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Abstract—Semi-supervised segmentation is extensively em-
ployed in medical image analysis due to its ability to leverage
a small amount of labeled data alongside abundant unlabeled
data. However, its performance is hindered by the inadequate
knowledge of the data domain learned from limited labeled data
and the absence of effective strategies for exploiting unlabeled
regions, especially when annotations are extremely scarce. To
address these challenges, the Segment Anything Model (SAM)
has emerged as a promising solution. As a foundation model
enriched by extensive and diverse domain knowledge, SAM has
been leveraged to mitigate the epistemic uncertainty (EU) of semi-
supervised segmentation models, while aleatoric uncertainty (AU)
is often ignored. In this paper, we propose a novel semi-supervised
medical image segmentation framework called UP-SAM, which
adapts SAM for dual uncertainty assessments. The framework
achieves effective collaboration between large foundation models
and domain-specific models, leading to a simultaneous reduction
in the impact of EU and AU. The experiments on the left atrium
and pancreas datasets demonstrate the superior efficacy of UP-
SAM against baseline methods. Particularly, UP-SAM exhibits
substantial advantages over other semi-supervised learning mod-
els when dealing with exceedingly scarce labeled data. Code is
available at https://github.com/VivienLu/UP-SAM.

Index Terms—Segment Anything Model, Dual Uncertainty
Assessments, Semi-Supervised Learning, Medical Image Segmen-
tation

I. INTRODUCTION

Medical image segmentation is crucial for accurate diag-
nostics and effective treatment planning, as it enables precise
delineation of anatomical structures [1]. However, its impact
is often limited by the scarcity of annotated data, which is
costly and time-intensive to acquire. Semi-supervised learning
(SSL) offers a promising solution by leveraging both labeled
and unlabeled data, reducing annotation demands while en-
hancing generalization on complex medical images. Key SSL
techniques include uncertainty estimation [2], pseudo-labeling
[3], consistency regularization [4], and self-training [5].

Despite these advances, SSL for medical image segmenta-
tion faces persistent challenges, especially in managing uncer-
tainties and effectively utilizing unlabeled data. Uncertainty
can be divided into epistemic uncertainty (EU), caused by
model limitations, and aleatoric uncertainty (AU), stemming
from inherent data variability [6]. In SSL models, EU is often
estimated to improve model reliability, using techniques like
Monte Carlo dropout for uncertainty mapping [7], [8] and

consistency regularization in teacher-student frameworks [9].
However, conventional methods tend to evaluate uncertainties
on a per-pixel basis, assuming pixel independence. This ap-
proach overlooks the structured nature of AU in medical im-
ages, where inter-pixel label dependencies are critical [10]. As
a result, while SSL models effectively capture EU, they often
struggle to adequately represent AU, limiting their accuracy
in complex medical image contexts.

To address AU estimation, recent approaches employ prob-
abilistic models to capture spatial correlations, improving un-
certainty estimates in fully supervised settings [10]–[12]. For
SSL, models like FUSSNet [13] demonstrate that combining
EU and AU enhances performance by applying pseudo-labels
in reliable regions and consistency constraints on ambiguous
ones. However, with limited labeled data, heavy reliance
on unlabeled data can lead to inaccuracies, weakening the
reliability of pseudo-labels [14]–[16].

The Segment Anything Model (SAM) [17] has made sig-
nificant strides in medical segmentation [18], showcasing an
exceptional ability to derive robust and generalizable features
from images. To extend the capabilities of SAM in medical
image analysis, MedSAM [18] trained the refined architecture
from scratch on an extensive library of annotated medical
masks, facilitating 3D segmentation via sequential 2D slice
processing. A notable advancement, SAM-Med3D [19], en-
hances zero-shot 3D segmentation by using 3D positional
encodings, achieving remarkable outcomes in intricate volu-
metric segmentation.

