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ABSTRACT

Trade secrets such as intellectual properties are the inherent val-

ues for firms. Although companies have exploited strict access

management policies and isolated their networks from the public

Internet, trade secrets are still vulnerable to side-channel attacks.

Side-channels can reveal the computing processes of computers in

forms of various physical signals such as light, electromagnetism,

and even heat. Such side-channels can bypass the isolation mecha-

nism and therefore bring about severe threats. However, existing

side-channels can only perform well within a short-distance (e.g.,

less than 1 meter) due to the high attenuation of signals. In this

paper, we seek to utilize the built-in power lines in a building and

construct a power side-channel that enables remote, i.e., cross-outlet

attack against trade secrets. To this end, we investigate the power

factor correction (PFC) module inside the power supply units of

commodity computers and find that the PFC signals observed from

an outlet can precisely reveal the power consumption information

of all the connected devices, even from the outlets in adjacent rooms.

Based upon this insight, we design and implement OutletSpy, a
power side-channel attack that can infer application launching

from a remote outlet and therefore enjoys the stealthiness prop-

erty. We validate and evaluate OutletSpy with a dataset under

different background APPs, time variations and different locations.

The experiment results show OutletSpy can infer the application

launching with 98.25% accuracy.
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Figure 1: Attack scenario of OutletSpy. The attacker can infer

which application the victim is launching by analyzing the

PFC signal from the outlet in another room.
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1 INTRODUCTION

Trade secrets such as intellectual properties are the inherent values

for firms [5]. Failures to protect those trade secrets shall lead to

significant predation risk, and jeopardize profitability and even sur-

vival. It is reported by the US Chamber of Commerce reports that

the theft of trade secrets is associated with more than $50 billion

annual loss for firms [17]. Rival firms, for example, can exploit vari-

ous approaches, e.g., phishing emails, taking aerial photos and even

eavesdropping over telephones to steal sensitive information [2]. To

protect trade secrets, companies restrict access to their important

facilities and set up an internal network physically isolated from

the Internet.

Although physically separated or isolated, trade secrets are still

threatened by the so-called side-channel attacks. Side-channel at-

tacks exploit unintended information leakage to infer sensitive

information [42] because those leakages are related to the compu-

tation process of trading secrets. Side-channels can be in different

forms, including both network traffic [35] and physical signals

such as light, electromagnetism, and even heat from the computing

devices. For example, an attacker can utilize the acoustic (noise)

side-channel [41] of a 3D printer to reconstruct the printed 3D

model intellectual property. With the demand of low office rent,

different firms are likely located in adjacent rooms and share com-

mon infrastructure such as power lines, which make side-channel

attacks more possible.

Recently, physical side-channel attacks against trade secrets at-

tract the attention of researchers as they can bypass the isolation

protection mechanism. Acoustic [18], electromagnetic [20], opti-

cal [12], and thermal [32] side-channels, for example, have been

investigated and designed. Among which, the power side-channel
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built upon power lines in a building shows promising properties

as they connect all electric appliances in the building in nature.

Clark et al. [13] use the current flowing into a device to infer which

webpage is opening. However, it can only work in a limited dis-

tance as the power information should be captured at the outlet the

victim’s device is plugged in. Otherwise, the attacker should fail to

recognize the victim’s power signal because of the interference of

appliances from other outlets. Although Enev et al. [15] can infer

the video played on a TV via the EMI side-channel of a power line

from a remote outlet, the side-channel is coarse-grained and cannot

be used to infer fine-grained application launching.

In this paper, we seek to extend the attack distance, i.e., enabling a

cross-outlet power side-channel by which the attacker can launch a

remote attack from other outlets in adjacent rooms. In this way, the

attack can bemore practical and stealthy. To this end, we investigate

power factor correction (PFC)module which is regulated andwidely

used in the power supply units of computers1. We perform an in-

depth study of the rationale of PFC module and find that the PFC

signals of a device can accurately reflect the power consumption of

a device, which can be further utilized to infer the programs run

on the device. The principle is that PFC acts as a modulator that

can modulate the device’s power consumption information (a low-

frequency signal, e.g., less than 20 Hz) on to the PFC’s operating

frequency (a high-frequency signal, say 60 kHz). Hereafter we name

the modulated signal as PFC signal. From the above insights, we

propose OutletSpy, a power side-channel attack using the PFC

signal to infer application launching, which we believe can severely

invade trade secrets because OutletSpy not only increases attack

distance, but enables a series of advanced attacks such as password

guessing attack [14, 16].

The design of OutletSpy faces several key challenges. First, PFC
operating frequency is fluctuating due to changes in temperature

and load. To capture the PFC signal frequency precisely, we develop

an adaptive frequency tracking algorithm to mitigate frequency

shifts. Second, it is difficult to identify the target computer among

multiple devices of the same model from mixed PFC signals ob-

served from an outlet. We propose a PFC signal coupling model

to localize the target computer in order to discriminate the target

computer from other interferences by calculating the PFC signal

strength at each outlet. Third, signal-to-noise ratio (SNR) of PFC

signals may be extremely low and the strength of the PFC signals ob-

served from a remote outlet can be only a few mill-volt. Besides, the

interferences from other electric appliances such as air conditioners,

lights, etc., induce noises to the power line and further decrease

the SNR. We design an extraction scheme to extract the modulated

PFC signal from the collected outlet voltage sequence while miti-

gating the noise interference. Overall, OutletSpy achieves 98.25%
accuracy of inferring application launching.

The contributions of this paper are summarized below:

• We propose OutletSpy, a new side-channel attack that an

adversary can infer applications launched on a target com-

puter from a remote outlet.

1According to the ENERGY STAR regulation, devices with a power greater than 75 W
must have a PFC module to mitigate harmonics [1]

(a) Low power factor. (b) Ideal power factor.

Figure 2: Input voltages and currents and the resulting power

factors. The power factors are respectively 0.443 (low) and 1

(high) in Fig. a and Fig. b.

Figure 3: Power factor correction (PFC)modules aremounted

in power supply units of computers. PFC modules can shape

a distorted current signal to be sinusoidal with a periodic

sawtooth-wave signal to increase its power factor.

• We demonstrate how instructions running on a CPU can be

reflected on PFC signals in the outlets and build a model to

calculate the PFC signal strength at each outlet.

• We propose a model and extract Mel-frequency cepstral coef-

ficients (MFCC)-like features to classify the PFC signals using

a Long-Short-Term-Memory (LSTM) network and achieve

98.25% accuracy of application inference.

