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Abstract—In the software defined networks (SDNs), the Open-
Flow protocol is typically used as the southbound API in
manipulating OpenFlow switches. However, the OpenFlow control
messages are in a low abstraction level. Therefore, even a single
application-level operation requires many OpenFlow messages,
which consume the bandwidth of the control network and reduce
the SDN’s scalability. One potential solution is to use high level
domain specific northbound APIs in the control network. In this
paper, we explore the possibility of adopting this solution by
implementing and evaluating a new SDN framework, Ryuo. In
Ryuo, we introduce Local Service, which runs directly on each
SDN switch (hardware/software). In operations, Local Service
provides northbound APIs to the SDN applications while it
can use different southbound APIs for different switches. Ryuo
eliminates unnecessary control messages, hence it decreases the
volume of control traffic. Our evaluation of Ryuo on Mininet
with example applications shows that Ryuo reduces the volume of
control traffic at least 50% compared to the standard OpenFlow,
and up to 40% compared to the local controller approach. We
also evaluate the performance of running Local Services directly
on physical switches. The results show that we can achieve lower
event handling latency in large networks, but with the trade-off of
a lower event handling throughput due to the computing power
limitation on physical switches. In summary, we have shown that
using high level northbound API in the control network can make
the control network more efficient, and leads to better scalability.

I. INTRODUCTION

By separating the control plane and the data plane, Soft-
ware Defined Network (SDN) gives us the opportunity to
improve the programmability of networks. While the data
plane is stable and focuses on forwarding, the control plane
is implemented in software to gain flexibility. The southbound
API is the interface implemented by SDN switches for the
control plane. Most SDN switches available on the market
implement the OpenFlow [1] southbound API. The OpenFlow
southbound API provides a vendor independent interface for
programming network devices. Scientists and engineers can
experiment with different protocols and applications using
OpenFlow controllers, instead of buying new devices or send-
ing requests to vendors for new features. OpenFlow doesn’t
work well in all kinds of environments. It was initially de-
signed for experimental use in small networks like campus
networks and is still under active development. OpenFlow
uses a centralized control model. Each switch must connect
to a centralized controller via an out-band control network (a
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Fig. 1. The standard setup of OpenFlow. Southbound control messages are
used in the control network, the northbound API is used on Control Server
locally.

separate control network) or an in-band connection. All tasks
that cannot be implemented with flow and group table entries
must be done by the controller. The centralized control model
of OpenFlow has problems such as low scalability [2] and high
latency [3]. In OpenFlow’s original model, all control tasks
even the ones that only need local information have to be done
by the controller, and those control messages have to travel
through the control network. However, the bandwidth of the
control network is often limited. An example of the standard
setup of OpenFlow is shown in Figure 1. Southbound control
messages are used in the control network in the standard setup
of OpenFlow. The Northbound API is used locally in the
Control Server. The Northbound API is the API implemented
by SDN controllers and used by SDN applications. Some SDN
controllers only provide a northbound API that is barely a
simple wrapping of southbound API, but some SDN controllers
such as OpenDaylight [4], provide high level APIs for different
domains of applications [5].

However, northbound control messages are much more
expressive than southbound ones. If we use northbound con-
trol messages instead of southbound control messages in the
control network, we can greatly reduce the control traffic.
By reducing the control traffic, the resources in the control
network can be used more efficiently. Also, if we use some
southbound APIs in the control network, the functionality
provided by the SDN application is limited by that specific
southbound API. For example, we cannot use the fast failover
functionality introduced in OpenFlow 1.1 when one of the
switches only supports OpenFlow 1.0.
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Fig. 2. The architecture of Ryuo, with northbound control messages in the
control network.

In this paper, we explore the possibility of using high level
northbound API for control messages in SDN. In Section III,
we will discuss the design and implementation of our prototype
framework with two example applications. In Section IV, we
evaluate our framework on both Mininet and physical switches
to explore the benefits and limitations of our approach. Finally,
we show our conclusion in Section V.

II. RELATED WORK

New SDN frameworks have been proposed to mitigate the
drawbacks of the original OpenFlow model. Some proposals
try to solve the scalability problem of OpenFlow. HyperFlow
[6] introduces a distributed controller for OpenFlow. The
system synchronizes the network-wide states between multiple
controllers, by replaying events that affect controller states,
which brings the overhead of event propagation, both on
controllers and on the control network. Other distributed SDN
controllers like ONOS [7] and OpenDaylight use distributed
data store to maintain the consistency of network wide in-
formation. Onix [8] provides two kinds of distributed storage
system, one provides strong consistency and one provides
weaker consistency. It lets application developers decide the
trade-off between performance and consistency. These work
focus on the throughput of the control plane but leave the
problem of propagation delay between control plane and data
plane unsolved, which we solved in this paper.

