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Abstract—Federated learning enables distributed model training over various computing nodes, e.g., mobile devices, where instead of

sharing raw user data, computing nodes can solely commit model updates without compromising data privacy. The quality of federated

learning relies on the model updates contributed by computing nodes training with their local data. However, with various factors

(e.g., training data size, mislabeled data samples, skewed data distributions), the model update qualities of computing nodes can vary

dramatically, while inclusively aggregating low-quality model updates can deteriorate the global model quality. To achieve efficient

federated learning, in this paper, we propose a novel framework named FAIR, i.e., Federated leArning with qualIty awaReness.

Particularly, FAIR integrates three major components: 1) learning quality estimation: we adopt the model aggregation weight (learned in

the third component) to reversely quantify the individual learning quality of nodes in a privacy-preserving manner, and leverage the

historical learning records to infer the next-round learning quality; 2) quality-aware incentive mechanism: within the recruiting budget,

we model a reverse auction problem to stimulate the participation of high-quality and low-cost computing nodes, and the method is

proved to be truthful, individually rational, and computationally efficient; and 3) auto-weighted model aggregation: based on the gradient

descent method, we devise an auto-weighted model aggregation algorithm to automatically learn the optimal aggregation weights to

further enhance the global model quality. Based on real-world datasets and learning tasks, extensive experiments are conducted to

demonstrate the efficacy of FAIR.

Index Terms—Edge computing, incentive mechanism, learning quality, mobile computing, model aggregation, federated learning
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1 INTRODUCTION

WITH the rapid development of the Internet of Things
(IoT), a gigantic amount of data is continuously

generated at the network edge, providing opportunities to
enable learning-based intelligent services [1], [2]. Tradition-
ally, the centralized learning framework requires aggregating
large amounts of training data into a cloud center for model
training. However, it can lead to leakage of user privacy [3].
Besides, both the data delivery overhead for power-con-
strained mobile devices and the cost of data maintenance in
the cloud, are prohibitive for practical system implementation
and operation [4]. Recently, with the emerging of the mobile
edge computing (MEC) technology, mobile devices can be
equipped with significant computing and storage capability
to support local computing and model training [5], [6]. MEC
has also promoted the research of federated learning [7], [8],
[9], which allows a community of computationally-capable
nodes to collaboratively build global learningmodelswithout
compromising user privacy. Specifically, federated learning
is a distributed learning framework, where distributed com-
puting nodes independently train the global model with their
local data and only the model updates are committed to the
cloud server for aggregation. In this way, distributed model
updates can be aggregated to enhance the global model qual-
ity in a privacy-preservingmanner.

The success of federated learning is highly dependent on
the participation of a large number of nodes that contribute
sufficient training data. However, it is computation- and
communication- consuming for participating nodes to collab-
oratively train the federated learning models. Therefore,
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establishing an efficient incentive mechanism for federated
learning is crucial. To this end, Zhan et al. proposed a deep
reinforcement learning-based incentive mechanism to deter-
mine the optimal pricing strategy for the server, and the opti-
mal training strategies for edge nodes [10]. In [11], Le et al.
proposed an auction-based incentive mechanism to maxi-
mize the social welfare of the wireless federated learning
services market. Pandey et al. adopted a two-stage Stackel-
berg game model to optimize the utility of the server and
participating nodes jointly [12]. Although these incentive
mechanisms are useful formotivatingmobile nodes to partic-
ipate in federated learning, none of them considers the learn-
ing quality of participating nodes, which results in
suboptimal federated learning performance in terms of
global model accuracy and convergence speed. For example,
for nodes with incorrectly labeled or non-IID (not indepen-
dent and identically distributed) local datasets, aggregating
their generated model updates inclusively can deteriorate
the performance of federated learning significantly.