Despite these advances, SAM-based models often rely on
manual prompts and struggle with fully unlabeled samples
[18]. Integrations with domain-specific adaptations enhance
performance in fields where medical expertise is limited.
However, they frequently neglect AU due to dataset variabil-
ity and cross-domain discrepancies [20], [21]. While recent
approaches that combine EU and AU can improve segmen-
tation outcomes, robust AU modeling within SAM remains
underexplored, leaving a critical gap in effectively handling
label variability across medical imaging datasets.

In this paper, we introduce a novel semi-supervised frame-
work UP-SAM for medical image segmentation that exploits
the full potential of SAM in addressing both EU and AU.
UP-SAM aims to establish a harmonious collaboration



between two distinct annotators: one with broad, generalized
knowledge akin to the foundation model, and the other with
focused, specialized expertise akin to the domain-specific
model. Our main contributions are summarized below:
• We propose an uncertainty-informed semi-supervised

framework that effectively adapt the SAM model to han-
dle both epistemic and aleatoric uncertainties in medical
image segmentation.

• To address EU, we combine diverse loss metrics and
refine SAM-Med3D [19] using a minimal set of labeled
samples, ensuring domain-specific adaptation while pre-
serving the extensive foundational knowledge.

• To address AU, we employ stochastic modeling to align
the logit distributions of the domain-specific model with
SAM-Med3D masks, marking UP-SAM as the pioneer-
ing work in successfully implementing unsupervised AU
estimation in the realm of SSL.

• Comprehensive experiments validate the efficacy of UP-
SAM in semi-supervised CT and MRI segmentation,
achieving superior performance even with extremely lim-
ited annotations.

II. RELATED WORK

A. Semi-supervised Learning in Medical Image Segmentation

Semi-supervised learning (SSL) has advanced medical im-
age segmentation by leveraging both labeled and unlabeled
data. Techniques like consistency regularization, exemplified
by the Mean Teacher (MT) model [22], stabilize predictions
through temporal consistency. MCF [14] builds on MT by
improving boundary precision through dynamic network in-
teractions. Pseudo-labeling methods, such as MC-Net+ [8],
enhance label quality using multi-decoder architectures for
robust predictions, while self-training approaches like AC-
MT [15] focus learning on ambiguous regions to capture the
most informative data. However, these models face persistent
challenges in managing uncertainty within unlabeled regions,
balancing model complexity, and mitigating error propagation
in pseudo-labeling. Addressing these limitations remains crit-
ical to enhancing the robustness and generalizability of SSL
in clinical imaging applications.

B. Segmentation Foundation Models in Medical Imaging

The Segment Anything Model (SAM) [17], trained on
extensive annotated datasets, has demonstrated strong potential
in medical segmentation [18]. Its ability to extract generaliz-
able features from medical images is further enhanced by in-
novations like 3D adapters [23], [24] and the generation of 3D
prompts from 2D data [25]. SAM-Med3D [19] extends SAM
into a fully 3D framework, leveraging over 131K 3D masks
without fine-tuning SAM’s pre-trained parameters, achieving
impressive volumetric segmentation with minimal prompts.

Despite its strengths, SAM-based models have limitations
when applied to fully unlabeled datasets, often depending on
manually provided prompts to guide segmentation [18]. To
address this, recent efforts integrate SAM with domain-specific
models for improved segmentation. SAM-LST [26] combines

SAM with CNNs, while SAMIHS [27] introduces a parameter-
efficient method for intracranial hemorrhage segmentation.
SemiSAM [20] and ASLseg [21] adapt SAM for SSL by in-
corporating domain knowledge and pseudo-labels, effectively
reducing EU. However, challenges remain in addressing AU,
which arises from discrepancies between general and domain-
specific data.

