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Abstract. Reliable estimation of model parameters from data requires
a suitable model. In this work, we investigate and extend a recent model
criticism approach to evaluate regression models on the Grassmann man-
ifold. Model criticism allows us to check if a model fits and if the un-
derlying model assumptions are justified by the observed data. This is
a critical step to check model validity which is often neglected in prac-
tice. Using synthetic data we demonstrate that the proposed model crit-
icism approach can indeed reject models that are improper for observed
data and that the approach can guide the model selection process. We
study two real applications: degeneration of corpus callosum shapes dur-
ing aging and developmental shape changes in the rat calvarium. Our
experimental results suggest that the three tested regression models on
the Grassmannian (equivalent to linear, time-warped, and cubic-spline
regression in Rn, respectively) can all capture changes of the corpus cal-
losum, but only the cubic-spline model is appropriate for shape changes
of the rat calvarium. While our approach is developed for the Grassman-
nian, the principles are applicable to smooth manifolds in general.

1 Introduction

In Euclidean space, regression models, e.g., linear least squares, are commonly
used to estimate the relationship between variables. Recently, they have been
successfully extended to manifolds, e.g., the manifold of diffeomorphisms [9],
general Riemannian manifolds [2], and in particular the Grassmannian [6]. These
models capture changes of data objects (e.g., images, or shapes) with respect to
an associated descriptive variable, such as age. To measure the goodness-of-fit of
these regression models, one usually computes the sum of squared errors (SSE),
R2 [2], or the mean squared error (MSE) using cross-validation.

While these measures assess fitting quality, they do not directly check if the
underlying model assumptions hold. Model criticism does exactly that: it checks
if a model’s assumptions (including the noise model) are consistent with the
observed data. It thereby provides valuable additional information beyond the
classical measures for model fit. Recently, statistical model criticism [8] using a
kernel-based two-sample test [3] has been proposed and its utility to evaluate
regression models in Euclidean space was demonstrated.



In this paper, we take this approach one step further and use the fact that the
strategy of [8] depends on a suitable kernel function for the data and can thus
be extended to manifolds given such a kernel function. Given a population of
data samples on the Grassmannian, we (1) perform regression, then (2) generate
samples from the regression model and (3) assess whether the observed data
could have been generated by the fitted model. We demonstrate the approach
by criticizing three different regression models on the Grassmannian [7] using
both synthetic and real data. We argue that model criticism is complementary
to traditional measures of model fit, but has the advantage of directly assessing
the suitability of a statistical model and its fit for given observed data.

Contributions. We propose an extension of model criticism to regression mod-
els on the Grassmannian. In particular, we extend the approach of [8] by (1)
providing a strategy to generate Gaussian-distributed samples with a specific
variance on this manifold, and (2) incorporating existing kernels into the two-
sample testing strategy used for model criticism. We then apply the approach
to check the validity of different regression models. Our experimental results are
based on both synthetic and real data, including corpus callosum and rat calvar-
ium shapes, providing insight into the appropriateness of the regression models
beyond the customary use of the R2 statistic.

2 Model criticism for regression in Euclidean space

The objective of model criticism for regression is to test for discrepancies between
observed data and a model estimated from the data [8]. We assume the data
observations are independently and identically distributed (i.i.d.) and that we
can draw i.i.d. samples from the model respecting the noise assumptions; then,
the key ingredient of model criticism is to measure whether these two samples
are drawn from the same underlying distribution. To perform this two-sample
test, a “kernelized” variant of the maximum mean discrepancy (MMD) [3] has
been proposed as one choice of the test-statistic.

Review of kernel-based two-sample testing [3]. Assume we have i.i.d.
samples X = {xi}mi=1 and Y = {yi}ni=1, drawn randomly from distributions p,
q, defined on a domain X . The goal of two-sample testing is to assess if p = q.
One choice of a test-statistic is the MMD, defined as

MMD[F , p, q] = sup
f∈F

(Ex∼p[f(x)]− Ey∼q[f(y)]) , (1)

where F is a suitable class of functions f : X → R. To uniquely measure whether
p = q, Gretton et al. [3] let F be the unit ball in a reproducing kernel Hilbert
space (RKHS) H, i.e., F = {f ∈ H : ‖f‖H ≤ 1}, with associated reproducing
kernel k : X × X → R. The kernel can be written as k(x, y) = 〈φ(x), φ(y)〉H,
where 〈·, ·〉H is the inner product in H and φ : X → H denotes the feature map.