One simple approach to maintain the consistency of
network-wide information is not to distribute it. Instead, it
is possible to offload some of the central controller’s job to
switches. DevoFlow [9] takes the path of augmenting the data
plane, which can achieve good performance but will take some
time to be adopted by switch vendors. Kandoo [10] uses local
controllers running on physical switches or local servers to
handle all local events. The local information is maintained
only by each local controller. The root (global) controller
subscribes to OpenFlow events from local controllers using
Kandoo extension messages. Local controllers act like switch
proxies. They receive and follow the OpenFlow control mes-
sages sent by the root controller, and propagate subscribed
OpenFlow events to the root controller. By using local con-
trollers, the latency of local events handling and the volume of
control traffic can be decreased. However, by using northbound
control messages in the control network, we can further reduce
the control traffic, and also, we decouple SDN applications
from southbound APIs. Orion [2] is a hierarchical control plane
that focuses on the scalability of SDN applications. Each low
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Fig. 3. Deployment of Ryuo. We can run Local Services directly on
physical SDN switches no matter which southbound API is implemented, or
on virtualized servers with software SDN switches like Open vSwitch. Ryuo
applications are deployed like standard OpenFlow applications on a dedicated
control server. Local Services and Ryuo applications can communicate through
the control network.

level controller manages a portion of network and abstracts
that portion as a node to the higher level controller. It reduces
the computational complexity growth of the SDN control plane
from super-linear to linear. Orion is a macro architecture for
a network of networks, however, our work, like Kandoo, is
focusing on the micro architecture for a single network.

Frenetic [11] is a programming language for SDN. Frenetic
uses a run time environment to take care of all low level details
of OpenFlow. Although the policy defined in the Frenetic
language will be finally compiled into OpenFlow messages
and sent through the control network, the bandwidth of the
control network is still not used efficiently. Beehive [12]
creates a general event-oriented programming model for SDN
applications. Each OpenFlow application can be developed as
a set of OpenFlow event handling functions. By analyzing the
data dependency between these handling functions, Beehive
exploits the opportunity of distributed processing. Based on
the shared states between different handling functions, the
system determines the execution location for each function.
When locating a handling function, Beehive tries to make the
executer close to the event generator. For an extreme example,
if no state is shared between handling function F and all other
handling functions, the function F can run directly on switches.
Beehive is very flexible and solves both scalability and event
handling latency. However, when using Beehive, application
logic has to be separated into different low level OpenFlow
event handling functions, which makes the application less
readable and hard to maintain. In our proposal, only high level
events are exposed to the central application, which avoid the
fragmentation of the business logic.

III. DESIGN AND IMPLEMENTATION

To use northbound APIs for control messages, we need to
put controllers on physical switches. Many OpenFlow switches
are using Linux based operating systems, so it is possible to
run custom programs on them. In virtualized environments
where many virtual machines (VMs) running on the same
physical server, operators often use Open vSwitch [13] to
manage forwarding to each VM, so that we can run a controller
on these physical servers.

With local controllers, we can run local applications on
each physical switch. We need to split an entire SDN appli-
cation into local and global parts. We let local applications



provide mechanism and maintain local information, while
global applications provide policy and maintain network-wide
information. There are different domains of SDN applications,
such as routing, traffic engineering and access control. For
each application domain, we can implement a local application,
which we call Local Service. Each Local Service provides
common programming interfaces, the domain specific north-
bound API, for its application domain. With Local Services,
we free the northbound API from limitations given by south-
bound APIs. For example, we can implement Group Table
functionality in a Local Service on older switches which only
support OpenFlow 1.0. We can also make use of non-standard
functionalities provided by vendors. For example, we can use
BFD (Bidirectional Forwarding Detection) provided by Open
vSwitch to detect a link failure with small latency, and we can
implement BFD in a Local Service if some OpenFlow switches
do not have built-in BFD support.

We call the global part of an application Ryuo application.
For example, in centralized IP routing, different Ryuo applica-
tions may use different algorithms to compute routing entries,
but they can use the same API to install routing entries. The
deployment of Ryuo is shown in Figure 3. Ryuo applications
running on a control server and Local Services either run
directly on physical SDN switches or run on the same host
with software SDN switches.