2 INFORMATION LEAKING THROUGH
POWER FACTOR CORRECTION

In this section, we present the background on PFC module. Then,

we demonstrate how information can be leaked through the PFC

module and provide a preliminary validation.

2.1 Power Factor Correction Module

Power factor. In an electric power system, the power factor is

defined as the ratio of the real power absorbed by the load to the

apparent power flowing in the circuit [4], i.e., 𝑃𝐹 = 𝑃𝑟𝑒𝑎𝑙/𝑃𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 .
Power factor measures how friendly an appliance is to the distri-

bution system and low power factor (as is shown in Fig. 2a) has a

negative influence upon electric power systems. Specifically, with

the same real power, lower power factor means greater apparent

power, which results in higher currents and therefore increases

the energy lost in the distribution system, requires larger wires

and other electrical equipment. Thus, the power factor should be

improved.

Power factor correction (PFC). Power factor correction in-

creases the power factor of a load, improving efficiency for the

distribution system to which it is attached (as illustrated in Fig. 2b).

For computers, power factor correction is implemented as a built-in

module in power supply units connected to outlets. Fig. 3 shows

how PFC module works. The aim of the PFC module is to shape

the input current (the orange full line in Fig. 2) to be a sinusoidal
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Figure 4: PFC modules modulates the power consumption

information (a) onto the PFC operating frequency by Ampli-

tude Modulation (b) and Frequency Modulation (c).

wave with the same phase of the input voltage (the blue dash line

in Fig. 2) to increase power factor. Fig. 2a shows a low power-factor

case due to the distortion of current signal. On the opposite, when

a PFC module is utilized, the input current signal can be shaped

as a sinusoidal wave as shown in Fig. 2b. To obtain the sinusoidal

current signal, i.e., the dashed green line in Fig. 3, the PFC module

exploits a periodic sawtooth wave signal and adjust the 𝑡𝑜𝑛 and

𝑡𝑜 𝑓 𝑓 parameters. Specifically, input current rises during 𝑡𝑜𝑛 and

vice versa. Thereby, the PFC module outputs a fitting sinusoidal

wave (the orange full line in Fig. 3). If the PFC module works in

a fixed frequency mode, the sum of 𝑡𝑜𝑛 and 𝑡𝑜 𝑓 𝑓 is fixed, and we

denote the PFC operating frequency as 𝑓𝑃𝐹𝐶 = 1/(𝑡𝑜𝑛 + 𝑡𝑜 𝑓 𝑓 ).
With the principle of PFC, in the following we elaborate how a

PFC module can reflect the power consumption of computers, i.e.,

how to build a power side-channel from the PFC signal.

2.1.1 How Power Consumption Information is Amplitude-Modulated

onto PFC Signals. Amplitude modulation (AM) is a modulation tech-

nique where the amplitude of the carrier wave is varied in propor-

tion of that of the baseband signal being transmitted. Denote the

power consumption signal of launching an APP as 𝑃 (𝑡) and an

illustrative example is shown in Fig. 4a. The waveform in Fig. 4b is

the AM modulated signal. We explain the modulation process in

two steps:

Step 1: The power consumption signal 𝑃 (𝑡) is modulated onto

the sinusoidal input current of power frequency (e.g., 𝑓𝑝𝑜𝑤𝑒𝑟 =
50 Hz in China and 𝑓𝑝𝑜𝑤𝑒𝑟 = 60 Hz in the US) as shown in Fig. 4b.

This is because of the Energy Conservation Law [44], i.e., with

constant input voltage, the input current should vary with the

power consumption. We denote the first modulation step as:

𝐼𝑖𝑛 (𝑡) = 𝐾1𝑃 (𝑡)𝑐𝑜𝑠 (2𝜋 𝑓𝑝𝑜𝑤𝑒𝑟 𝑡) (1)

where 𝐼𝑖𝑛 (𝑡) is the input current and 𝐾1 is the coefficient.

Step 2: In Fig. 4b, as the PFC module generates a sawtooth wave

signal whose amplitude changes with 𝐼𝑖𝑛 , 𝐼𝑖𝑛 is further modulated

onto the frequency of the sawtooth wave, i.e., the PFC operating

frequency 𝑓𝑃𝐹𝐶 . Therefore, the PFC signal on the input current can

Idle Busy Idle Busy

Figure 5: An validation experiment that information indeed

leaks through the PFC signal. We control the CPU to be pe-

riodically stressed and idle (2-second stressed and 2-second

idle) on a computer, and find that the voltage measured at

the outlets, even in the adjacent room has a periodic signal

at 66 kHz.

be denoted as:

𝐼𝑃𝐹𝐶 (𝑡) =𝐾2𝐼𝑖𝑛 (𝑡)𝑐𝑜𝑠 (2𝜋 𝑓𝑃𝐹𝐶𝑡)

=𝐾1𝐾2𝑃 (𝑡)𝑐𝑜𝑠 (2𝜋 𝑓𝑝𝑜𝑤𝑒𝑟 𝑡)𝑐𝑜𝑠 (2𝜋 𝑓𝑃𝐹𝐶𝑡)

=1/2𝐾𝐴𝑀𝑃 (𝑡)𝑐𝑜𝑠 [2𝜋 (𝑓𝑃𝐹𝐶 + 𝑓𝑝𝑜𝑤𝑒𝑟 )𝑡]+

1/2𝐾𝐴𝑀𝑃 (𝑡)𝑐𝑜𝑠 [2𝜋 (𝑓𝑃𝐹𝐶 − 𝑓𝑝𝑜𝑤𝑒𝑟 )𝑡]

(2)

where 𝐾𝐴𝑀 = 1/2𝐾1𝐾2 is the coefficient of AM modulation. There-

fore, the AM modulation process is equivalent to modulating 𝑃 (𝑡)
onto 𝑓𝑃𝐹𝐶 + 𝑓𝑝𝑜𝑤𝑒𝑟 and 𝑓𝑃𝐹𝐶 − 𝑓𝑝𝑜𝑤𝑒𝑟 simultaneously.