C. Uncertainty Estimation in Medical Image Segmentation

Uncertainty estimation is essential for reliable semi-
supervised medical image segmentation. Approaches like UA-
MT [9] modulate consistency loss based on uncertainty be-
tween teacher and student models, enhancing adaptability to
unlabeled data while risking error propagation from inaccurate
pseudo-labels. URPC [16] mitigates this through a pyramid
structure for uncertainty rectification, whereas UPCoL [28] uti-
lizes entropy-based masks to reinforce prototype consistency
across labeled and unlabeled data.

Nonetheless, many SSL methods assess pixel-wise uncer-
tainty independently, overlooking structured uncertainty in-
herent in medical images, which is AU arising from inter-
pixel dependencies. To address AU in fully supervised settings,
methods such as U-Net with variational autoencoders [11],
Bayesian deep learning [29], and stochastic segmentation
networks [10] have been proposed. Zepf et al. [12] explore
AU modeling based on labeling styles, while FUSSNet [13]
incorporates both AU and EU in SSL, although it encoun-
ters limitations when multiple decoders produce consistently
incorrect outputs.

To overcome these limitations, our UP-SAM directly tar-
gets EU by adapting SAM-Med3D to reduce errors from
incorrect predictions. Additionally, it refines AU distribution
in unlabeled data, improving the extraction and transfer of
generalized knowledge.

III. METHODOLOGY

Let D denote the dataset, comprising a labeled subset
DL with N pairs (xli, y

l
i), and an unlabeled subset DU

containing M instances xui . Both subsets exist within a 3D
space RH×W×D and are segmented into C classes. The
SAM-Med3D [19] model (ps) and the domain-specific model
(pφ) predict segmentation masks ŷs and ŷφ, respectively. For
labeled data, SAM-Med3D iteratively selects prompt points
where ŷls diverges from the ground truth yl. For unlabeled
data, ŷus is derived from prompts where SAM-Med3D masks
ŷus differ from domain-specific model masks ŷuφ in the prior
iteration.

UP-SAM operates in two phases: pre-training and fine-
tuning. Initially, the domain-specific model is pre-trained on
a small number of labeled samples. During fine-tuning, UP-
SAM incorporates two key components: 1) Supervised Do-
main Adaptation, which jointly fine-tunes SAM-Med3D and
the domain-specific model, and 2) Unsupervised Stochastic
Alignment, a stochastic modeling process aligning logit dis-
tributions from SAM-Med3D and the domain-specific model.
The architecture is depicted in Fig. 1.
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Fig. 1. Overview of our framework UP-SAM. (A) Supervised Domain Adaptation: SAM-Med3D is fine-tuned on labeled images, with segmentation
supervised against ground truth, and further refined for domain-specific adaptation. (B) Unsupervised Stochastic Alignment: The logit distributions of the
domain-specific model are aligned with SAM-Med3D’s predictions using stochastic modeling on unlabeled data. The image encoder of SAM-Med3D is frozen,
the mask decoder is partially tuned, while the domain-specific model is fully tuned.

A. Supervised Domain Adaptation (SDA)
Domain-specific Model Branch. The domain-specific model,
compatible with architectures such as VNet [30], integrates
multiple classification heads to capture diverse features and
reduce EU. Its backbone includes a shared encoder and
decoder, along with four EU heads constrained by various
loss functions (Cross-Entropy, Dice, IoU, and Focal Loss [31])
to optimize classification accuracy, segmentation overlap, and
class balance. Averaging predictions from these heads smooths
outputs, mitigating overfitting and enhancing robustness.