Local Services for an application domain can provide the
same API even if they are running on switches that implement
different southbound APIs. With the extra abstraction provided
by Local Service, SDN applications can have a uniform view
of network devices it manages. With the API provided by
Local Services, we can focus on business logic instead of
manipulating flow tables when developing SDN applications.
Ryuo applications will not receive any notification of low
level events such as packet in in OpenFlow, but we still
need notifications of high level events, such as link up/down
for topology discovery and access denied for access control.
For each application domain, Ryuo applications must provide
several interfaces for Local Services to report high level events
asynchronously. A topology discovery application must handle
events like link up/down. A traffic engineering application
may want to take action when a congestion is detected. In
practice, only one Ryuo application in the same domain can
be active in the network at the same time to avoid decision
conflict. However, Ryuo applications can provide API for
other Ryuo applications, so that applications from different
domains can cooperate with each other. For example, some
Ryuo application can simply query the topology discovery
application for the network topology. Ryuo applications can
specify applications they depend on. When the application
starts, all required applications will also be loaded. Ryuo
applications can also provide an administrative interface for
the network operator.

Ryuo’s architecture also has some limitations. First of all,
the performance of Local Services is limited by the computing
power on physical switches. However, SDN vendors begin to
add more computing power to their new switches [14], so that
this problem can be solved in the future. Second, since the
code of Local Service resides on each switch, the complexity
of deployment is increased. We can use automated deployment
tools to mitigate this problem. The third problem is that Local

Services on the same switch could make conflicting decisions.
Simply assigning priority to each Local Service is not enough.
Extra efforts must be taken to develop a mechanism to resolve
these conflicts. We leave the decision conflict problem for
future work.

To illustrate how Ryuo works and evaluate it later, we
have developed two Local Services, the IP Routing Service
and the Topology Service (we omit Local for names of Local
Services hereafter for simplicity). With the IP Routing Service,
the switch can behave like an IP router, IP routing applications
can assign IP addresses to the switch and install routing entries.
The Topology Service sending/receiving LLDP (Link Layer
Discovery Protocol) [15] packets to/from peer switches reports
the peer port on the neighbor switch to the topology discovery
application when it finds a link is up, otherwise it reports that
a link is down when the number of LLDP packets lost on the
link exceeds a threshold.

We have also implemented two Ryuo applications: Keep-
Forwarding Routing and Topology Discovery. The Topology
Discovery application simply uses all the link information
from Topology Services to maintain a global topology of the
network. The KeepForwarding application uses the KeepFor-
warding [16] algorithm to compute routing entires based on the
topology discovered by the Topology Discovery application.
For each switch, the KeepForwarding algorithm can compute
a list of output ports for every (in port, destination IP). All
matched packets will be forwarded to the first available port in
the output port list. In this way, the algorithm can achieve local
link recovery without contacting the global control plane for
rerouting. To maintain compatibility among different routing
algorithms, our IP Routing Service can accept routing entries
that match (in port, destination IP) and output to the first
available port in a list of candidate ports. We can use fast
failover group introduced in OpenFlow 1.1 to implement the
candidate ports mechanism. But this feature is not in OpenFlow
1.0. We implement this particular algorithm as an example
of decoupling the northbound API from the southbound API.
We can use the framework in heterogeneous networks, where
switches may implement different versions of OpenFlow or
even different southbound APIs, the compatibility is guar-
anteed by Local Services. We also show the possibility of
extending the switch with IP Routing Service.

Both Local Service and Ryuo application are implemented
as Ryu [17] application. Ryu is an SDN framework which
follows the original model of OpenFlow. The communication
between Ryuo applications is implemented with Ryu events.
The communication between Ryuo applications and Local
Services is implemented with Pyro4, an open source remote
procedure call library for Python.

Currently, the computing power on most SDN switches is
poor when low cost CPUs are employed. We need to explore
whether it is feasible to put Local Services on a physical
switch. We will present our evaluation result and analysis in
Section IV.

IV. EVALUATION

We perform two kinds of evaluations.

• To evaluate how much control traffic can be reduced
by the Ryuo framework, compared to standard Open-



Fig. 4. Mean control traffic generated by the KeepForwarding application
in the Ryuo and the standard OpenFlow setup on real world topologies with
different number of edges. Standard OpenFlow represents the total control
traffic generated by the standard OpenFlow setup. Non-local is the contol
traffic generated by the standard OpenFlow setup that cannot be processed
locally, we use this value to approximate the performance of local controller
approaches. Ryuo is the total control traffic generated by Ryuo implementation.