To bridge this gap, in this paper, we investigate quality-
aware federated learning, where the individual learning qual-
ity of nodes is estimated to facilitate precise user incentive
and model aggregation. Our goal is to select high-quality
nodes within the learning budget in a privacy-preserving
way and weight their model updates to maximize the global
model quality. To this end, we have to tackle the following
technical challenges. First, as there are various factors that can
affect the learning quality of participating nodes, e.g., the
training data size, mislabeled data samples, non-IID data dis-
tribution, it is quite challenging to quantify their impacts on
the global learning model with refined mathematical models.
Besides, due to the privacy issue, it is usually inaccessible to
the information of these quality-influencing factors, posing
additional challenges. Second, even with the estimated learn-
ing quality, it is non-trivial to recruit suitable nodes for learn-
ing tasks by determining both-satisfied payments, especially
when the learning budget is limited, since participants are
usually strategically selfishwith quite different data/comput-
ing/communication resources. Third, for the model updates
committed by the recruited participating nodes, how to aggre-
gate them is also crucial to the global model quality, hereby
expecting an efficient model aggregation algorithm that can
assign appropriateweights to themwith considering their dif-
ferential qualities.

To address the aforementioned challenges, we propose a
learning optimization framework named FAIR, i.e., Feder-
ated leArning with qualIty awaReness, to determine the
learning task allocation with payments, and conduct model
aggregation. Functionally, FAIR integrates three major tech-
nical components: 1) learning quality estimation, 2) quality-
aware incentive mechanism, and 3) auto-weighted model
aggregation. We first design an online quality quantification
method to quantify the individual learning quality of nodes
in a privacy-preserving manner, and leverage the historical
quality records to infer the next-round learning quality to
assist in learning task allocation. With the estimated quality,
a reverse auction case is then built to stimulate user partici-
pation, where mobile users submit their bids and the plat-
form serves as the auctioneer. To maximize the learning
quality, we formulate a Learning Quality Maximization
(LQM) problem, which is proved to be NP-hard, and thus

we devise a light-weight algorithm to determine the learn-
ing task allocation and reward distribution within the
recruiting budget. Finally, we devise an auto-weighted
model aggregation algorithm based on the gradient descent
method that can automatically learn the optimal model
aggregation weights to further enhance the global learning
model.

Theoretical analysis demonstrates that the proposed
FAIR is truthful, individually rational, and computationally
efficient. To evaluate the performance of FAIR, we build an
simulation system based on real-world datasets and widely
adopted learning models. Extensive experiments under
various scenarios are carried out, and the results demon-
strate the efficacy of FAIR. Particularly, FAIR advances
in both the user incentive and model aggregation, jointly
contributing to the superior federated learning perfor-
mance that can outperform the benchmark approaches
significantly.

We highlight our major contributions as follows.

� We investigate the quality-aware federated learning,
where the individual learning quality of nodes is
estimated to facilitate precise user incentive and
model aggregation. It is critical in practical federated
learning scenarios, but to our best knowledge, is
rarely seen in the literature.

� We propose FAIR to determine the learning task allo-
cation and the learning payment to nodes, and con-
duct model aggregation with automatically learned
weights. In FAIR, we design and implement three
key components: 1) learning quality estimation, 2)
quality-aware incentive mechanism, and 3) auto-
weighted model aggregation.

� Extensive experiments are conducted to demonstrate
the efficacy of FAIR, where the incentive mechanism
can facilitate more high-quality model updates, and
the devised aggregation algorithm can effectively
aggregate the model updates, collectively contribut-
ing to an advanced globe learning model.

The remainder of this paper is organized as follows. We
give the system description and problem definition in Sec-
tion 2. In Section 3, we present the system overview of FAIR
with highlighted design goals. We elaborate on the design
of FAIR in Section 4, and conduct the theoretical analysis in
Section 5. Extensive experiments are conducted to evaluate
the performance of FAIR in Section 6, and the related work
is reviewed in Section 7. Finally, we conclude this paper
and direct our future work in Section 8.

2 SYSTEM DESCRIPTION AND

PROBLEM DEFINITION

In this section, we first describe the targeted scenario of a
federated learning system with multiple learning tasks and
various distributed computing nodes, then formally define
the quality-aware federated learning problem, and finally
carry out the problem tractability analysis.