During training, we apply a higher learning rate during pre-
training to improve generalization, followed by a lower rate in
fine-tuning for precision. The segmentation loss used in both
phases is defined as:

Lseg =
∑
h∈H

Lh(phφ(xli), y
l
i). (1)

where H = {ce, dice, focal, iou} denotes the loss functions
applied to each EU head.
SAM-Med3D Branch. We leverage SAM-Med3D [19] as the
foundation model and fine-tune it on limited labeled samples
using a combined Cross-Entropy and Dice loss function,
following SAM-Med3D’s settings. To maintain general knowl-
edge and reduce computational costs, only the final layers of
the mask decoder are updated (upscaling block and output
MLP), while other layers remain frozen [26]. The fine-tuning
objective is expressed as:

Lsam = Lce+dice(ps(x
l
i), y

l
i). (2)

B. Unsupervised Stochastic Alignment (USA)
To address AU in unlabeled data, we align domain-specific

model logits with SAM-Med3D’s predictions for unlabeled

images. Unlike previous approaches that depend on labeled
data [10], [12], our unsupervised alignment module leverages
unlabeled data to enhance generalization.

The stochastic modeling process generates multiple segmen-
tation hypotheses for each unlabeled image, reducing AU by
exploring plausible segmentations. Initial segmentations from
SAM-Med3D undergo stochastic perturbations to produce di-
verse yet coherent hypotheses and capture inherent variability
in medical images.

Following [10], we model the domain-specific logits ηφ as
a multivariate normal distribution N(µ(x),Σ(x)). To enhance
computational efficiency, we represent Σ(x) in a low-rank
form Σ(x) = D(x) + P (x)P (x)T , where D(x) is a diago-
nal variance matrix and P (x) provides low-rank covariance
factors. Here, µ(x), P (x), and D(x) are outputs from distinct
convolutional neural networks. Estimating the conditional log-
likelihood involves K Monte Carlo samples to refine µ(x),
P (x), and D(x), as follows:

log p(y|x) = log

∫
p(y|ηφ)pθ(ηφ|x)dη ≈ log

1

K

K∑
k=1

p(y|η(k)φ ),

(3)
where pθ(ηφ|x) represents the logit probability distribution
conditioned on the image, parameterized by θ.

Unlike prior work [10], which relies on ground truth, we
utilize the SAM-Med3D’s masks ŷus for unlabeled images to
calibrate the alignment loss, formulated as:

Lalign = −
K∑
k

H×W×D∑
i

C∑
c

ŷus,ic log(softmax(η
(k)
φ,ic)). (4)

We hypothesize that fine-tuning expands the intersection



between domain-specific and foundational knowledge, transi-
tioning from generalized to specialized insights. The alignment
ensures that the domain-specific model effectively integrates
and leverages knowledge from SAM-Med3D, promoting con-
sistent and robust segmentation.

Finally, the total loss of our UP-SAM framework, account-
ing for labeled and unlabeled data, is outlined as:

Loss = α(Lseg + Lsam) + λLalign, (5)

where α is set to 0.5 to balance the labeled terms, and
λ is a temporal Gaussian warming-up function to modulate
alignment strength.

IV. EXPERIMENTS

A. Datasets and Experimental Setup

Datasets. We evaluate the proposed framework on two widely
used semi-supervised medical image segmentation datasets:
the Left Atrium (LA) dataset [32] and the Pancreas-CT dataset
[33]. The LA dataset contains 100 high-resolution 3D MR
images, split into 80 for training and 20 for testing [7], [9],
[34]–[36]. The Pancreas-CT dataset comprises 82 CT scans,
with 62 for training and 20 for testing [7], [13], [28], [34].
Both datasets are normalized, with labeled subsets including
1, 2, and 4 scans, and the remainder used as unlabeled
data following standard selection protocols [7], [34]. Data
preprocessing contains extracting 128 × 128 × 128 voxel
cubes and applying one-hot encoding for multiclass masks,
consistent with SAM-Med3D [19].
Implementation details. We use V-Net [30] as the backbone.
The model undergoes pre-training for 7.5k iterations using
SGD (lr = 10−2) and fine-tuning for 7.5k iterations with
AdamW (lr = 10−5), following SSL standards [7]–[9], [14],
[34] and SAM-Med3D’s configuration [19]. Batch sizes are 4
(2 labeled, 2 unlabeled) or 2 (1 labeled, 1 unlabeled), depend-
ing on labeled scan availability. For SAM-Med3D inference,
we use five prompt points per iteration, based on ground truth
for labeled data or model predictions for unlabeled data. To
model AU, we use 20 Monte Carlo samples [10], [13], and the
alignment term λ follows a Gaussian ramp-up schedule with
a maximum value of 1 [7], [16], [34].