Flow setup, and other approaches based on local
controllers (in Subsection IV-A).

• To explore whether it is feasible to run Local Services
directly on physical SDN switches which have limited
computing power. The event handling latency and
throughput evaluation for Local Services are discussed
in Subsection IV-B and IV-C, both of them belong to
this class.

In the throughput and latency evaluation, we use Pica8 P-
3295 switches [18] with 825MHz PowerPC CPU and 512M
memory. We use PCs with 3.2GHz duo-core, 4 threads CPU
and 4G memory as control servers for standard OpenFlow
applications and Ryuo applications. We use the Ryu framework
in standard OpenFlow setups.

Since for the same SDN application, the generated control
traffic only depends on the size of the network and the control
messages used by the global control plane, we can perform
the evaluation on Mininet [19] with Open vSwitch.

A. Control Traffic

One benefit we get from Ryuo is that Ryuo Applications
communicate with Local Services in high level northbound
control messages, which is more expressive than general
southbound control messages like the one in OpenFlow. These
high level interfaces not only improve productivity of appli-
cation developers, but also decrease the amount of the control
traffic. In this evaluation, we compare the amount of control
traffic generated by the KeepForwarding Ryuo application
and their counterparts implemented with a standard OpenFlow
controller. In both setups, the topology application is loaded
as a dependency of the routing application. We evaluate the
application on real world topologies from the Topology Zoo
Project [24]. We wait for the topology discovery application
to get the topology of the emulated network. Then, we assign
IP addresses to each IP Routing Service by sending HTTP
requests to KeepForwarding application. HTTP requests are
not included in control messages, since they are not in the
control network. After the assignment of IP addresses, we use
HTTP requests to request the computation and distribution
of routing entries. Finally, we issue a pingall command to
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Fig. 5. System setups for comparing ICMP handling latency.

test all to all connectivity. This command also lets each IP
Routing Service or the standard OpenFlow application handle
ARP requests, and install flow entries to forward packets to
end hosts. We record all traffic in the control network during
the process. Since some of the topologies in the Topology
Zoo may have the same number of edges, we use the mean
results of all topologies with the same number of edges. We
can obtain the Non-local results by ignoring all traffic that can
be handled locally if we use local controller approaches like
Kandoo. These local traffic includes control traffic that deals
with LLDP, ARP handling. Because Kandoo’s implementation
is not publicly accessible, we use these results to estimate the
performance difference. The portion of reduced control traffic
in Ryuo compared to Non-local is contributed solely by using
northbound control message, instead of using southbound
control message, in the control network. The result is shown
in Figure 4.

Ryuo can reduce control traffic by at least 50% compared
to the standard OpenFlow setup, and up to 40% compared
to local controller approach. For the smallest topology in our
evaluation, the Standard OpenFlow result still shows a control
traffic of about 1 MB. This is because we run the evaluation
for 500 seconds for each topology, and in this time period,
the standard OpenFlow topology discovery application sends
and receives LLDP packets through packet in/packet out at a
small time interval, which contributes the most control traffic
in small topologies.

B. The Latency of Event Handling

Event handling latency is an important performance metric
in SDN. If the delay between the data plane and the control
plane is large, it would be infeasible to perform real time
tasks and other tasks will have unacceptable performance
degradation [20]. We evaluate the latency of two tasks in the IP
Routing Service. The first one is ICMP Echo request handling.
The second one is the implementation of fast failover group
with OpenFlow 1.0 southbound API. The first one is a typical
trivial task that can be done locally. The second one represents
functionality extensions which we can implement in Local
Services.

1) ICMP Handling: The evaluation setup is shown in Fig-
ure 5. A controller running on the control server communicates
with the OpenFlow switch through the control network. The



Fig. 6. ICMP handling latency comparison between a standard OpenFlow
controller running on a control server and an IP Routing Service running on
a Pica8 switch. The error bar represents the 95% confidence interval.

Fig. 7. In the standard OpenFlow setup, the central controller needs to handle
all requests from switches in the network. The event latency grows with the
number of requests.

latency of ICMP handling with standard OpenFlow setup in-
cludes an RTT (Round Trip Time) between control server and
switch, and the processing delay in the controller. However,
our evaluation network is very small and the propagation delay
between the control server and the switch can be ignored.

