INTRODUCTION TO PTHREADS

From Xiaoyao Liang ‘@’

RORDMAP

= Problems programming shared memory systems.

= Controlling access to a critical section.

= Thread synchronization.

= Programming with POSIX threads.

= Mutexes.

= Producer-consumer synchronization and semaphores.
= Barriers and condition variables.

= Read-write locks.

()

R SHARED MEMORY SYSTEM

CPU CPU CPU CPU

{ l | [

| Interconnect

!

Memory

POSIX THREADS

= Also known as Pthreads.
= A standard for Unix-like operating systems.
= A library that can be linked with C programs.

= Specifies an application programming interface
(API) for multi-threaded programming.

= The Pthreads API is only available on POSIX
systems — Linux, MacOS X, Solaris, HPUX, ...

()

“HELLO WORLD P

#include <stdio.h> declares the various Pthreads

#include <stdlib.h> functions, constants, types, etc.
#include <pthread.h>

/% Global variable: accessible to all threads =/
int thread_count;

void xHello(veid* rank): /% Thread function =/
int main(int argc, charx argv[]) {
long thread; /+ Use long in case of a 64—bit system x*/

pthread_t* thread_handles;

/% Get number of threads from command line */
thread_count = strtol(argv[1l], NULL, 10);

thread_handles = malloc (thread_countxsizeof(pthread_t)):;

\ allocate memory space for Q

thread handlers

“HELLO WORLD P

for (thread = 0; thread < thread_count; thread++)
pthread_create(&thread_handles[thread], NULL,
Hello, (void*) thread):

printf("Hello from the main thread\n");

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles|[thread], NULL);

free(thread_handles);
return 0:
} /% main x/

void xHello(void* rank) {
long my_rank = (long) rank: /% Use long in case of 64—bit system x*/

printf("Hello from thread %1d of %d\n", my_rank, thread_count);

return NULL:
} /% Hello =/

()

RUNNING THE PROGRAM

gcc —g —Wall —o pth_hello pth_hello . ¢ =Ipthread

link in the Pthreads library é

./ pth_hello 4
Hello from the main thread
Hello from thread 0 of 4
Hello from thread 2 of 4
Hello from thread 1 of 4
Hello from thread 3 of 4

CREATING THE THREADS

pthread.h

pthread._t One object for
each thread.

int pthread_create (
pthread_t* thread_p /* out */,
const pthread_attr_t* attr p /*in*/,
void* (*start_routine) (void) /*in */,

void* arg p/*in*/);

“PTHREAD_T” OBJECT

= Opaque
= The actual data that they store is system-specific.

= Their data members aren’t directly accessible to
user code.

= However, the Pthreads standard guarantees that a
pthread t object does store enough information to
uniquely identify the thread with which it’s
associated.

= Allocate object space before using.

PTHREADS FUNCTION

= Prototype:
void* thread function (void* args p);

= Void* can be cast to any pointer type in C.

=So args p can point to a list containing one or more
values needed by thread function.

= Similarly, the return value of thread function can point
to a list of one or more values.
()

STOPPING THE THREADS

= We call the function pthread join once for each thread.

= A single call to pthread join will wait for the thread associated with the
pthread t object to complete.

ESTIMATING PI

L1 I
S O T TR G RV L
T (AR T)

double factor = 1.0;

double sum = 0.0;

for (i = 0; 1 < n; i++, factor = —factor) {
sum += factor/(2+x1i+1);

}

pi = 4.0xsum;

ESTIMATING PI

void+ Thread_sum(void# rank) {
long my_rank = (long) rank:
double factor:
long long i:
long long my_n = n/thread_count:

long long my_first_i = my_n=smy_rank:
long long my_last_i = my_first_i + my_n:
if (my_first_i % 2 == 0) /+ my_first_i is even =/
factor = 1.0;
else /x my_first_i is odd x/
factor = —1.0;
for (i = my_first_i: i < my_last_i; i++, factor = —factor) {

sum += factor/(2*i+1);

}

return NULL:

} /% Thread_sum =/ ©

BUSYING-WAITING

= A thread repeatedly tests a condition, but, effectively, does no useful work
until the condition has the appropriate value.