According to [3], Eq. (1) can then be expressed as the RKHS distance between
the mean embeddings µ[p] and µ[q] of the distributions p and q, in particular



µ[p] := Ex∼p[φ(x)]. Since the mean embedding satisfies Ex∼p[f(x)] = 〈µ[p], f〉H,
Eq. (1) can be written as

MMD[F , p, q] = sup
‖f‖H≤1

〈µ[p]− µ[q], f〉 = ‖µ[p]− µ[q]‖H (2)

with the empirical estimate (using the kernel function k)

M̂MD[F , X, Y ] =

[
1

m2

m∑
i,j=1

k(xi, xj)−
2

mn

m,n∑
i,j=1

k(xi, yj) +
1

n2

n∑
i,j=1

k(yi, yj)

] 1
2

. (3)

In the following, we omit F and let M̂MD(X,Y ) denote the computation of the
MMD statistic on two samples X and Y using a suitable kernel function k.

Model criticism using two-sample testing. Assume we have data obser-
vations {Y obs

i }Ni=1, drawn from some distribution p, conditioned on an associ-
ated independent value ti. A regression model M is estimated from the tuples
{(ti, Y obs

i )}Ni=1. If the regression model is based on a Gaussian noise assump-
tion1, we can generate i.i.d. samples from the model; let this distribution be
denoted by q and a sample by {Y est

i = M(ti) +ni}Ni=1, where ni ∼ N(0, σ2) and
σ is the standard deviation of the residuals. Criticizing the model M now means
to perform a two-sample test between {(ti, Y obs

i )}Ni=1 and {(ti, Y est
i )}Ni=1 under

the null-hypothesis H0 : p = q. This is done by computing the test-statistic
between data observations and samples drawn from the regression model, i.e.,

T ∗ = M̂MD({(ti, Y obs
i )}Ni=1, {(ti, Y est

i )}Ni=1). Then, to obtain the distribution of
T under H0, we repeatedly draw (from q) N i.i.d. samples to form two pop-
ulations, {(ti, Y a

i )}Ni=1 and {(ti, Y b
i )}Ni=1. For each such draw j, we compute

Tj = M̂MD({(ti, Y a
i )}Ni=1, {(ti, Y b

i )}Ni=1) and thereby obtain the empirical dis-
tribution of T under H0. Note that in case of observations in Rn, computing the
MMD statistic for model criticism is straightforward, since we can simply add
ti as an additional dimension to our data, i.e., we obtain observations in Rn+1.
The well-known RBF kernel can then be used to compute Eq. (3). We will see
that this needs to be handled differently on manifolds.

Finally, we count the number of times that the bootstrapped statistics under
H0 are larger than the test statistic T ∗, which results in a p-value estimate.
Because T ∗ will be affected by the added random noise, we can also sample it a
large number of times, resulting in a distribution of T ∗ and associated p-values.

3 Model criticism for regression on the Grassmannian

We now extend the model criticism approach of the previous section to the Grass-
mann manifold. The test objects are regression models on the Grassmannian,
i.e., generalizations of classical regression in Euclidean space which minimize
the sum of squared (geodesic) distances to the regression curves. Noise in these
models is assumed to be Gaussian. To generalize the model criticism idea, one

1 Other noise models can also be used as long as one can sample from them.



key ingredient is to draw random samples on the Grassmannian at each point on
the regression curves. The other key ingredient is a suitable kernel k for Eq. (3)
and a strategy to include the independent value into the kernel.

Drawing random samples on the Grassmannian. Similar to the Euclidean
case, we assume we have N data observations on the Grassmannian G(r, s)2 with
associated independent values, i.e., {(ti,Yobs

i )}Ni=1. Using a regression model M
estimated from this data, we can compute the corresponding data points on the
regressed curve for each ti as Ȳest

i = M(ti). To draw sample points at each ti
under a Gaussian noise model, we adhere to the following strategy (although,
other approaches such as the one outlined in [11] are possible). First, we compute
the empirical standard deviation of the residuals as

σ =

√∑N
i=1 d

2(Yobs
i , Ȳest

i )

N − 1
, (4)

where d(·, ·) denotes the geodesic distance on G(r, s). For each estimated data
point Ȳest

i , we then generate a tangent vector Ẏest
i as the projection of an s× r

random matrix Zi = [zuv], zuv ∼ N (0, σ̂2) onto the tangent space at Ȳest
i ; this

is done via Ẏest
i = (Is − Ȳest

i (Ȳest
i )>)Zi where Is is the s × s identity matrix.

The random point Yest
i (at ti), is eventually computed via the Riemannian

exponential map as
Yest

i = Exp(Ȳest
i , Ẏest

i ) . (5)

We note that the standard deviation σ̂ of the samples in Zi is proportional to
the standard deviation σ as computed by Eq. (4). In fact, it can be shown3 that
the resulting geodesic distance between Ȳest

i and Yest
i has standard deviation

σ̂
√
rs. Consequently, we set σ̂ = σ/

√
rs when creating the Zi.