2.1 System Description

As shown in Fig. 1, we consider a distributed federated
learning system, where there are one cloud platform and
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various distributed computing nodes denoted by N ¼
f1; 2; . . . ; Ng. The system operates as a federated learning
services market in a time-slotted manner, where the time
span is partitioned into T consecutive slots, and in each iter-
ation t, a set of learning tasks Lt ¼ flt1; lt2; . . . ; ltj; . . .g with
budgets Bt ¼ fBt

1; B
t
2; . . . ; B

t
j; . . .g are submitted to the cloud

platform. Here, each task ltj represents a model training task
submitted by companies or users, e.g., it can be a traffic sign
recognition task that requires computing nodes with traffic
sign data samples training the submitted model. In each
iteration t, the cloud platform publishes the received learn-
ing tasks Lt to computing nodes, and recruits a set of partic-
ipating nodes for each ltj 2 Lt within budget Bt

j. Specifically,
each node i notifies the cloud platform the set of tasks Lti �
Lt that it is willing to participate in, based on which the
cloud platform allocates the learning tasks to nodes and
determines according payments. Note that, since the local
data of computing nodes are diverse, they can participate in
different learning tasks, but each node is constrained to par-
ticipate in at most one task in each iteration as the comput-
ing capacity of nodes is usually limited. Once a computing
node is recruited to participate in a learning task, it down-
loads the corresponding global model from the cloud plat-
form, trains the model locally using local data, and commits
the model updates to the cloud platform for aggregation.
The cloud platform separately aggregates the received
model updates from participants to update the model for
each task and finally the updated model of each task is sent
back to its submitters. Note that if the model accuracy
reached in iteration t is not satisfactory, the model can still
be submitted along with a budget in iteration tþ 1 for fur-
ther learning. Table 1 shows the key notations that are used
in this paper.

2.2 Problem Definition

In each iteration t, given the learning budget, the platform
has to determine which learning task is executed by which
computing nodes (i.e., the learning task allocation) at what
price (i.e., determining the payment). In order to complete
the submitted learning tasks with high quality in every iter-
ation, we cast the following quality-aware federated learning
problem.

Definition 1 (Quality-Aware Federated Learning Prob-
lem). For each iteration t, given the sets of learning tasks Lt
and learning budgets Bt, how to allocate the learning tasks, dis-
tribute payments, and aggregate the model updates, such that

the sum of the quality of all aggregated learning models is
maximized?

A binary variable sti;j 2 f0; 1g is used to indicate whether
the task ltj is allocated to node i in iteration t, which equals 1
if the task is allocated to the node, and equals 0 otherwise.
Denote byMt

j ¼ figst
i;j
¼1;8i2N the nodes assigned with task

ltj, and rti;j represents the payment reward to node i 2Mt
j.

For each learning task ltj, the model updates wwt
i;j received

from nodes i 2 Mt
j will be aggregated with weight �t

i;j to
update the global model wwt

j. Then, the quality-aware feder-
ated learning problem can be formulated as

max
Mt;Rt;��t

X
lt
j
2Lt

Accðwwt
jÞ; (1)

wwt
j ¼

X
i2Mt

j

�t
i;jww

t
i;j; (2)

s:t: sti;j 2 f0; 1g; 8i 2 N ; 8ltj 2 Lt; (3)X
i2N

rti;js
t
i;j � Bt

j; 8ltj 2 Lt; (4)

sti;j ¼ 0; 8ltj =2 Lt
i; 8i 2 N ; (5)X

lt
j
2Lt

sti;j � 1; 8i 2 N ; (6)

X
i2Mt

j

�t
i;j ¼ 1; 8ltj 2 Lt; (7)

where we utilize model accuracy as a measurement of
the model quality. In addition, Mt ¼ fsti;jg8i2N ;8lt

j
2Lt , R

t ¼

Fig. 1. An overview of the distributed federated learning system.

TABLE 1
Key Notations

Notation Definition

T The number of total time slots
t The index of time slot
N The set of distributed computing nodes
i The index of node inN
Lt The set of learning tasks in iteration t
Lti The set of tasks that the node i can participate in
ltj The jth learning task in Lt

Bt The set of learning budgets in iteration t
Bt

j The learning budget issued for the task ltj
sti;j The indicator of whether task ltj is allocated to node i

rti;j The reward paid to node i in iteration t

cti;j The learning cost of node i on task ltj
ut
i;j The utility of node i in iteration t