y = Compute(my_rank);
while (flag != my_rank);:
X = X 4+ V;

flag++; flag initialized to 0 by main thread

BUSYING-WRITING

= Beware of optimizing compilers, though!
y = Compute(my_rank);
while (flag != my_rank);:
Q. X = X 4+ V;
flag++; Compiler can change the program order
= Disable compiler optimization
= Protect variable from optimization

int volatile flag

int volatile x

BUSY-WAITING

void+ Thread_sum(voids rank) {
long my_rank = (long) rank:
double factor:
long long i:

long long my_n = n/thread_count:
long long my_first_i = my_nsmy_rank:
long long my_last_i = my_first_i + my_n:
if (my_first_i % 2 == 0)
factor = 1.0;
else
factor = —1.0;
for (i = my_first_i; i < my_last_i: i++, factor = —factor) {
while (flag != my_rank):
sum += factor/(2xi+1);
flag = (flag+1l) % thread_count:
J Using % so that last thread reset flag back to 0

return NULL:

} /% Thread_sum =/ ©

REMOVE CRITICAL SECTION IN A LOOP

19.8 Seconds two threads Vs. 2.5 Seconds one threads
What is the problem??

for (i = my_first_i:; i < my_last_i: i++, factor = —factor)
my_sum += factor/(2x1i+1);

while (flag != my_rank):
sum += my_sum;
flag = (flag+1) % thread_count;

return NULL:
} /% Thread_sum =/

1.5 after moving the critical section out of the loop

PROBLEMS IN BUSY-WAITING

= A thread that is busy-waiting may continually use the CPU
accomplishing nothing.

= Critical section is executed in thread order, large wait time if thread
number exceed core number.

Thread
Time || flag 0 | 1 | 2] 3 | 4
0 0 crit sect | busy wait | susp susp susp
1 1 terminate | crit sect susp | busy wait susp
2 2 — terminate susp | busy wait | busy wait
? 2 — — crit sect susp busy wait

Possible sequence of events with busy-
waiting and more threads than cores.

()

MUTEXES

= Mutex (mutual exclusion) is a special type of variable that can be used to
restrict access to a critical section to a single thread at a time.

= Used to guarantee that one thread “excludes” all other threads while it
executes the critical section

MUTEXES

int pthread_mutex_init(
pthread_mutex_t=* mutex_p /% out x/

const pthread_mutexattr_t+ attr_p /% in /).

int pthread_mutex_destroy(pthread_mutex_t* mutex_p /% in/out =/);

int pthread_mutex_lock(pthread_mutex_t= mutex_p /x in/out =/);

int pthread_mutex_unlock(pthread_mutex_t=* mutex_p /x in/out #/):

()

10

}

ESTIMATING PI MUTEXES

for (i = my_first_i:
my_sum += factor/(2xi+1);

}

pthread_mutex_lock(&mutex):

sum += my_sum;

pthread_mutex_unlock(&mutex):

return NULL:
/% Thread_sum

*/

i < my_last_i;

i++, factor

= —factor) {

PERFORMANCE COMPARISON

| Threads || Busy-Wait | Mutex |

I 2.90 2.90

2 1.45 1.45 -

4 0.73 073 | 7o
parallel

8 0.38 0.38

16 0.50 0.38

32 0.80 0.40

64 3.56 0.38

~ thread_count

Run-times (in seconds) of 1T programs using n = 108
terms on a system with two four-core processors.

SOME ISSUES

= Busy-waiting enforces the order threads access a critical section.
= Using mutexes, the order is left to chance and the system.

= There are applications where we need to control the order threads access the
critical section.

MESSAGE PASSING EXAMPLE

/% messages has type charxsx. It s allocated in main. =/
/% Each entry is set to NULL in main. w/
void #Send_msg(voidx rank) {
long my_rank = (long) rank:
long dest = (my_rank + 1) % thread_count:
long source = (my_rank + thread_count — 1) % thread_count:

char+ my_msg = malloc(MSG_MAXx*sizeof (char)):

sprintf(my_msg, "Hello to %1d from $%1d", dest, my_rank):

messages|[dest] = my_msqg;
if (messages[my_rank] != NULL)
printf("Thread %$1d > %s\n", my_rank, messages[my_rank]):
else
printf("Thread %$1d > No message from %$ld\n", my_rank, source);

return NULL:
} /% Send_msg =/

()

12

MESSAGE PASSING EXAMPLE

pthread_mutex_lock(mutex[dest));

messages[dest]=my_msg;
pthread_mutex_unlock(mutex[dest]);

pthread_mutex_lock(mutex[my_rank]);

printf(“Thread %ld>%s\n", my_rank, messages[my_rank]);

pthread_mutex_unlock(mutex[my_rank]);

Problem: If one thread goes too far ahead, it might access

to the uninitialized location and crash the program.