2.1.2 How Power Consumption Information is Frequency-Modulated

onto PFC Signals. Frequency modulation (FM) is the encoding of

information in a carrier wave by varying the instantaneous fre-

quency of the wave. Fig. 4c shows the FM modulation results of

𝑃 (𝑡), where the frequency of the sawtooth PFC signal changes in-

versely with 𝑃 (𝑡). To explain this phenomenon, we investigate a

constant frequency PFC controller UCC28019 [6] and find out that

the PFC operating frequency 𝑓𝑃𝐹𝐶 varies with the offset voltage of

the oscillator. The offset voltage is provided by an auxiliary power

supply, which is sensitive to the voltage drop due to the increase of

power consumption. For example, when the power consumption

of the appliance increases, the voltage provided by the auxiliary

power supply will decrease, and thus the PFC operating frequency

decreases. Therefore the power consumption 𝑃 (𝑡) is FM modulated

onto the PFC signal, and the process can be described as:

𝐼𝑃𝐹𝐶 (𝑡) = 𝑐𝑜𝑠 [2𝜋 𝑓𝑃𝐹𝐶𝑡 + 2𝜋𝐾𝐹𝑀

∫
𝑃 (𝑡)𝑑𝑡] (3)

where 𝐾𝐹𝑀 is the coefficient of the FM modulation.

Remarks. In conclusion, the PFC module is a modulator con-

ducting both AM and FM modulation. The PFC module in a power

supply unit of a computer can modulate the power consumption

signal of that computer to the PFC operating frequency with both

AM and FM modulation.
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Launching

Launching

Launching

Figure 6: Demodulated PFC signals of 3 applications. Each

application is launched 10 times. We can see clear differences

between the 3 different applications.

2.2 Preliminary Analysis

We conducted an experiment to preliminarily validate that a PFC

module can achieve AM and FMmodulation of the power consump-

tion of a computer. In the experiment, we control the power con-

sumption by directly manipulating CPU utilization with a while(1)
program that makes CPU periodically 2-second busy (100% utiliza-

tion) and 2-second idle (below 5% utilization). From an outlet in an

adjacent room, we measure the neutral-to-ground voltage which

contains the PFC signal, and the results are plotted in Fig. 5. The two

stripes in the square are actually the modulated power consump-

tion information modulated on 𝑓𝑃𝐹𝐶 − 𝑓𝑝𝑜𝑤𝑒𝑟 and 𝑓𝑃𝐹𝐶 + 𝑓𝑝𝑜𝑤𝑒𝑟

respectively, with other stripes as harmonics. In Fig. 5, the observed

PFC signal changes with a 4-second cycle at the central frequency

of 66 kHz, which indicates that the instructions execute on the CPU

are indeed coupled to the neutral-to-ground voltage of the outlet.

Specifically, when the CPU is busy, the PFC signal strength is large

and the frequency is low. On the contrary, when the CPU is idle, the

PFC signal strength is small and the frequency is high. This indi-

cates that the PFC module modulates the CPU power consumption

on the PFC signal through both AM and FM modulation.

To take one step further, we launch 3 applications including VLC
Player, MS PowerPoint and MS Word 10 times respectively on a

desktop computer with a PFC module, and collect the neutral-to-

ground voltage sequence from the outlet. As the energy of the PFC

signal is concentrated on 66 kHz, we use a band-pass filter with a

central frequency of 𝑓𝑃𝐹𝐶 + 𝑓𝑝𝑜𝑤𝑒𝑟 and a passband width of 25 Hz

to extract the PFC signal at 𝑓𝑃𝐹𝐶 + 𝑓𝑝𝑜𝑤𝑒𝑟 . Then, we demodulate

the signal by taking the envelope and the results are shown in fig. 6.

Intuitively, the waveforms of launching the three applications are

distinctive, which provide the feasibility for OutletSpy.

3 ADVERSARY MODEL

In this section, we present the threat model of OutletSpy. Since
the adversary’s goal is to infer victim’s activities on her own com-

puter without any physical proximity or pre-installed devices, we

consider the following attack scenario: In an office building, a target

is using his desktop computer. The adversary, who may work in a rival

company, tries to get what the target is doing, i.e., what application the

target is launching through a remote outlet. Based on the information

obtained, the adversary can analyze the identity of the target and can

conduct further advanced attacks like password extraction, etc.We

summarize the adversary’s ability as follows:

• Launching Detection Attack. The adversary can detect

whether there is an application being launched on the vic-

tim’s computer.

• Application Identification Attack.When there is an ap-

plication launched, the adversary can identify which appli-

cation it is through a pre-trained model.

We assume that the adversary knows the specific model of the

target’s computer, and she can also obtain a computer with the

same model, including its power supply unit to train a classification

model. To collect the PFC signal, the attacker only need two resistors

and a sound card (no more than $100 in total). To identify the PFC

signal generated by the target’s computer from computers of the

same model, the adversary needs to know the electrical wiring

layout in the building, including the circuit topology and the line

lengths as well as line diameters.

4 OUTLETSPY DESIGN
Based on the ability to reveal power consumption information from

PFC modules, this section provides the design details of OutletSpy
to achieve such a power side-channel. We start with the overview

and then elaborate the design modules.

4.1 Design Overview

Fig. 7 shows the working flow of OutletSpy. First, we collect the
neutral-to-ground voltage sequence containing the target PFC sig-

nals from an outlet. Second, the voltage sequence are input to the

signal extraction module. Because the voltage sequence collected

from the observation outlet contains the signal from all the ap-

pliances on the power lines fed by the same electric closet, the

voltage sequence should be processed to extract the target PFC sig-

nal. Specifically, the identification sub-module identifies the target

PFC signal generated by the target computer, the frequency track-

ing sub-module tracks frequency variation caused by temperature

changes, and the recovery sub-module further demodulates the

PFC signal to obtain power consumption information. Third, with

the power consumption information, the inference module exploits

a pre-trained model to classify applications in order to infer the

launched one in the target’s desktop computer.

4.2 Collecting Voltage Sequence from an Outlet

To collect the neutral-to-ground voltage sequence from a power

outlet, we first decrease the original voltage, e.g., 20 V max to

match the input voltage range that a data acquisition device can

accept. It is also necessary to ensure that the current from the

neutral wire to the ground wire does not exceed 30 mA to prevent

the leakage protector from acting. Hence, we connect two 10 kΩ

resistors in series between the neutral wire and the ground wire to

limit the input voltage to 10 V. Then, we sample the voltage signal

using a sound card with a sampling frequency of 192 kHz to obtain

the voltage sequence. The implemented acquisition device can be

referred to Fig. 10.
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consumption information. Finally, a pre-trained model with the power consumption information as input is used to infer

application launching on the target computer.
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Figure 8: Validation of PFC signal strength estimation model.

The measured PFC signal strength from each outlet coincide

with the values from the estimation model.