Bt
i The bid information of node i in iteration t

bti;j The bid price of node i on task ltjbqti;j The estimated quality of node i on task ltj
qti;j The learning quality of node i on task ltj
Dt

i;j The data size of node i used to train the task ltj
Mt The learning task allocation results
Mt

j The set of winner nodes for task ltj in iteration t
Rt The payment determination results
Rt

j The set of payments for winner nodesMt
j

�t
i;j The aggregation weight of node i on task ltj

wwt
i;j The local model parameters of node i on task ltj

wwt
j The aggregated model parameters of task ltj
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frti;jg8i2N ;8lt
j
2Lt , and ��t ¼ f�t

i;jg8i2N ;8lt
j
2Lt represent the learn-

ing task allocation results, the payment determination results,

and the model aggregation weights, respectively. Constraint

(4) represents that for each learning task, the sum of payments

should not exceed the learning budget provided by the task

submitter. Constraint (5) means that each node can only be

allocated with the learning tasks that it can participate in. In

constraint (6), each node is limited to participate in at most

one learning task in every iteration. Constraint (7) limits the
aggregationweights of the receivedmodel updates.

2.3 Problem Difficulties

The formulated quality-aware federated learning problem is
intractable directly for the following reasons. The first chal-
lenge comes from the task allocation. To boost the quality of the
learning models, it would be promising to select high-quality
participants for each learning task, i.e., the nodes whose model
updateswould contributemore to the convergence of the task’s
model. However, how to quantify the learning quality of nodes
becomes a hurdle. Because there are various factors of partici-
pating nodes, such as data size used for training, the noise level
of data labels, and data distribution skewness, which can affect
the learning quality intricately, but there is no established
model to quantify their impacts on the learning qualities of
both the individual model update and aggregated global
model. Besides, due to the privacy issue, it is usually inaccessi-
ble to the raw data of each node, and thus we cannot achieve
the data profiles directly, such as the data label noise, data dis-
tribution. Additionally, the learning quality of a node in each
iteration is unknown before learning, which exacerbates the
challenge of task allocation. The second challenge arises in
determining both-satisfied payments, especially when the
learning budget is limited.On the onehand, the nodes havedif-
ferent computation and communication costs, and it is difficult
to model the learning cost of each participating node. On the
other hand, participants are often strategically selfish, and they
tend to claim a higher cost than the real one in order to increase
their individual learning profits. Model aggregation encoun-
ters another challenge, i.e., how to aggregate the received
model updates from participants is important, but finding the
optimal aggregationweights for them is nontrivial.

In this paper, we propose FAIR to systematically address
those challenges, and thus provide an efficient solution to
the quality-aware federated learning problem.

3 OVERVIEW OF FAIR

In this section, we first present the design overview of FAIR
and then highlight its design goals.

3.1 Design Overview

As shown in Fig. 2, FAIR integrates three major components:
1) learning quality estimation, 2) quality-aware incentive mecha-
nism, and 3) auto-weighted model aggregation. Specifically, to
mathematically pinpoint the optimization problem, we first
utilize the model aggregation weights learned in the auto-
weighted model aggregation component to quantify the indi-
vidual quality of each participating node in a privacy-pre-
serving manner, and then leverage the historical quality
records to estimate the next-round quality. With the esti-
mated individual quality, we then model the interaction
between the platform and distributed computing nodes as a
game-theoretic reverse auction to cast a quality-aware incen-
tive mechanism. In the incentive mechanism, during each
iteration t, the platform announces the learning task set Lt to
the computing nodes, and each node i submits its bid infor-
mation Bt

i ¼ fðltj; bti;jÞg8lt
j
2Lt

i
to the platform. The tuple ðltj; bti;jÞ

consists of the learning task ltj that the node wants to partici-
pate in, and the corresponding price bti;j. Working with the
reverse auction mechanism, we formulate the Learning Qual-
ity Maximization (LQM) problem (proved to be NP-hard),
and devise a light-weight algorithm to allocate the learning
tasks with payments based on participants’ individual qual-
ity and bid information. After that, with the model updates
from the selected participating nodes, we finally devise a
model aggregation algorithm based on the gradient descent
method, which can automatically learn the aggregation
weights to efficiently aggregate the received model updates.
Note that, the aggregation weights learned by the auto-
weighted model aggregation component are inversely fed to the
learning quality estimation component for quality quantifica-
tion in a privacy-preservingmanner.

Fig. 2. Architecture of FAIR.
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By doing so, the original quality-aware federated learning
problem can be transformed and solved along with the fol-
lowing two optimization directions. On the one hand, FAIR
estimates the individual learning quality of candidate nodes
and adopts the quality-aware incentive mechanism to
recruit as many high-quality model updates as possible. On
the other hand, FAIR automatically learns the optimal
aggregation weights to efficiently aggregate the recruited
model updates, which can further enhance the learning
qualities of aggregated global models.