Kernels for model criticism on the Grassmannian. The next step is
to adjust the kernel-based two-sample test of [3] for model criticism on the
G(r, s) by selecting a suitable kernel. In [5], several positive definite (and uni-
versal) kernels on G(r, s) have been proposed, e.g., RBF, Laplace and Bino-
mial kernels. These kernels are constructed by using the Binet-Cauchy kernel
kbc [10] and the projection kernel kp [4]. We selected the kernel kl,p(X,Y) =

exp
(
−β
√
r − ‖X>Y‖2F

)
, β > 0 from [5] for our experiments4. However, for

model criticism as proposed in [8] to be used on regression models, we need to
be able to compute the MMD test for (ti,Yi) (i.e., including the information
about the independent variable). While this is simple in the Euclidean case (cf.

2 The Grassmannian G(r, s) is the manifold of r-dimensional subspaces of Rs. A point
on G(r, s) is identified by an s× r matrix Y with Y>Y = Ir.

3 Say we have samples Y1, . . . ,Yn with Fréchet mean Ȳ. The Fréchet variance is
defined as σ2 = minY∈G(r,s) 1/n

∑n
i=1 d

2(Y,Yi); this can equivalently be written

as σ2 = 1
n

∑n
i=1 tr(Ẏ>i Ẏi) with Ẏi = Exp−1(Ȳ,Yi). Expanding the trace yields

σ2 =
∑s

j=1

∑r
k=1[1/n

∑n
i=1 y

2
i,j,k] where the term in brackets is σ̂2 since yi,j,k is i.i.d.

as N (0, σ̂2). We finally obtain σ2 = rsσ̂2.
4 Here, r denotes the subspace dimension in G(r, s), as defined before.



Section 2), the situation on manifolds is more complicated since we cannot sim-
ply add ti to our observations. Our strategy is to use an RBF kernel for the ti,
i.e., krbf (t, t′) = exp(−(t−t′)2/(2γ2)) and then leverage the closure properties of
positive definite kernels, which allow multiplication of positive definite kernels.
This yields our combined kernel as

k((ti,X), (tj ,Y)) = exp

(
− (ti − tj)2

2γ2

)
· exp

(
−β
√
r − ‖X>Y‖2F

)
. (6)

In all the experiments, we set both β and γ to 1 for simplicity.

Model criticism on the Grassmannian. The computational steps for model
criticism on the Grassmannian are listed below:
(1) Compute the points {Ȳest

i = M(ti)}Ni=1 for each data observation Yobs
i on

G(r, s) from the estimated regression model M .
(2) Estimate the standard deviation of residuals, σ, using Eq. (4).
(3) Generate noisy samples, Yest

i at each ti using Eq. (5) and σ̂2 = σ2/(rs).

(4) Compute T ∗ = M̂MD({(ti,Yest
i )}Ni=1, {(ti,Yobs

i )}Ni=1) using Eqs. (3) & (6).
(5) Repeat (3) and (4) many times to obtain a population of T ∗.
(6) Generate two groups of samples using (3), {(ti,Ya

i )}Ni=1, and {(ti,Yb
i )}Ni=1,

and compute T = M̂MD({(ti,Ya
i )}Ni=1, {(ti,Yb

i )}Ni=1).
(7) Repeat (6) many times to obtain a distribution of T under H0.
(8) Compute a p-value for each T ∗ in (5) with respect to the distribution of T

from (7), resulting in a population of p-values. This allows to reject the null-
hypothesis that the observed data distribution is the same as the sampled
data distribution of the model at a chosen significance level α (e.g., 0.05).

4 Experimental results

We criticize three different regression models on the Grassmannian [7]: Std-
GGR, TW-GGR, and CS-GGR, which are generalizations of linear least squares,
time-warped, and cubic-spline regression, respectively. These three models are
estimated by energy minimization from an optimal-control point of view.

Synthetic data. For easy visualization, we synthesize data on the Grassman-
nian G(1, 2), i.e., the space of lines through the origin in R2. Each point uniquely
corresponds to an angle in [−π/2, π/2] with respect to the horizontal axis.

(1) Different data distributions. The first experiment is to perform model
criticism on one regression model, but for different data distributions. To gener-
ate this data, we select two points on G(1, 2) to define a geodesic curve, and then
uniformly sample 51 points along this geodesic from one point at time 0 to the
other point at time 1. Using the strategy described in Section 3, Gaussian noise
with σ = 0.05 is then added to the sampled points along the geodesic, resulting in
the 1st group (Group 1) of synthetic data. The 2nd group (Group 2) of synthetic
data is simulated by concatenating two different geodesics. Again, 51 points are
uniformly sampled along the curve and Gaussian noise is added. The left column
in Fig. 1(a) shows the two synthetic data sets using their corresponding angles.
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(a) Different data distributions (b) Different regression models

Fig. 1: Model criticism for synthetic data on the Grassmannian. (a) Different data
distributions are fitted by one regression model (Std-GGR); (b) One data distribution
is fitted by different regression models (top: Std-GGR, bottom: CS-GGR).
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(a) Corpus callosum (b) Rat calvarium

Fig. 2: Model criticism for real data. From top to bottom: the regression model corre-
sponds to Std-GGR, TW-GGR, and CS-GGR respectively.