4.3 Extracting PFC Signals from Voltage
Sequence

4.3.1 Target PFC Signal Identification. The collected voltage se-

quence contains PFC signals from all appliances connected to power

lines in the same electric closet. What is worse, a company may pur-

chase multiple computers of the same model and the resulting PFC

signals are at the same frequency bands. Therefore, it is necessary

to identify the signal generated by the target’s computer.

Wiring-layout-assisted signal identification. We propose

an identification method to look for the target PFC signal based

on the wiring layout plan. Specifically, the PFC signal strength

is proportional to the wire resistance between the source outlet

(the target computer plugs in) and the observation outlet. With the

building wiring layout plan, we first calculate the expected PFC

signal strength from the source to the observation outlet. Then the

expected signal strength is used as a template to identify the PFC

signal from the target computer.

To obtain an accurate expected PFC signal strength at each outlet,

we propose an estimation model by considering the parameters of

wire resistance in terms of length, diameter, material, which can be

obtained from the wiring layout plan. Denoting the PFC strength

as 𝑉𝑃𝐹𝐶 and then we can calculate the 𝑉𝑃𝐹𝐶 at outlet 𝑖 as:

𝑉 𝑖
𝑃𝐹𝐶 = 𝐼𝑃𝐹𝐶𝑅𝑒𝑞𝑢 (4)

where 𝐼𝑃𝐹𝐶 is the input current of PFC module which can be re-

ferred to the manual of power supply unit, 𝑅𝑒𝑞𝑢 is the equivalent

resistance between the path from outlet connected with the target

device and the observation outlet. Take the wiring layout plan in

Fig. 8a as an example, a power line is drawn from the electrical closet

to feed the four outlets. Suppose the resistances of each sub power

line are𝑅1,𝑅2,𝑅3, and𝑅4, and the target computer is plugged into #3

outlet.With the observation outlet as #1, #2, #3 and #4, the estimated

PFC strength are 𝑉 1
𝑃𝐹𝐶 = 𝐼𝑃𝐹𝐶𝑅1, 𝑉 2

𝑃𝐹𝐶 = 𝐼𝑃𝐹𝐶 (𝑅1 + 𝑅2), 𝑉 3
𝑃𝐹𝐶 =

𝐼𝑃𝐹𝐶 (𝑅1 +𝑅2 +𝑅3),𝑉
4
𝑃𝐹𝐶 = 𝐼𝑃𝐹𝐶 (𝑅1 +𝑅2 +𝑅3) (𝑅𝐿𝑜𝑎𝑑 −𝑅4)/𝑅𝐿𝑜𝑎𝑑

respectively and 𝑉 3
𝑃𝐹𝐶 > 𝑉 4

𝑃𝐹𝐶 > 𝑉 2
𝑃𝐹𝐶 > 𝑉 1

𝑃𝐹𝐶 , where 𝑅𝐿𝑜𝑎𝑑 is

the resistance of the appliances connected to #4 outlet.

Validation.We test the above model by conducting an experi-

ment under the samewiring layout plan in a real office environment.

To simplify the experiment setting, wemake𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 𝑅,
𝑅𝐿𝑜𝑎𝑑 = 50𝑅, and the results are shown in Fig. 8b. From the results,

we can find that with the target computer plugged into #3 outlet,

the measured PFC signal strengths at #1, #2, #4 are different and

depend on the equivalent resistance values from the source outlet

to the observation one, namely 𝑅1𝑒𝑞𝑢 = 𝑅, 𝑅2𝑒𝑞𝑢 = 2𝑅, 𝑅3𝑒𝑞𝑢 = 3𝑅

and 𝑅4𝑒𝑞𝑢 = 2.94𝑅. The results verify the feasibility of the above

signal strength estimation model. In practice, it is suggested that

the adversary should plug her data acquisition device at the down-

stream outlet, namely #4 relative to #3 in Fig. 8b, to achieve better

estimation accuracy.

With the PFC signal strength estimation model and the observed

PFC signals, we summarize the target PFC signal identification in

Alg. 1. Denote the theoretical strength of the target PFC signal as

𝑉𝑇
𝑃𝐹𝐶 , the measured voltage sequence as 𝑣 (𝑡) and its spectrum as

𝑉 (𝑁 ). First, the adversary finds spectrum peaks 𝑃𝑒𝑎𝑘𝐹𝑟𝑒𝑞𝑠 in𝑋 (𝑁 )

within the range (𝑓𝐿𝑜𝑤 , 𝑓𝐻𝑖𝑔ℎ) which the PFC operating frequency

cannot exceed at normal operating temperature. Second, the adver-

sary calculates the corresponding strengths 𝑃𝑒𝑎𝑘𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠 of the
found peaks in each element of 𝑉 (𝑁 ). Then, the adversary calcu-

lates the distances between the calculated strength 𝑃𝑒𝑎𝑘𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠
and the theoretical value 𝑉𝑇

𝑃𝐹𝐶 , and chooses the signal (peak) with

the minimum distance as the identified target PFC signal.

4.3.2 PFC Frequency Tracking. After obtaining the target PFC sig-

nal, we have to track its operating frequency (around 66 kHz). PFC

frequency is controlled by an oscillator whose oscillating frequency

is affected by temperature changes during operation. Besides, PFC

operating frequency is also affected by loads, as indicated in Fig. 5.
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Algorithm 1: Target PFC signal identification.

Input: target PFC signal strength𝑉𝑇
𝑃𝐹𝐶 , collected voltage in

spectrum𝑉 [𝑁 ], frequency range for searching

(𝑓 𝐿𝑜𝑤, 𝑓 𝐻𝑖𝑔ℎ) .
Output: PFC signal frequency 𝑓 𝑇𝑃𝐹𝐶 of the target computer.

/* Find all PFC signals. */

1 𝑝𝑒𝑎𝑘𝐹𝑟𝑒𝑞𝑠,𝑛𝑢𝑚𝑂𝑓 𝑃𝑒𝑎𝑘𝑠 ←
𝐹𝑖𝑛𝑑𝑃𝑒𝑎𝑘𝑠𝑂𝑛𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚 (𝑉 , 𝑓 𝐿𝑜𝑤, 𝑓 𝐻𝑖𝑔ℎ)

/* Calculate PFC signal strengths. */

2 for 𝑖 ← 1 to 𝑛𝑢𝑚𝑂𝑓 𝑃𝑒𝑎𝑘𝑠 do
3 𝑝𝑒𝑎𝑘𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠 [𝑖 ] ←

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑃𝑒𝑎𝑘𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑉 , 𝑝𝑒𝑎𝑘𝐹𝑟𝑒𝑞𝑠 [𝑖 ])
4 end

/* Find the target PFC signal */

5 for 𝑖 ← 1 to 𝑛𝑢𝑚𝑂𝑓 𝑃𝑒𝑎𝑘𝑠 do
6 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑖 ] ←

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑒𝑎𝑘𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠 [𝑖 ],𝑉𝑇
𝑃𝐹𝐶 )

7 end

8 𝑓 𝑇𝑃𝐹𝐶 ← 𝑝𝑒𝑎𝑘𝐹𝑟𝑒𝑞𝑠 [𝑎𝑟𝑔𝑚𝑖𝑛 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠) ]

As a result, PFC frequency changes further leads to extraction prob-

lems of power consumption information.