3.2 Design Goals

FAIR aims to maximize the sum of the quality of all aggre-
gated learning models in each iteration, while ensuring
truthfulness, individual rationality, and computational efficiency.
Since computing nodes are strategically selfish, the truthful-
ness goal is set to avoid nodes announcing untruthful bid
prices. To quantify the benefits of computing nodes partici-
pating in a learning task, the node utility is defined.

Definition 2 (Node Utility). In iteration t, the utility gain of
node i by participating in learning task ltj is the difference
between the reward and learning cost, i.e.,

uti;j ¼
rti;j � cti;j; if i 2 Mt

j;

0; otherwise:

(
(8)

Then, the design goals are defined as follows.

Definition 3 (Truthfulness). A mechanism is truthful if, in
each iteration t, no computing node can increase its utility by
reporting untruthful bid price with bti;j > cti;j. Formally, for
each node i with true bid price, i.e., bti;j ¼ cti;j, if the node is
truthful in iteration t, its utility is ut

i;j, otherwise but
i;j. We have

ut
i;j � buti;j for each node.

Definition 4 (Individual Rationality). A mechanism is indi-
vidually rational if the utility of each node i in each iteration t
is non-negative, i.e., ut

i;j � 0.

Definition 5 (Computational Efficiency). A mechanism is
computationally efficient if the learning task allocation, payment
determination, and model aggregation can be conducted within a
polynomial time.

4 DESIGN OF FAIR

In this section, we elaborate on the main components of
FAIR: 1) learning quality estimation, 2) quality-aware incen-
tive mechanism, and 3) auto-weighted model aggregation.

4.1 Estimating Learning Quality

4.1.1 Learning Quality Quantification

In order to encourage high-quality nodes to participate in fed-
erated learning, the first item is to quantify the individual
learning qualities of computing nodes. For federated learning
systems, constrained by the storage/computing capacity and
data resources, the data size of each participating node that
can be used for model training varies dramatically. Besides,
the issues of mislabeled samples and skewed data distribu-
tions are also common in local data sets. These factors can col-
lectively affect the individual learning quality of participating
nodes, which has been verified by field experiments [13], [14],

but their impacts are complicated and hard to be mathemati-
cally modeled for quantification. Even more, the information
of these affecting factors is inaccessible directly due to the pri-
vacy issue, posing another dimensional challenge. One seem-
ingly plausible approach is to evaluate the accuracy
of individual model update to quantify the participant’s
learning quality. For instance, we can test the accuracy of par-
ticipant’s local training model on a small test dataset main-
tained by the server as their individual learning quality. The
weakness is that the quantified quality cannot precisely reflect
the contribution of a participant to the global aggregated
model, resulting in unexpected bias in implementing the
quality-aware incentive mechanism. Therefore, we define the
quality of a node as the contribution of its provided model
updates to the convergence of the globalmodel. As the overall
contribution of a participant is correlated with other partici-
pants and varies with time, we propose an online quality
quantification approach in this paper. The main idea is that,
the contribution of participants can be embodied by the
aggregation weight of its model update during the model
aggregation. Therefore, we adopt the aggregation weight to
reversely quantify the individual learning quality in real
time. Specifically, for each learning task ltj in iteration t, we
define the learning qualities of its L participating nodes as
qqtj ¼ ½qt1;j; qt2;j; . . . qtL;j�, and the aggregation weights used for
aggregating the model updates from participating nodes are
defined as ��t

j ¼ ½�t
1;j; �

t
2;j; . . . ; �

t
L;j�. We use a softmax function

to transform qqtj to ��
t
j

��t
j ¼ softmaxðqqtjÞ;

�t
i;j ¼

expðqti;jÞPL
l¼1 expðqtl;jÞ

: (9)

The online quality quantification mechanism of FAIR works
as follows. After receiving the model updates from partici-
pating nodes, FAIR automatically learns the optimal aggre-
gation weight �t

i;j (detailed in Section 4.3), and then the
quality value qti;j can be obtained based on the learned
aggregation weight �t

i;j. In our implementation, we define qqtj
as a learnable vector, and utilize Eq. (9) to obtain the learn-
able vector ��t

j, such that ��t
j and qqtj can be learned simulta-

neously. In this way, the quantified qti;j can not only
describe the individual learning quality, but also reflect the
overall contribution of each participant.