Both groups are fitted using a standard geodesic regression model (Std-
GGR); the qualitative and quantitative results of model criticism are reported
in Fig. 1(a) and Table 1, respectively. Among 1000 trials, H0 is rejected in only
8.1% of all cases for Group 1 (generated from one geodesic), but H0 is always
rejected for Group 2 (i.e., generated from two geodesics). As expected, Std-GGR
is not an appropriate model to capture the distribution of the data belonging to
multiple geodesics. Model criticism correctly identifies this, while the R2 values
are hard to interpret with respect to model suitability.

(2) Different regression models. The second experiment is to generate one
data distribution, but to estimate different regression models. We first generate
a section of a sine curve with x-axis as time and y-axis as the angle. Each angle
θ corresponds to a point on the Grassmannian, i.e., [cos θ; sin θ] ∈ G(1, 2). In this
way, we can generate polynomial data on G(1, 2) with associated time t ∈ [0, 1].



Different data distributions Different regression models

Group 1 Group 2 Std-GGR CS-GGR

R2 0.99 0.89 0.73 0.99

%(p-values < 0.05) 8.1% 100% 88.0% 4.5%

Table 1: Comparison of R2 measure and model criticism for synthetic data.

Corpus callosum Rat calvarium

Std-GGR TW-GGR CS-GGR Std-GGR TW-GGR CS-GGR

R2 0.12 0.15 0.21 0.61 0.79 0.81

%(p-values < 0.05) 0.2% 0% 0% 100% 98.0% 1.3%

Table 2: Comparison of R2 measure and model criticism for real data.

A visualization of the generated data with added Gaussian noise (σ = 0.05) is
shown in the left column of Fig. 1(b). The data points are fitted by a standard
geodesic regression model (Std-GGR) and its cubic spline variant (CS-GGR),
respectively. The results of model criticism are shown in Fig. 1(b) and Table 1;
in 88.0% of 1000 trials, H0 is rejected for the Std-GGR model, while we only
reject H0 in 4.5% of all trials for CS-GGR. As designed, CS-GGR has better
performance than Std-GGR and can appropriately capture the distribution of
the generated data, as confirmed by model criticism.

Real data. Two real applications, shape changes of the corpus callosum during
aging and landmark changes of the rat calvarium with age, are used to evaluate
model criticism for three regression models on the Grassmannian.

(1) Corpus callosum shapes. The population of corpus callosum shapes is
collected from 32 subjects with ages varying from 19 to 90 years. Each shape is
represented by 64 2D boundary landmarks. We represent each shape matrix as a
point on the Grassmannian using an affine-invariant shape representation [1]. As
shown in Fig. 2(a) and Table 2, although the R2 values of the three regression
models are relatively low, our model criticism results with 1000 trials suggest
that all three models may be appropriate for the observed data.

(2) Rat calvarium landmarks. We use 18 individuals with 8 time points
from the Vilmann rat data5. The time points range from 7 to 150 days. Each
shape is represented by a set of 8 landmarks. We project each landmark-based
rat calvarium shape onto the Grassmannian, using the same strategy as for the
corpus callosum shapes. From the model criticism results shown in Fig. 2(b) and
Table 2 we can see that the equivalent linear (Std-GGR) and time-warped (TW-
GGR) models cannot faithfully capture the distribution of the rat calvarium
landmarks. However, the cubic-spline model is not rejected by model criticism
and therefore appears to be the best among the three models. This result is

5 Available online: http://life.bio.sunysb.edu/morph/data/datasets.html

http://life.bio.sunysb.edu/morph/data/datasets.html


consistent with the R2 values, and also provides more information about the
regression models. As we can see, the R2 values of TW-GGR and CS-GGR are
very close, but the model criticism suggests CS-GGR is the one that should be
chosen for regression on this dataset.

5 Discussion

We proposed an approach to criticize regression models on the Grassmannian.
This approach provides complementary information to the existing measure(s)
for checking the goodness-of-fit for regression models, such as the customary R2

statistic. While we developed the approach for the Grassmannian, the general
principle can be extended to other smooth manifolds, as long as one knows how
to add the modeled noise into samples and a positive definite kernel is available
for the underlying manifold. Two important ingredients of model criticism are
the estimation of the parameters of the noise model on the manifold (in our
case Gaussian noise and therefore we estimate the standard deviation) and the
selection of the kernel. Exploring, in detail, the influence of the estimator and
the kernel and its parameters is left as future work.
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