Reason: mutex is always initialized as “unlock”

()

SEMAPHORE

/ Semaphores are not part of Pthreads;

#include <semaphore.h> you need to add this.

int sem_init(
sem_tx* semaphore_p /% out */
int shared /% in =/,
unsigned initial_val /% in %/):

int sem_destroy(sem_tx semaphore_p /% in/out
int sem_post(sem_tx semaphore_p /% in/out
int sem_wait(sem_t= semaphore_p /% in/out

13

USING SEMAPHORE

all semaphores initialized to 0 (locked)

messages[dest]=my_msg;
sem_post(&semaphores[dest]); /“unlock the destination semaphore*/

sem_wait(&semaphores[my_rank]); /“wait for its own semaphore to be unlocked*/
printf(“Thread %Ild>%s\n", my_rank, messages[my_rank]);

Semaphore is more powerful than mutex
because you can initialize semaphore
to any value

How to use mutex for the message passing?

BARRIERS

= Synchronizing the threads to make sure that they all are at the same point in a
program is called a barrier.

= No thread can cross the barrier until all the threads have reached it.

14

BARRIERS FOR EXECUTION TIME

/% Shared =%/
double elapsed_time;

/x Private x/

double my_start, my_finish, my_elapsed;
Synchronize threads;

Store current time in my_start;

/x Execute timed code */

Store current time in my_finish;

my_elapsed = my_finish — my_start;

elapsed = Maximum of my_elapsed values;

()

BARRIERS FOR DEBUG

point in program we want to reach;

barrier;

if (my_rank == 0) {
printf("All threads reached this point\n");
fflush(stdout);

}

15

IMPLEMENTING BARRIER

/x Shared and initialized by the main thread x/

int counter; /x [Initialize to 0 x/
int thread_count; ;

pthread_mutex_t barrier_mutex; We need one counter

variable for each
instance of the

void* Thread_work (. . .) { barrier,
Lo otherwise problems
/%« Barrier %/ are likely to occur.

pthread_mutex_lock(&barrier_mutex);
counter ++;
pthread_mutex_unlock(&barrier_mutex);
while (counter < thread_count);

CAVEAT

* Busy-waiting wastes CPU cycles.

* What about we want to implement a second barrier
and reuse counter?
> If counter is not reset, thread won’ t block at the second barrier
» If counter is reset by the last thread in the barrier, other threads
cannot see it.
» If counter is reset by the last thread after the barrier, some thread
might have already entered the second barrier, and the incremented
counter might get lost.

« Need to use different counters for different
barriers.

()

16

IMPLEMENTING BARRIER

/+ Shared variables x/

int counter; /% Initialize to 0 %/
sem_t count_sem; /% Initialize to 1 %/
sem_t barrier_sem; /% Initialize to 0 %/
void* Thread_work (...) {

/% Barrier */

sem_wait(&count_sem);

if (counter == thread_count—1) {
counter = 0;
sem_post(&count_sem);
for (j = 0; j < thread_count —1; j++)

sem_post(&barrier_sem);

} else {
counter++;
sem_post(&count_sem);
sem_wait(&barrier_sem);

}

CAVEAT

* No wasting CPU cycles since no busy-waiting

« What happens if we need a second barrier?
» “counter” can be reused.

> “counter_sem” can also be reused.

> “barrier_sem” meed to be unique, there is potential that
a thread proceeds through two barriers but another thread
traps at the first barriers if the OS put the thread at idle for
a long time.

()

17

PTHREADS BARRIER

* Open Group provides Pthreads barrier
pthread_barrier_init();
pthread_barrier_wait();
pthread_barrier_destroy();

« Not universally available

LINKED LIST

= Let’s look at an example.

= Suppose the shared data structure is a sorted linked list of ints, and the
operations of interest are Member, Insert, and Delete.

()

18

LINKED LIST

head_p 2 5 8

struct list_node_s {
int data:
struct list_node_s* next:

MEMBERSHIP

int Member(int value, struct list_node_sx* head_p) {
struct list_node_s* curr_p = head_p:

while (curr_p != NULL && curr_p—>data < value)
curr_p = curr_p—>next;

if (curr_p == NULL || curr_p—>data > value) {
return 0;

} else {
return 1[;

}

Vo /% Member =/

19

INSERT

int Insert(int value, struct list_node_s+x head_pp) {

struct list_node_s# curr_p = +head_pp:
struct list_node_s# pred_p = NULL:
pred_p curr_p struct list_node_s+ temp_p;
while (curr_p != NULL && curr_p—>data < value) {

head_p 2 | — 5 | =

pred_p = curr_p:
curr_p = curr_p—>next;