4.1.2 Learning Quality Estimation

With the learning quality quantification mechanism, FAIR
can obtain the individual quality of participating nodes after
receiving their committed model updates. However, to allo-
cate the learning tasks properly, it is necessary to have the
quality values of all candidate nodes ahead at the beginning
of each iteration round. Therefore, in each iteration, FAIR first
estimates the individual quality of candidate participants to
assist in allocating tasks with payments. As the system runs
iteratively, FAIR leverages the historical quality records of a
participant to estimate its next-round quality. Specially, in the
first iteration of each learning task, we let all candidate nodes
participate in the learning process to get their initial quality
values. Afterwards, supposing that node i has participated in
the learning task lj in iteration t0; t1; . . . ; tr, we can use the
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quality records ðqt0i;j; qt1i;j; . . . ; qtri;jÞ to estimate the quality, qti;j,
that is contributed in iteration t, where t > tr. The learning
quality of one node may vary with time, and intuitively, the
recent quality records are more informative than the stale
quality records. Therefore, instead of giving all quality
records the same weight, we weight them based on their
freshness [15]. Specifically, we employ an exponential for-
getting function to assign the weights, which assigns larger
weights to the recent quality records and smaller weights to
the stale ones [16]. Themost recent quality record receives the
weight of 1 and the other records are weighted by their rela-
tive position to the most recent quality record. The according
weights of ðqt0i;j; qt1i;j; . . . ; qtri;jÞ are ðrtr�t0 ; rtr�t1 ; . . . ; 1Þ, where
0 < r � 1 is the forgetting factor [17]. Then, the estimated
quality value bqti;j can be obtained as

bqti;j ¼Pr
k¼0 r

tr�tkqtki;jPr
k¼0 rtr�tk

: (10)

4.2 Quality-Aware Incentive Mechanism

After estimating the individual quality for each candidate
node, we then solve the defined quality-aware federated learn-
ing problem in two steps.Within the learning budget, we first
encourage high-quality and low-cost computing nodes to
participate in the learning tasks via a quality-aware incentive
mechanism. Then, with model updates, we devise an aggre-
gation algorithm to further enhance the learning perfor-
mance. In this subsection, we focus on the design of the
quality-aware incentive mechanism. Specifically, in each iter-
ation, we model a reverse auction case where each node i
submits the bid information Bt

i, and for each learning task ltj,
FAIR selects a set of winner nodesMt

j � N and determines a
payment set Rt

j ¼ frti;jg8i2Mt
j
within the learning budget.

Here, the reverse auctionmechanism is chosen for the follow-
ing reasons. First, as the model learning costs tend to vary
among nodes, it is hard and inappropriate for the platform to
pay a fixed price for each participating node. Therefore, we
employ a reverse auction to have each node bid to the plat-
form with the price of completing a task in accordance with
the learning cost. Second, reverse auction is beneficial to
solve the defined optimization problem, since the computing
nodes are competing with each other to win over a learning
task, which can encourage nodes to improve their learning
quality and reduce their bid price via designing a delicate
incentive scheme. Therefore, based on the reverse auction
mechanism, we can formulate the LQMproblem as follows.

Definition 6 (The LQM Problem). In each iteration t, in
accordance with the bids information, how to select a set of win-
ner nodesMt

j with payments Rt
j for each learning task ltj, such

that the sum of the estimated learning quality of the selected
nodes is maximized?

The defined LQM problem can be formulated as

max
Mt

j
;Rt

j

X
lt
j
2Lt

X
i2Mt

j

bqti;j;
s:t: ð3Þ; ð4Þ; ð5Þ; ð6Þ;

truthfulness;

individual rationality;

computational efficiency: (11)

Inputs. The LQM problem takes the learning task set Lti of
each node i 2 N , the bid price bti;j; 8i 2 N ; 8ltj 2 Lt

i, the
learning budget Bt

j; 8ltj 2 Lt, and the quality estimation
value bqti;j; 8i 2 N ; 8ltj 2 Lt as inputs. Outputs. FAIR deter-
mines the value of the binary variable sti;j for each i 2 N
and ltj 2 Lt. If sti;j ¼ 1, the node i will be included into the
selected nodes setMt

j, which means that the learning task ltj
will be allocated to node i. Also, FAIR determines the learn-
ing reward rti;j in the set Rt

j for each winner node. Con-
straints. The constraints of the LQM problem include all the
constraints of the quality-aware federated learning problem, as
well as the goals of truthfulness, individual rationality, and
computational efficiency. For the LQM problem, we have
the following Theorem.

