COMP 110-001
Inheritance and Polymorphism

Yi Hong
June 09, 2015



Today

* [nheritance and polymorphism



Inheritance and Polymorphism

» /nheritance allows you to define a base
class and derive classes from the base
class

= Polymorphism allows you to make
changes in the method definition for the
derived classes and have those changes
apply to the methods written in the base
class =2 "Many forms”



Calling a Derived Class’ Overridden Method

public static void jump3Times(Person p)

{
p.jump();
p.jump();
p.jump();
}

public static void main(String[] args)

{
XGamesSkater xgs = new XGamesSkater();
Athlete ath = new Athlete();
jump3Times(xgs);
jump3Times(ath);



What If We Wrote a New Class?

= Note that we wrote the class Person
before any of the derived classes were

written

= We can create a new class that inherits
from Person, and the correct jump method
will be called because of dynamic binding



Dynamic Binding

» The method invocation is not bound to the
method definition until the program executes

public class SkiJumper extends ExtremeAthlete

{ public void jump()
{
System.out.println("Launch off a ramp and land on snow");
}
}
public static void main(String[] args)
{
SkiJumper sj = new SkiJumper();
jump3Times(sj);



Another Example of Polymorphism

public class PolymorphismDemo

{

public static void main(String[] args)

{

Person[] people

people[0] =
people[l] =
people[2] =
people[3] =
for (Person

{

p.writeOutput(); =
System.out.printin();

new
new
new
new

p :

= new Person[4];

Undergraduate("Cotty, Manny", 4910, 1);
Undergraduate("Kick, Anita", 9931, 2);
Student("DeBanque, Robin", 8812);
Undergraduate("Bugg, June", 9901, 4);

people)

Eventhoughp is of type Person, the
writeOutput method associated
withUndergraduate orStudent is
invoked depending upon which class was
used to create the object.



Dynamic Binding and Polymorphism

= Dynamic binding: the method is not bound
to an invocation of the method until run
time when the method called

= Polymorphism: associate many meanings
to one method name through the dynamic
binding mechanism



The Class Object

= Every class in Java is derived from the
class Object

« Every class in Java /s an Object

Object
Animal Person
Reptile Mammal Student Employee

/ N

Crocodile Human Whale



The class Object

»= Object has several public methods that are
iInherited by subclasses

= Two commonly overridden Object methods:
 toString:

 takes no arguments, and returns all the data in an
object, packaged into a string

* equals

« Compares two objects



Calling System.out.printin()

* There is a version of System.out.printin that
takes an Object as a garameter. What
happens if we do this"

Person p = new Person();
System.out.println(p);

= We get something like:

Person@addbfl

* The class name @ hash code



The toString Method

= Every class has a toString method,
inherited from Object

public String toString()

» |ntent is that toString be overridden, so
subclasses can return a custom String
representation



When We Call System.out.println() on
an Object...
» the object’s toString method is called

= the String that is returned by the toString
method is printed

public class Person public class Test
{ {
private String name; public static void main(String[] args)
public Person(String name) {
{ Person per = new Person("Apu");
this.name = name; System.out.println(per);
} }
public String toString() }
{
return "Name: " + name; Output:
}
} Person@addbf1

Name: Apu



What If We Have a Derived Class?

(Assume the Person class has a getName method)

public class Student extends Person

{
private int id;
public Student(String name, int id)
{
super(name);
this.id = id;
}
public String toString()
{
return "Name: " + getName() + ", ID: " + id;
}
}
public class Test Output:
{ . .
public static void main(String[] args) Name: Apu, ID: 17832
{
Student std = new Student("Apu", 17832);
System.out.println(std);
}



What If We Have a Derived Class?

= Would this compile?

public class Test

{

public static void main(String[] args)

{
Person per = new Student("Apu", 17832);
System.out.println(per);

}
}

= Yes. What is the output? Output:
Name: Apu, ID: 17832

» Automatically calls Student’s toString method
because peris of type Student



The equals method

= First try:
public boolean equals(Student std)
{
return (this.id == std.id);
}

= However, we really want to be able to test
If two Objects are equal



The equals method

= Object has an equals method
 Subclasses should override it

public boolean equals(Object obj)

{
return (this == obj);

» \What does this method do?
« Returns whether this has the same address as obj

 This is the default behavior for subclasses



The equals method

= Second try

public boolean equals(Object obj)

{
Student otherStudent = (Student) obj;

return (this.id == otherStudent.id);

= \What does this method do?

o Typecasts the incoming Object to a Student
o Returns whether this has the same id as otherStudent



The equals method

public boolean equals(Object obj)

{
Student otherStudent = (Student) obj;
return (this.id == otherStudent.id);

= Why do we need to typecast?
« Object does not have an id, obj.id would not compile

= What’s the problem with this method?
« What if the object passed in is not actually a Student?

« The typecast will fail and we will get a runtime error



The instanceof operator

= We can test whether an object is of a
certain class type

if (obj instanceof Student)
{

System.out.println("obj is an instance of the class Student");

}

= Syntax:

object instanceof Class_Name

» Use this operator in the equals method



The equals method

= Third try

public boolean equals(Object obj)

{
if ((obj != null) & & (obj instanceof Student))

{
Student otherStudent = (Student) obj;
return (this.id == otherStudent.id);
}

return false;

= Reminder: null is a special constant that can be assigned to a
variable of a class type — means that the variable does not
refer to anything right now



Next Class

= Exception handling
= File I/0O