8 }

if (curr_p == NULL || curr_p->data > value) {
temp_p = malloc(sizeof (struct list_node_s)):
temp_p—>data = value;

temp_pH— 7

temp_p—>next = curr_p:

if (pred_p == NULL) /+ New first node +/
+head_pp = temp_p;

else

pred_p—>next = temp_p:
return 1:
} else { /« Value already in list +/
return 0;
}

b/« Insert «/

DELETE

int

head p 1+ 5| +— 8 /

pred p currp

}

Delete(int value, struct list_node_s## head_pp) {
struct list_node_s* curr_p = *head_pp:
struct list_node_s# pred_p = NULL;

while (curr_p != NULL && curr_p—>data < value) {
pred_p = curr_p;
curr_p = curr_p—>next;

}

if (curr_p != NULL && curr_p—>data == value) {
if (pred_p == NULL) { /+ Deleting first node in list
+head_pp = curr_p—>next;
free(curr_p):
} else {
pred_p—>next = curr_p-—>next:
free(curr_p);
}
return 1:
} else { /« Value isn’t in list */
return 0

}
/% Delete */

*/

20

LINKED LIST WITH MULTI-THREAD

Thread 0:
curr_p
head_p 2 5 8
Thread 1: Thread 1:
pred_p curr_p

SOLUTION #1

= An obvious solution is to simply lock the list any time that a thread attempts
to access it.

= A call to each of the three functions can be protected by a mutex.

Pthread mutex_ lock(&list_mutex):
Member (value);
Pthread mutex_unlock(&list_mutex):

In place of calling Member(value).

ISSUES

= We’re serializing access to the list.

= [f the vast majority of our operations are calls to
Member, we’ll fail to exploit this opportunity for
parallelism.

= On the other hand, if most of our operations are calls to
Insert and Delete, then this may be the best solution
since we’ll need to serialize access to the list for most
of the operations, and this solution will certainly be
easy to implement.

SOLUTION #2

= Instead of locking the entire list, we could try to lock individual nodes.

= A “finer-grained” approach.

struct list_node_s {
int data;
struct list_node_s* next;
pthread_mutex_t mutex;

()

22

SOLUTION #2

int Member (int value) {
struct list_node_s# temp_p:

pthread_mutex_lock(&head_p_mutex):
temp_p = head_p:
while (temp_p != NULL && temp_p—>data < value) {
if (temp_p—>next != NULL)
pthread mutex_lock(&(temp_p—>next—>mutex)):
if (temp_p == head_p)
pthread _mutex_unlock(&head_p_mutex):
pthread_mutex_unlock(&(temp_p—>mutex)):
temp_p = temp_p—>next;

if (temp_p == NULL | temp_p—>data > value) {
if (temp_p == head_p)
pthread_mutex_unlock(&head_p_mutex):
if (temp_p != NULL)
pthread_mutex_unlock(&(temp_p—>mutex)):
return O:
} else {
if (temp_p == head_p)
pthread_mutex_unlock(&head_p_mutex):
pthread_mutex_unlock(&(temp_p—>mutex)):
return 1:

}
} /% Member =/

ISSUES

= This is much more complex than the original Member function.

= It is also much slower, since, in general, each time a node is accessed, a
mutex must be locked and unlocked.

= The addition of a mutex field to each node will substantially increase the
amount of storage needed for the list.

23

READ-WRITE LOCKS

= Neither of our multi-threaded linked lists exploits the potential for
simultaneous access to any node by threads that are executing Member.

= The first solution only allows one thread to access the entire list at any
instant.

= The second only allows one thread to access any given node at any instant.

READ-WRITE LOCKS

= A read-write lock is somewhat like a mutex except that it provides two
lock functions.

= The first lock function is a read lock for reading, while the second
locks it for writing.

= [f any threads own the lock for reading, any threads that want to
obtain the lock for writing will block. But reading will not be
blocked.

= If any thread owns the lock for writing, any threads that want to obtain
the lock for reading or writing will block in their respective locking
functions

()

24

LINKED LIST PERFORMANCE

Number of Threads
Implementation 1 ’ 2 | 4 | 8
Read-Write Locks 0.213 | 0.123] 0.098 | 0.115
One Mutex for Entire List || 0.211 | 0.450 | 0.385 | 0.457
One Mutex per Node 1.680 | 5.700 | 3.450 | 2.700

100,000 ops/thread
99.9% Member
0.05% Insert
0.05% Delete

LINKED LIST PERFORMANCE

Number of Threads
Implementation 1 2 4 | 8
Read-Write Locks 248 | 497 | 4.69 | 4.71
One Mutex for Entire List 250 | 5.13 | 504 5.11
One Mutex per Node 12.00 | 29.60 | 17.00 | 12.00

100,000 ops/thread
80% Member

10% Insert

10% Delete

25