To tackle this challenge, we design a PFC operating frequency

tracking algorithm to track the varying frequency as shown in

Alg. 2. The algorithm is based on the assumption that both the op-

erating frequency and the strength of a PFC signal are continuous.

Specifically, frequency change can not exceed 50 Hz, for example,

during one second with strength almost unchanged. To facilitate

frequency tracking, we split the target PFC signal into pieces and

each piece is transformed into the frequency domain by FFT. Then,

given the initial PFC signal frequency and strength, we determine

the PFC signal frequency and its signal strength at each interval

𝑇 by matching the signal with the closest peak frequency and the

peak strength. Note that 𝑇 is a trade-off between spectral resolu-

tion and frequency error before and after the interval. Empirically

in OutletSpy we sets 𝑇 = 1 s to balance computation cost and

accuracy. Fig. 9 shows the effectiveness of the PFC frequency track-

ing algorithm. The spectrogram in the background is the collected

neutral-to-ground voltage signal, and the line on the spectrogram is

the tracked PFC frequency. The PFC frequency tracking algorithm

can successfully track the PFC frequency, which is necessary to

demodulate the PFC signal.

4.3.3 Power Consumption Recovery. As the power consumption

is modulated onto the PFC operating frequency (e.g., 66 kHz), we

demodulate the high-frequency PFC signal to obtain the power

consumption information. With the PFC signal, we first pass it into

a bandpass filter whose central frequency is calculated by the above

frequency tracking algorithm. The bandwidth of the filter is set to

25 Hz due to the fact that frequency of power consumption signal

is often below this frequency. From Sec. 2, we know that the PFC

signal contains both AM and FM parts of the power consumption

signal 𝑃 (𝑡) from in Equ. (5) and the PFC signal 𝑣 (𝑡) is:

𝑣 (𝑡) = 𝐾𝐴𝑀𝑅𝑒𝑞𝑢𝑃 (𝑡)𝑐𝑜𝑠 (2𝜋 𝑓𝑃𝐹𝐶𝑡 + 2𝜋𝐾𝐹𝑀

∫
𝑃 (𝑡)𝑑𝑡) (5)

Algorithm 2: PFC signal frequency tracking.

Input: Collected voltage sequence 𝑥𝐴𝐿𝐿, PFC frequency initial

value 𝑓 𝐼𝑛𝑖𝑡 , PFC signal strength initial value 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝐼𝑛𝑖𝑡 ,
tracking interval𝑇 , searching range (𝑓 𝐿𝑜𝑤, 𝑓 𝐻𝑖𝑔ℎ) .

Output: PFC Signal frequency series 𝐹 .

/* Split 𝑥𝐴𝐿𝐿 into time intervals. */

1 𝑥,𝑛𝑢𝑚𝑂𝑓 𝑋 ← 𝑆𝑝𝑙𝑖𝑡 (𝑥𝐴𝐿𝐿,𝑇 )

/* Determine the PFC signal frequency at each time. */

2 𝐹 [1] ← 𝑓 𝐼𝑛𝑖𝑡

3 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ ← 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝐼𝑛𝑖𝑡

4 for 𝑖 ← 2 to 𝑛𝑢𝑚𝑂𝑓 𝑋 do

5 𝑥𝐹𝐹𝑇 ← 𝐹𝐹𝑇 (𝑥 [𝑖 ])

6 𝑝𝑒𝑎𝑘𝑠 ← 𝐹𝑖𝑛𝑑𝑃𝑒𝑎𝑘𝑠𝑂𝑛𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚 (𝑥𝐹𝐹𝑇 , 𝑓 𝐿𝑜𝑤, 𝑓 𝐻𝑖𝑔ℎ)

7 𝑘 ← 𝑎𝑟𝑔𝑚𝑖𝑛 (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑒𝑎𝑘𝑠.𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ))

8 𝐹 [𝑘 ] ← 𝑝𝑒𝑎𝑘𝑠 [𝑘 ] .𝑓 𝑟𝑒𝑞

9 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑝𝑒𝑎𝑘𝑠 [𝑘 ] .𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

10 end
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Figure 9: PFC frequency is fluctuating due to temperature

changes. The PFC frequency tracking algorithm can success-

fully track the PFC frequency, which is necessary to demod-

ulate the PFC signal.

We first exploit a three-step demodulation methods to demodu-

late the AM and FM parts of 𝑃 (𝑡):
Step 1: AM demodulation.We directly extract the envelope of

𝑥 (𝑡) to obtain the AM-demodulated signal 𝑃𝐴𝑀 (𝑡).
Step 2: FM demodulation. We first remove the AM modulated

part by multiplying 𝑣 (𝑡) by 1/𝑃𝐴𝑀 (𝑡). Then, we multiply the results

of the previous step by 𝑐𝑜𝑠 (2𝜋 (𝑓𝑃𝐹𝐶 + 50)𝑡) to move 𝑣 (𝑡) to a low

frequency, and denote the results as 𝑣𝑙𝑜𝑤 (𝑡). Next, we pass 𝑣𝑙𝑜𝑤 (𝑡)
into a low-pass filter and discard signals with frequency above

25 Hz. The derivative of the filtered signal is calculated and the

FM-demodulated signal 𝑃𝐹𝑀 (𝑡) is extracted as the envelope of the

derivative.

Step 3: Normalization. 𝑃𝐴𝑀 (𝑡) and 𝑃𝐹𝑀 (𝑡) are then normal-

ized to 𝑃𝐴𝑀 (𝑡) and 𝑃𝐹𝑀 (𝑡). The final demodulated power consump-

tion signal is then denoted as 𝑃 (𝑡) = 𝑃𝐴𝑀 (𝑡) + 𝑃𝐹𝑀 (𝑡).