Performance is evaluated with Dice, Jaccard Index, 95%
Hausdorff Distance, and Average Symmetric Surface Distance,
using PyTorch on an NVIDIA RTX 3090 GPU.
Baseline approaches. We compare our framework against
both pre-trained foundation models and SSL methods using
the V-Net [30] backbone for medical image segmentation.
Baseline SSL methods include MT [22] and UA-MT [9] for
consistency regularization and uncertainty estimation, MC-
Net+ [8] for multi-decoder pseudo-labeling, FUSSNet [13]
for integrating AU and EU, MCF [14] for dual-network
interactions, and AC-MT [15] for selective consistency in
ambiguous regions.

For zero-shot segmentation, we benchmark against SAM
[17] and SAM-Med3D [19]. SAM requires manual bounding

TABLE I
SEGMENTATION PERFORMANCE COMPARISON ON THE LEFT ATRIUM
DATASET WITH VARYING LABELED (#LB) AND UNLABELED (#UNLB)

DATA RATIOS.

Method #Lb/#Unlb Dice(%) Jac(%) 95HD ASD

Pretrained foundation models for Zero-shot Segmentation

SAM 0 / 80 77.38 63.43 12.72 4.75
SAM-Med3D 77.96 64.78 13.03 3.73

Semi-Supervised Segmentation with Extremely Limited Labeled Data

VNet

1 / 79

7.20 5.69 44.14 26.92
MT (NIPS’17) 44.16 29.66 47.02 2.20
UA-MT (MICCAI’19) 46.51 31.84 44.11 5.42
MC-Net+ (MIA’22) 4.09 2.92 37.26 9.98
FUSSNet (MICCAI’22) 65.88 50.23 40.69 13.92
MCF (CVPR’23) 5.33 4.42 32.41 19.88
AC-MT (MIA’23) 46.74 32.21 43.99 18.44
UP-SAM 78.25 65.31 18.83 4.39

VNet

2 / 78

46.74 32.60 39.02 6.24
MT (NIPS’17) 69.32 53.87 37.21 2.92
UA-MT (MICCAI’19) 73.38 58.82 31.94 2.69
MC-Net+ (MIA’22) 27.17 18.51 34.45 11.70
FUSSNet (MICCAI’22) 74.92 61.58 27.17 8.81
MCF (CVPR’23) 67.57 52.49 32.33 2.60
AC-MT (MIA’23) 81.33 68.87 16.50 5.16
UP-SAM 82.84 71.25 16.03 4.36

VNet

4 / 76

67.34 55.26 25.70 7.23
MT (NIPS’17) 74.64 60.77 34.14 2.72
UA-MT (MICCAI’19) 75.82 62.09 28.36 3.27
MC-Net+ (MIA’22) 78.66 65.88 22.27 6.04
FUSSNet (MICCAI’22) 81.97 70.46 20.54 5.94
MCF (CVPR’23) 82.73 71.32 16.59 2.28
AC-MT (MIA’23) 86.04 76.03 9.23 2.50
UP-SAM 84.06 72.90 13.78 3.14

Fully Supervised Segmentation

VNet 80 / 0 91.42 84.27 5.15 1.50
MedSAM 81.34 68.73 10.47 3.71

boxes per slice, while SAM-Med3D uses five random fore-
ground prompts per volume. For fully supervised segmenta-
tion, MedSAM [18], pre-trained on datasets such as LA and
Pancreas-CT, is applied.

