COMP 110-001
Constructors and Static Methods

Yi Hong
June 03, 2015

Constructors

Recall our Student example:
public class Student {

private int PID;
private int year;
.... Accessors & mutators

J

Every time we use it, we have to use multiple statements to
initialize values of instance variables.

Student berkeley = new Student();
berkeley.setPID(1234);
berkley.setYear(2);

Constructors

» |sn’t this troublesome? What if we have some
more complicated initialization steps? (e.qg.,
an instance variable of class type to be

initialized)

Student berkeley = new Student();
berkeley.setPID(1234);
berkley.setYear(2);

Constructors

= Constructor is a special method that is
called when a new object is created

Student berkeley; // not called

Student berkeley = new Student();
// called with new keyword

Constructors

= Let’s write our first constructor

public class Student {

private int PID;
private int year; There is no return

type or “void” keyword

.... Accessors & muta

public Student(int PID, int year) {

this.PID = :
this.year = year; Constructor has the same

name as the class

Constructors

public Student(int PID, int year) {
this.PID = PID;

this.year = year,

= With this constructor, we can now do:
Student berkeley = new Student(1234, 2);

Multiple Constructors

* You can have multiple constructors in one class

= They all have the same name, just different parameters

public class Student {

public Student(int PID, int year) {
this.PID = PID;
this.year = year;
}
public Student(int PID) {
this.PID = PID;
this.year = 1; // default case — the 15! year

Constructors

= Generally, constructor should contain all
initialization logic
 assign initial values based on input parameters
 assign default initial values without input
* reserve resource, prepare input/output stream

« whatever other logic necessary (e.g., error
checking)

= We will see more examples later.

Default Constructor

= What if you did not write any constructor?

public class Student {

private int PID;
private int year;
.... No constructor

}
Student berkeley = new Student();

Java gives each class a default constructor if you did not write any
constructor. It assigns a default value to each instance variable.

- integer, double: 0
- String and other class-type variables: null

- boolean: false

Constructors

* |[f you define at least one constructor, a
default constructor will not be created for
you

Example: Pet class

public class Pet
{

private String name;
private int age;
private double weight;

public Pet()

{
name = “No name yet.”;
age = 0;
weight = 0;

}

public Pet(String initName, int initAge, double initWeight)
{

name = initName;

age = initAge;

weight = initWeight;

11

Calling a Constructor

Pet myPet;
myPet = new Pet(“Lightning”, 3, 121.5);

* You cannot use an existing object to call a
constructor:

myPet.Pet("Fang”’, 3, 155.5); // X invalid!

12

Calling Methods from Constructors

= Just like calling methods from methods

public Pet(String initName, int initAge, double initWeight)
{

mmm) setPet(initName, initAge, initWeight);
}

private void setPet(String newName, int newAge, double
newWeight)

{
name = newName;
age = newAge;
weight = newWeight;
}

13

More Complicated Issues

= Constructor is used to create instance of
class

« Can constructor be private?

 Can a constructor call another constructor?

public Pet(String initName)

{
this(initName, 0, 0.0);

}

private Pet(String initName, int initAge, double initWeight)

{
setPet(initName, initAge, initWeight);

}

Static Members

= static variables and methods belong to a
class as a whole, not to an individual object

Sounds weird, doesn’t it?
- static is against OO in some sense

= \Where have we seen static before?

= When would you want a method that does
not need an object to be called?

What about a pow method?

// Returns x raised to the yth power, where y >= 0

public int pow(int x, int y)

{
int result = 1;
for (int 1 = 0; i < y; i++)
{
result *= x;
}
return result;
}

Do we need an object to call this method?

16

static version of pow method

public class Math

{
public static double PI = 3.1415926;

// Returns x raised to the yth power, where y >= 0
public static int pow(int x, int y)

{
int result
for (int i = 0; i < y; i++ static
{ keyword
result *= x;
}
return result;
}

17

static

= Static variables and methods can be
accessed using the class name itself:
 System.out.println(Math.PI);

e int z = Math.pow(2, 4);

18

Another Example

public class MainClass {

public static void main(String[] args) {

}

MainClass is the entry-point of one application

main method is the entry-point of the class. It is executed
before any instance is created. Thus, it has to be static.

static vs non-static

= All static members are at class level. They
are accessed without creating any
iInstance.

» Thus, there is no “current object” in writing
static methods.

= static methods has no access to instance
variables or non-static methods (since
they belong to instances)

Will This Code Compile?

public class SomeClass

{
public static final double PI = 3.14159;
private boolean calculated = false;
public static double area(double radius)
calculated = true; < -
return PI * (radius * radius);
}
}

= Code will not compile

» static methods are invoked without an object
 Nno access to instance variables or non-static methods

21

Will This Code Compile?

public class SomeClass

{

public static final double PI = 3.14159;
public int data = 12;

private void printData()

{
}

System.out.println(data);

public static double area(double radius)

{
printData(); <

return PI * (radius * radius);

22

Will This Code Compile?

public class SomeClass

{

¥

public static final double PI = 3.14159;

private void printPi()

{
System.out.printlh(PI);
System.out.printlph(area(3.0));
}
public static double area(double radius)
{
return PI * (radius * radius);
}

Non-static methods CAN call static methods and access static
variables

23

Calling a non-static method from a

static method

public class SomeClass

{

public static final double PI = 3.14159;

private void printPi()

{
}

public static double area(double radius)

{

System.out.println(PI);

SomeClass sc = new SomeClass();
sc.printPi();
return PI * (radius * radius),;

24

main I1s a static method

import java.util.*;
public class MyClass

{

[public static void main(String|] argsﬂ

1
System.out.println(“Give me a number, and I will ” +
“tell you its square and its square’s square.”);
Scanner kb = new Scanner(System.in);
int num = kb.nextInt();
int numSquared = num * num;
System.out.println(“The square is ” + numSquared);
int numSquaredSquared = numSquared * numSquared;
System.out.println(“The square’s square is ” +
numSquaredSquared) ;
}

25

static Helper Methods

import java.util.*;
public class MyClass

{

(b

{

)

ublic static int square(int x)x

return x * Xx;

v,

public static void main(String[] args)

{

System.out.println(“Give me a number, and I will ” +
“tell you its square and its square’s square.”);

Scanner kb = new Scanner(System.in);

int num = kb.nextInt();

System.out.println(“The square is ” + square(num));

System.out.println(“The square’s square is ” +
square(square(num)));

26

The Math class

* Provides many standard mathematical
methods, all static

o Do not create an instance of the Math class to use
Its methods

= Call Math class’ methods using class hame

o Math.abs, Math.max, Math.min, Math.pow,
Math.round, and others

= Predefined constants

o Math.PI
o Math.E

27

The Random class

* Why methods in random are not static?

= \We want a method that returns a random
(different) number whenever it is called.

Random rand = new Random();

int randNum = rand.nextInt();

Next Class

* Designing methods and overloading
» Package & review of classes