4.4 Learning-based Application Inference

4.4.1 Program launching Detection. With the demodulated power

consumption signal, we can infer application launching by first

detecting whether there is an application launching operation. It

is reasonable to assume that power consumption should vary sig-

nificantly when an application is launching because it involves a

bunch of CPU-intensive instructions. For the purpose of detection

accuracy and efficiency, We use a sliding window with length𝑇 and
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calculate the power consumption variance 𝑉𝑎𝑟 (𝑛𝑇 ) in the window.

A variance threshold 𝑇ℎ𝑟 (𝑛𝑇 ) is calculated by:

𝑇ℎ𝑟 (𝑛𝑇 ) = 𝛼𝑉𝑎𝑟 [(𝑛 − 1)𝑇 ] + (1 − 𝛼)𝑇ℎ𝑟 [(𝑛 − 1)𝑇 ] (6)

according to the variance in the previous window 𝑉𝑎𝑟 [(𝑛 − 1)𝑇 ]
and the threshold in the previous window 𝑇ℎ𝑟 [(𝑛 − 1)𝑇 ]. If the
variance of the current window 𝑉𝑎𝑟 (𝑛𝑇 ) is larger than 𝛽𝑇ℎ𝑟 (𝑛𝑇 ),
the window is considered to contain application launching. We let

𝑇 = 0.1 s to ensure both detection accuracy and robustness. 𝛼 and

𝛽 are two coefficients, and set to 0.1 and 7 respectively.

4.4.2 Feature Extraction. With the help of program launching de-

tection, we capture a 4-second sample for each application from

the detection point. Because the PFC signal is a time series with

temporal correlation, we can extract features by analogy with the

way how to process speech signals. Therefore, we extract the fea-

tures similar to Mel-frequency cepstral coefficients (MFCC) features.

The 4-second sample is re-sampled with a sampling rate of 192 Hz

to meet the requirement of MFCC feature extraction. After sam-

pling, 768 points for the sample are obtained and divided into 32

parts evenly. For each part, we calculate its discrete cosine trans-

form (DCT) coefficients and remain the first four coefficients as our

features, because the energy of the power consumption signals is

concentrated within 20 Hz as shown in Fig. 5. Therefore, the result

is a 32*4 feature matrix for each sample, that can be used as the

input of the classification model.

4.4.3 LSTM-based Classification. In order to identify which ap-

plication the target is launching on his computer, the adversary

needs to train a classification model in advance. In the adversary

model, we assume that the adversary knows the CPU and power

supply model of the target’s computer. Therefore, the adversary

can find or purchase a computer with the same CPU and power

supply model as the training device to collect the PFC signal of

launching different applications. During the attack process, the

collected PFC signal used for training will also go through the PFC

signal extraction phase and the feature extraction phase.

Considering power consumption signal is a time-series, we ex-

ploit Long short-term memory (LSTM) in OutletSpy as the clas-

sifier as LSTM is good at analyzing the time-series correlation in

signals [3]. Specifically, we refer to an LSTM model used for speech

recognition [39] and re-train it to classify PFC signals. The detailed

parameter of the LSTM model are shown in Tab. 1. The input of

the LSTM model is the 32*4 feature matrix, and the output of the

LSTM model are the prediction classes. For example, in Sec. 5 we

trained a 16-class classifier to classify the 16 application.

Table 1: Over-parameters of LSTM.

Learning rate 0.00025 Training iters 100000

Batch size 150 Dropout 0

Hidden nodes 100 Regularizer 1

4.4.4 Alien Applications Identification. In real life, it is unrealistic

to train all existing applications. Thus, the classification model of

OutletSpy should have the ability to identify alien, i.e, untrained

applications. Based on the output of the LSTM model, we train a

two-class SVM (Support vector machine) to classify the input traces

to be trained and untrained. Specifically, letting𝑂𝑈𝑇𝑖 , 𝑖 = 1, 2, ..., 𝑁
be the 𝑁 output nodes of the LSTM model, we observe that the

distribution of𝑂𝑈𝑇𝑖 is different while feeding trained and untrained
traces into the LSTM model. Therefore, we use the values of all

output nodes as the input of the SVM, and the output of the SVM

is “trained” or “untrained”.

5 EXPERIMENTS AND RESULTS

5.1 Experimental Setup

Applications and Dataset. We selected 16 commonly used APPs

on the market which can be categorized as productivity, tools,

entertainment and social, as shown in Tab. 2. For each APP, we

collect 200 launching traces on a day for training and validation,

and 50 launching traces on another day for test.

Table 2: The 16 commonly used applications for training,

validation, and test, ranging from productivity to entertain-

ment.

Number APP Name Category Version Size

1 Wunderlist Tools 3.21.5 44.5 MB

2 WinRaR Tools 5.90.0 2.25 MB

3 Chrome Tools 84.0.4147.89 1.74 MB

4 Ccleaner Tools 5.68 27.6 MB

5 VLC Player Entertainment 3.0.11 0.940 MB

6 Keeper Tools 14.6.5 199 MB

7 WhatsApp Social 0.3.2043 123 MB

8 Steam Entertainment 2.10.91.91 3.22 MB

9 Skype Social 8.62 221 MB

10 iTunes Entertainment 12.10.7.3 402 MB

11 Notepad++ productivity 7.8.6 8.30 MB

12 SumatraPDF productivity 3.2 20.0 MB

13 Dropbox Tools 33.3.18 3.33 MB

14 MS Powerpoint productivity 16.0.4266.1001 1.77 MB

15 MS Word productivity 16.0.4266.1001 1.84 MB

16 MS Excel productivity 16.0.4266.1001 32.8 MB

Setup. Fig. 10 shows the implementation of OutletSpy. The ap-
plication is running on a desktop computer with Intel(R) Core(TM)

i5-3470 processor,Windows 10 17763.1 OS, andHuntkey Jumper500s

power supply. We implemented a PFC signal collection device with

a step-down buck circuit connected to a SYBA FG-EAU02A sound

card [7]. The sampling rate of the sound card is 192 kHz. All the

experiments were conducted in the rooms whose layout is shown

in Fig. 11 which also illustrate the locations of the outlet connecting

to the target computer and the PFC collection device. The hot wire,

neutral wire, and ground wire are simplified to one line. Each outlet

is connected with one to three computers in average as interfer-

ences to the target computer.

5.2 Overall Performance

We periodically launch and close the 16 applications, and the in-

terval from launching to closing, from closing to launching are all

5 seconds. The target’s computer is connected to outlet T and the

data acquisition device is connected to outlet A. We collect 150
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Target computer Attacking Devices

Figure 10: Experimental setup for the target computer and the attacking device.

A step-down circuit is implemented between the outlet and the sound card used

for data acquisition.