To evaluate the performance of the IP Routing Service,
we deploy the service on a Pica8 switch (see Figure 5b).
In this evaluation, the global control plane is not involved.
Therefore, we didn’t put the Ryuo application in the figure.
The IP Routing Service controls the switch through the local
loopback device using OpenFlow. Note that the delay on the
loopback device can be ignored.

In both setups, we ping the OpenFlow switch, since the
IP Routing Service makes it behave like an IP router, the
OpenFlow switch has its own IP address, and will handle
ICMP requests sent to it. Because the delay of packet in
and packet out is the same, in both cases we can ignore the
delay between the ICMP handler and the data plane, the only
difference is the processing delay of the ICMP handler. We can
use the RTT of ping echo to estimate the latency of the ICMP
handling. The results (the mean value of 100 RTTs collected)
are shown in Figure 6.

In this evaluation, if we use a large network where the
propagation delay between switches and the controller is larger
than 10ms, IP Routing Service will outperform the standard
setup for ICMP Echo request handling. Also, the control
application has to handle events from more than one switch.
We evaluate the relation between the event handling latency

S3

S1 S2

H1 H2

Fig. 8. Testing topology for the fast failover time evaluation. The normal
route from H1 to H2 is H1 → S1 → S2 → H2 . After we tearing down
link S1 − S2 , the route will be H1 → S1 → S3 → S2 → H2 .

Fig. 9. Fast fail-over time comparison between the IP Routing Service
implementation and the native implementation of the Pica8 switch. The error
bar represents the 95% confidence interval.

and the network size. We use Mininet to create networks
with different number of switches, with the Routing Service
deployed on each switch, and attach a host to each switch, then
we let each host ping the switch attached to it. We collect 100
RTTs from each host. The result is shown in Figure 7.

2) Fast Failover Time: In this evaluation, we compare the
fast failover time of the OpenFlow 1.3 fast failover group on a
physical switch, and the IP Routing Service implementation
running on a physical switch in OpenFlow 1.0 mode. The
testing topology we use is shown in Figure 8. We use two
PCs (H1 and H2 ) and three physical switches (S1 , S2 and
S3 ). We send packets with continuous sequence numbers from
H1 using pktgen [21], and using wireshark [22] to capture all
packets on H2 . We disconnect the link S1−S2 by unplugging
the cable on S2 to let fast failover group entries on S1 take
effects. We count the number of lost packets to analyze the fail-
over time. A similar evaluation is also used in [23]. For the
IP Routing Service implementation, the service keeps track of
the status of all ports on the switch. When the status of a port
changes, the service will install new flow entries for affected
fast failover groups according to the status of switch ports.

The evaluation result is shown in Figure 9. The fail-
over time of the IP Routing Service is less than 100ms
slower when compared to native implementation of the Pica8
switch. Since we haven’t optimized our implementation and
the computing power is relatively poor, the performance could
still be improved. With vendors adding more computing power
to SDN switches, when the fast failover is implemented as
switch extension in Local Service, the performance overhead
could be smaller in the future.

C. The Throughput of Event Handling

We compare the event handling throughput of the IP
Routing Service running on a physical switch and a standard
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Fig. 11. Throughput evaluation result comparison between Ryuo Local
Service running on a switch and an standard OpenFlow application running
on a PC.

OpenFlow application running on a PC. Again, we use pktgen
to send UDP packets to the switch at different rates, and the
switch will respond with ICMP messages. For each packet rate,
we send packets for 15 seconds, and use the response packets
captured to compute the throughput. The standard OpenFlow
setup is shown in Figure 10a and the IP Routing Service setup
is shown in Figure 10b. The result is shown in Figure 11. We
find the Local Service can only handle about 40 packets per
second while we didn’t reach the throughput limitation of the
PC. The IP Routing Service performs poorly in this evaluation.
However, in real networks, the central control application has
to handle events from the entire network, we can expect a
better scalability from Ryuo.

V. CONCLUSION

In this paper, we explored the potential benefits and limita-
tions if we use high level northbound API for control messages
in SDN. We developed a prototype framework called Ryuo. In
Ryuo, we use Local Services to provide high level northbound
APIs to global Ryuo applications. The Local Service decouples
the northbound API from the southbound API, and reduces the
control traffic volume. However, due to the poor computing
power on current SDN switches, the performance of Local
Services is still limited. This could be solved in the future by
having more computing power on SDN switches.
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