B. Experimental Results on the Left Atrium Dataset

Table I demonstrates the effectiveness of our UP-SAM
method on the LA dataset, particularly in low-annotation
settings. With just 1 labeled scan, UP-SAM achieves a Dice
score of 78.25%, outperforming other SSL methods. With 4
labeled scans, UP-SAM achieves a Dice score of 84.06%,
slightly trailing AC-MT [15] at 86.04%. This may be due
to the relative simplicity of the LA dataset, where domain-
specific knowledge suffices, and excess general knowledge can
introduce redundancy.

In zero-shot segmentation, SAM-Med3D [19] slightly out-
performs SAM [17], benefiting from 3D positional encodings.
Fine-tuning UP-SAM with 2 labeled scans yields a Dice
score of 82.84%, surpassing both SAM (77.38%) and SAM-
Med3D (77.96%). This highlights the advantage of UP-SAM’s
domain-specific adaptation and stochastic modeling.

In fully supervised settings, VNet achieves a Dice score of
91.42%, exceeding MedSAM’s 81.34%. This result, consistent
with prior studies [37], [38], underscores the importance of
domain-specific adaptation for medical segmentation tasks.
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Fig. 2. Visual comparison of left atrium segmentation results (in red).

Figure 2 shows segmentation results using 2 labeled scans.
While SAM and SAM-Med3D produce coarse segmentations
with missing portions of the left atrium, MedSAM improves
consistency yet struggles with boundary precision. VNet-Semi,
trained on 2 labeled scans, displays significant errors, whereas
VNet-Full, trained on the full dataset, reduces errors but still
misidentifies some regions. In contrast, our UP-SAM provides
accurate and detailed segmentations, closely aligning with
ground truth even with limited labeled data.

C. Experimental Results on the Pancreas-CT Dataset

Tab. II presents a comparison of segmentation methods
on the Pancreas-CT dataset, demonstrating the strong per-
formance of UP-SAM. With just one labeled scan, UP-SAM
achieves a Dice score of 70.79%, significantly outperforming
FUSSNet’s 30.67%. Although both UP-SAM and FUSSNet
address EU and AU, UP-SAM’s superior results highlight
the added benefit of incorporating general knowledge from
foundation models.

Moreover, UP-SAM’s performance with a single labeled
scan nearly matches MedSAM’s fully supervised score with
62 labeled scans (70.92%). This demonstrates UP-SAM’s
efficiency in leveraging limited annotations and offering a cost-
effective solution for medical image segmentation.

Domain-specific ModelsFoundation Models

Raw Image VNet-Semi VNet-FullSAM MedSAM SAM-Med3D UP-SAM Ground Truth

Fig. 3. Visual comparison of pancreas segmentation results (in blue).

Figure 3 provides a visual comparison of pancreas-CT
segmentation results across different methods. The Pancreas-
CT dataset presents challenges due to jagged and concave
shapes in the annotations, complicating edge segmentation.
Despite these challenges, UP-SAM captures the pancreas
structure with high precision, delivering smooth and con-
sistent boundaries. It closely matches the performance of

TABLE II
SEGMENTATION PERFORMANCE COMPARISON ON THE PANCREAS-CT
DATASET WITH VARYING LABELED (#LB) AND UNLABELED (#UNLB)

DATA RATIOS.

Method #Lb/#Unlb Dice(%) Jac(%) 95HD ASD

Pretrained foundation models for Zero-shot Segmentation

SAM* 0 / 62 35.95 22.06 37.41 17.04
SAM-Med3D* 79.60 66.36 5.34 1.49

Semi-Supervised Segmentation with Extremely Limited Labeled Data

VNet

1 / 61

19.94 11.86 43.29 11.38
MT (NIPS’17) 19.22 10.84 67.01 2.38
UA-MT (MICCAI’19) 9.51 5.03 70.06 2.69
MC-Net+ (MIA’22) 10.42 5.54 65.35 33.52
FUSSNet (MICCAI’22) 30.67 18.61 43.86 19.86
MCF (CVPR’23) 11.45 6.10 67.45 2.15
AC-MT (MIA’23) 15.94 9.18 56.85 30.23
UP-SAM 70.79 55.25 11.00 3.41