Electric
Closet

Electric
Closet

T(Target)

A

D

C

B

8.8m 3m

4.5m

3.75m

Figure 11: The wiring layout plan of

the experiment rooms.

traces of each APP as the training set, 50 traces as the validation set,

and 50 traces for test set. The test set is collected on the different

day from the training set and the validation set. The classification

results is shown in Fig. 12, which are measured by precision and

recall of each class. Based on the precision and recall, we compute

the overall classification accuracy of all APPs as 0.9825%.

5.3 Performance of Identifying Untrained
Applications

We also consider practical scenarios that the victim may launch an

alien (untrained) application and OutletSpy should work with new

applications. To evaluate the performance of OutletSpy against

alien applications, we manually remove some of the 16 applications,

i.e., removing {1,2,3,4}, {5,6,7,8}, {9,10,11,12} and {13,14,15,16} in turn

from the 16 applications (each one has 150 traces) respectively as

the training set, and use the other 50 traces of the 16 applications as

the test set. For the test set, we evenly divide it into two parts, and

use one part to train a two-class SVM classifier based-on the LSTM

network predictions, the other part for testing the SVM classifier.

Fig. 13 shows the receiver operating characteristic (ROC) curve

of identifying alien applications. TP means correctly classifying

a trained application as a trained one, while FP means wrongly

classifying an untrained (alien) application as a trained one. The

area under the ROC curve is larger than 0.98. This means that the

LSTM model combined with the SVM model can deal with both the

trained and untrained application launchings.

5.4 Micro-benchmark Evaluation

Next, we consider several factors that could affect the attack success

rate of OutletSpy. We evaluate the impact of different classifica-

tion models, iteration times, training set sizes, running background

applications, application version updates, and the locations of col-

lecting devices and target devices.

5.4.1 Impact of Classification Models. To verify the suitability of

features and models, we select 3 other models for comparison.

We divide the models into to neural network classifiers and clas-

sical classifiers. For neural network classifiers, we compare our

model to a Convolutional Neural Network (CNN) model based

on LeNet-5 [34]. The CNN model reshapes the 32*4 features to a

16*8 grayscale picture. Then, the picture goes through two con-

volutional layers and pooling layers, a full-connected layer, and
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Figure 12: Overall performance: precision and recall of each

application classification. The overall classification accuracy

of all APPs can be 98.25%

an output layer. The activation functions of all layers are ReLU

(Rectified Linear Unit). For classical classifiers, we consider Lo-

gistic Regression (LR), Support Vector Machine (SVM), and Ran-

dom Forest (RF) classifiers. As the dimension of the DCT coeffi-

cient matrix for the three classical classifiers is too high, we use

tsfresh [9] to extract 758 features from the raw PFC trace and

use sklearn.ensemble.RamdomForestClassifier [8] to sort the
features. We manually select 20 features in the top 100 features with

reasonable physical meaning, including kurtosis, skewness, quantile

0.9, mean abs change, spectrum skewness, longest strike above mean,

energy ratio by chunks, etc.

Fig. 18 shows the classification accuracy of the above models

on the training set and the validation set used in Sec. 5.2. “RNN”

is the LSTM model we used for PFC traces classification, whose

performance is significantly better than the other four models. This

proves our hypothesis that PFC traces are time series and LSTM is

well-suited for PFC trace classification.

5.4.2 Impact of Iteration times and Training Set Size. To understand

the minimal needed training phase to train the classification model

for OutletSpy, we first vary the iteration times from 0 to 100000

times. We plot the classification accuracy in Fig. 14, and conclude

that 2000 times iteration is adequate for OutletSpy. Then, we vary
the training set size as 5, 10, 20, 30, 40, 50, 100, 150 traces respectively

to train the LSTM classification model, and the accuracy on the test

set are shown in Fig. 15. From this figure, we can conclude that 50

traces is enough for training the model. To collect 50 traces, the

attacker needs about 2 hours with a computer of the same model

as the victim’s and a PFC signal acquisition device.
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sification models.

5.4.3 Impact of Background Applications. In practice, there are

often various background applications running in the background

on the computer. To study the effect of applications running in the

background, we select 4 APPs including WMP Player playing a

music, Internet Explorer (IE) with a news site opened, VSCode and

Microsoft Remote Desktop (RD). With each of the 4 APPs running

in the background, we collect 10 traces for testing, and the results

are shown in Fig. 16. The results show that there is only a slight

decrease in the classification accuracy, which is because background

applications typically use few CPU resources while launching a

new application leads to heavy CPU load at a moment.

5.4.4 Impact of Locations. To evaluate the performance via dif-

ferent outlets, we collect PFC traces at outlets A, B, C and D (20

traces per application for each outlet). Denoting the outlet which

the target computer plugs in is outlet T, A and T are on the same

branch of the power line, while B, C and D are on the different

branches of the power line with T. We use classification accuracy to

show the performance at different locations, and Fig. 17 shows the

results. Obviously, outlet A achieves the highest accuracy as A and

T are on the same branch and thus have larger common resistance

than other outlets. B is in the same phase of T while C and D are

in the different phase of T, and the results show that the accuracy

decreases when the collecting device and the target device are in

different phases.

5.4.5 Impact of Application Updating. To test the robustness of

OutletSpy over version updating, we collected 4 applications out

of 16 with different versions, and collected 20 PFC traces for each

version of the applications. We first fed the PFC traces into the

model trained in Sec.5.2, and the classification accuracy is shown

in “Original ACC” column in Tab. 3. Both VLC Player and Sumatra

PDF can be successfully recognized despite the version change.

However, the PFC traces of versions of WinRAR previous than

5.90.0 and CCleaner after 5.64.7614 were not correctly classified.

We investigate the release notes of CCleaner after version 5.64.6714,

and find “Version 5.64.7577 is the final planned build for Windows

XP and Vista”. This means that there is a framework change after

5.64.7577, leading to a different PFC trace. We believe WinRAR

also has this problem. Therefore, we added one version of traces

for each application to the training data in Sec.5.2, and re-train

the classification model. The classification accuracy is shown in

“Re-trained ACC” of Tab. 3. The results show that adding a version

of PFC traces can make the classification model successfully classify

all the application versions listed in Tab. 3.

Table 3: The classification accuracy of different versions of

the APP.

