
	8 Future Research Opportunity
	9 Related Work
	10 Conclusion
	References