VNet

2 / 60

37.20 24.73 41.18 5.55
MT (NIPS’17) 37.34 23.66 51.17 2.49
UA-MT (MICCAI’19) 21.44 12.33 61.12 3.63
MC-Net+ (MIA’22) 17.57 9.82 59.81 29.32
FUSSNet (MICCAI’22) 40.53 26.10 45.95 18.86
MCF (CVPR’23) 19.35 10.85 63.64 1.71
AC-MT (MIA’23) 21.63 13.04 65.81 32.84
UP-SAM 71.12 55.61 11.39 3.38

VNet

4 / 58

50.01 34.46 41.01 3.67
MT (NIPS’17) 35.67 22.71 57.53 3.51
UA-MT (MICCAI’19) 34.60 22.31 53.38 3.63
MC-Net+ (MIA’22) 33.78 21.11 53.33 25.13
FUSSNet (MICCAI’22) 58.81 43.37 34.44 12.51
MCF (CVPR’23) 42.28 28.70 53.56 27.53
AC-MT (MIA’23) 46.42 31.36 51.71 2.94
UP-SAM 72.65 57.42 10.49 2.82

Fully Supervised Segmentation

VNet 62 / 0 82.53 70.63 6.01 1.88
MedSAM* 70.92 55.09 7.71 2.68

TABLE III
ABLATION STUDY ON THE LEFT ATRIUM DATASET BY UTILIZING TWO

LABELED SCANS.

Method Backbone Loss Metrics
VNet SAM-Med3D Lseg Lsam Lalign Dice(%) ASD

Sup-
Only

Baseline X 46.74 6.24
+ EU Heads X X 72.81 10.86
+ SDA X X X X 77.78 7.10

Semi-
Sup

+ USA X X X X 81.31 3.93
UP-SAM X X X X X 82.84 4.36

fully supervised models like MedSAM and VNet-Full, even
with limited labeled data, demonstrating its effectiveness in
complex medical image segmentation tasks.

D. Ablation Study

The ablation studies of key components in UP-SAM are
summarized in Tab. III. In the supervised-only segmenta-
tion study, applying EU estimation to VNet (+ EU Heads)
raised the Dice score from 46.74% to 72.81%, illustrating
the value of leveraging EU heads for richer exploitation of
labeled data. Further improvement was seen by introducing the
Supervised Domain Adaptation module (+ SDA), raising the
Dice score to 77.78%, demonstrating the importance of fine-
tuning even well-established models. In the semi-supervised
setting, adding the Unsupervised Stochastic Alignment module
(+ USA) to model AU significantly boosted performance to
81.31%. This highlights the importance of modeling AU in



leveraging unlabeled data by applying generalized knowledge
from the foundation model to the specific domain. Finally,
the combination of supervised fine-tuning (Lsam) and unsu-
pervised alignment (Lalign) further improved the Dice score
to 82.84%, confirming the complementary benefits of domain
adaptation and uncertainty modeling for better leveraging both
labeled and unlabeled data.

V. CONCLUSION

In this work, we propose a refined semi-supervised frame-
work UP-SAM that seamlessly integrates epistemic and
aleatoric uncertainty assesment within a dual-model architec-
ture, specifically designed for medical image segmentation
with scarce annotations. The framework encompasses a com-
prehensive strategy that involves fine-tuning SAM-Med3D to
address EU and logit space alignment to handle AU, aiming
to achieve collaboration between large foundation models and
domain-specific models. Experimental results on two datasets
demonstrate that UP-SAM outperforms most existing SSL and
pre-trained foundation models, achieving high performance
with minimal labeled scans and no need for prompts during
inference. Future work will explore extending this framework
to multi-class segmentation tasks and further refining it to
minimize redundant knowledge interference.
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