Number APP Name Version Original

ACC

Re-trained

ACC

2-1 WinRAR 5.31.0# 10% 100%

2-2 WinRAR 5.40.0 10% 100%

2-3 WinRAR 5.61.0 35% 85%

2-4 WinRAR 5.80.0 25% 90%

2-5 WinRAR 5.90.0* 100% 100%

4-1 CCleaner 5.47.6716 100% 100%

4-2 CCleaner 5.54.7088 90% 90%

4-3 CCleaner 5.63.7540* 100% 100%

4-4 CCleaner 5.64.7613 100% 100%

4-5 CCleaner 5.67.7763 0% 100%

4-6 CCleaner 5.69.7865 0% 100%

4-7 CCleaner 5.70.7909 0% 100%

4-8 CCleaner 5.77# 20% 80%

5-1 VLC Player 3.0.4 100% 100%

5-2 VLC Player 3.0.7.1 100% 100%

5-3 VLC Player 3.0.10 100% 95%

5-4 VLC Player 3.0.11* 100% 100%

5-5 VLC Player 3.0.12# 100% 100%

12-1 SumatraPDF 2.0.1 100% 100%

12-2 SumatraPDF 2.4# 100% 100%

12-3 SumatraPDF 2.5.2 100% 100%

12-4 SumatraPDF 3.0 100% 100%

12-5 SumatraPDF 3.1 100% 100%

12-6 SumatraPDF 3.2* 100% 100%

∗ Trained in the original model # Added in the re-trained model

6 DISCUSSION

Countermeasures.The proposed side-channel attack can be avoided

by using PFC modules with variable operating frequency control
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mode. However, for higher power computers like high configura-

tion computers, workstations and servers, continuous conduction

mode (CCM) with fixed operating frequency is still a more appro-

priate solution for PFC. PFC signal can be suppressed by using an

EMI filter with a better filtering effect. Nevertheless, a better filter-

ing effect means larger capacitor and inductor components, which

may occupy larger space and lead to additional cost. In addition,

there have been studies preventing power side-channel attacks by

masking power consumption information [30], or by designing a

device with constant power consumption [43]. But in fact these

techniques are not widely used, and there are still opportunities for

OutletSpy.
Limitations.Currently, OutletSpy attack does not support com-

puters without a PFC module. Besides, we found that PFC modules

using variable frequency control mode can also have a negative

influence upon the attack accuracy of OutletSpy. However, for
power supplies greater than 300 W, the fixed frequency control

mode (e.g., CCM) has an advantage over other control modes [37]

and is widely used. In the future work, we plan to extend OutletSpy
to PFC modules with variable frequency and investigate the feasi-

bility of computers that are not equipped with a PFC module.

7 RELATEDWORK

7.1 Side-channel Attacks

Side-channel attacks exploit unintended information leakage of

computing devices or implementations to infer sensitive informa-

tion [42]. When a device is computing, it consumes power and the

power dissipates in different forms of physical signals including

sound, light, electromagnetism, force and heat. Those signal con-

tains information related to the computation process and thus can

be used to extract sensitive data. Existing physical side-channel

attacks can be categorized as acoustic ones [18], electromagnetic

ones [11], magnetic ones [10], motion ones [45], optical ones [12]

and thermal ones [32]. In addition, there are also side-channel at-

tacks in digital domain, including cache-based side-channel attacks

[36], timing-based side-channels [40] and encrypted-traffic-based

side-channels [46]. Multiple attacks can be realized through side-

channel. For example, Genkin et al. [19] use the ground electric

potential of computers to infer RSA keys.

There have been some studies on power line side-channels. Clark

et al. [13] use the current flowing into an device to infer which

webpage the victim opened. That work is similar to ours but its

attack scenario is limited: the current acquisition device must be

pre-installed to the outlet that the victim’s computer plugged in,

which carries the risk of being discovered by the victim. Instead,

we infer APP launching by collecting the voltage sequence at any

other outlets, since the PFC signal is coupled to the whole power

line and is identifiable. Gupta et al. [21] detect and classify the use

of electronic device in a home from a power outlet. They leverage

the electromagnetic interference (EMI) of switched-mode power

supply (SMPS) induced to the power line, which is distinguishable

between different devices. Furthermore, Enev et al. [15] use the

EMI generated by TV’s SMPS to infer the video played on the TV.

However, our work leverage the noise of the PFC module instead of

SMPS to conduct side-channel attack. A PFCmodule is an additional

module to improve the power factor of SMPS. PFC modules can

induce switching frequency noise with higher amplitude than SMPS

as PFC modules are closer to the power line. Thus, OutletSpy can

achieve more fine-grained inference attacks such as APP launching

detection attack and APP identification attack. Particularly, if there

are multiple devices of the same type, the existing work may fail but

our work can still identify the target PFC signal via the proposed

PFC signal strength model.

7.2 Covert Channels

Covert channel is defined as the channel that is not intended for

information transfer at all but leaks sensitive data [33]. As the

community becomes more and more aware of network security,

air-gap networks are widely used in security aware organizations

such as power grid and military bases. However, covert channel

can break the air-gap because devices inevitably generate physical

signals during operation. If the attacker can control the operation

of the devices, she can leak sensitive information from the air-

gapped networks. Covert channels can be classified according to

the type of physical signals they use, such as voltage signal on

power lines [27, 31, 38], electromagnetic signal emanated from

memory reading and writing [22], USB cable [23], magnetic signal

produced by CPU [29], acoustic signal generated by hard-drive [25]

and ultrasonic communication [26]. In addition, optical signal [28]

and thermal signal [24] can also be used to leak sensitive data.

Although there are studies that use PFC signal to form a covert

channel [31, 38], they only use the AMmodulation characteristic to

communicate, ignoring the FM modulation characteristic and the

frequency drift caused by temperature change. Instead, we utilize

the FM modulation characteristic as another feature and propose a

frequency tracking algorithm to track the frequency drift caused

by temperature change.

8 CONCLUSION

In conclusion, we propose OutletSpy, a side-channel inference

attack via PFC signal. We investigate the PFC module, which is

widely used on desktop computers to reduce harmonics, and find

that the workingmechanism of PFCmodule leads to the AM and FM

modulation of the power consumption signal to the PFC operating

frequency. We exploit this feature and use the voltage signal at

other outlets to infer which application the target launched. We

design a signal identification algorithm to identify the target’s PFC

signal from other PFC signals generated by the computers of the

same model as the target’s. For extracting the power consumption

signals modulated on the PFC operating frequency, we design a

sophisticated extracting method to extract both AM and FM signals.

Then, we use MFCC-like features combined with LSTM model

for classification. We evaluate OutletSpy by inferring 16 different

commonly used applications and achieve 98.25% accuracy. The

performances of OutletSpy under different background APPs, APP
versions and different locations are also validated.
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