Theorem 1. The LQM problem is NP-hard.

Proof. To prove its NP-hardness, we design a polynomial
reduction from a classic NP-hard problem, i.e., Multiple
Knapsack Problem with Assignment Restrictions (MKAR) [18],
which is a variant of the NP-hard problem of Multiple
Knapsack Problem (MKP) [19], to our formulated LQMprob-
lem. An instance of theMKAR problem can be given as fol-
lows. Suppose there is an item setO ¼ fo1; o2; . . . ; ongwith
specified value vi and weight wi for each item oi 2 O, as
well as a knapsack set B ¼ fb1; b2; . . . ; bmg with specified
capacity cj for each knapsack bj 2 B. For each item oi 2 O,
a set Bi � B of knapsacks that can hold item oi is specified.
To maximize the total value of assigned items, for each
knapsack bj 2 B, we need to choose a subset Oj � O of
items to be assigned to knapsack bj, such that: 1) each item
is assigned to at most one knapsack; 2) each Oj is a subset
ofAj, whereAj � O is the set of items that can be assigned
to knapsack bj; 3) total weight of items assigned to a knap-
sack is no more than its capacity. Afterwards, based on the
instance of the MKAR problem, we construct an instance
of the LQM problem. First, we transform the item set O
and knapsack set B into node set N and learning task set
Lt, respectively. Then, we assume that each node has the
same bid price and quality value for each learning task,
that is, bti;j ¼ bti and bqti;j ¼ bqti for all ltj 2 Lti. Next, we set rti;j ¼
bti;j for all l

t
j 2 Lt; i 2 Mt

j. Finally, we set vi ¼ bqti , wi ¼ rti for
all i 2 N , and Bt

j ¼ cj for all ltj 2 Lt. In this way, each
instance of the MKAR problem is polynomial-time reduc-
ible to an instance of the LQM problem. Therefore, the
LQMproblem isNP-hard, which concludes the proof. tu
Given the NP-hardness of the LQM problem, we design a

heuristic algorithm to solve the LQM problem with truthful-
ness, individual rationality, and computational efficiency.
Myerson’s theorem [20] of truthfulness has demonstrated
that a mechanism for auction problems is truthful if and
only if the winner selection problem is monotone and the
payment of each winner is a critical value:

� Monotonicity. If node i wins in iteration t by claiming
a bid price bti;j for performing the learning task, it
will still win with any bid bbti;j < bti;j.

� Critical payment. If node i wins with the bid price bti;j,
it can also win with other bid price bbti;j, but bidding
with bti;j makes it get the maximum payment, and
then bti;j is said to be the critical payment of node i.
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That is, a critical payment is the maximum bid price
value for a bid to win.

Algorithm 1. Solving the LQM Problem

Input: (1) bid price bti;j; (2) budget B
t
j; (3) task set Lt

i; (4) qual-
ity estimation values qti;j.

Output: (1) the task allocation results sti;j; (2) the payments
rti;j.

1 Initialize N t
j  ;, ptj  0 for each ltj 2 Lt;

2 Initialize xt
i  1 for each i 2 N ;

3 Initialize rti;j  0; sti;j  0 for each i 2 N , ltj 2 Lt;
4 foreach i 2 N do
5 foreach ltj 2 Lt

i do
6 N t

j  N t
j þ fig;

7 end
8 end
9 while 9 xt

i ¼ 1 and 9 ptj ¼ 0 do
10 InitializeMt

j  ; for each ltj 2 Lt;
11 foreach ltj 2 Lt do
12 if ptj ¼ 0 then
13 Sort all i 2 N t

j in descending order of
qt
i;j

bt
i;j

;

14 Find the smallest k such that
Pk

i¼1
bt
k;j

qt
k;j

qti;jx
t
i > Bt

j;
15 for i 1 to k� 1 do
16 Mt

j  Mt
j þ fig;

17 rti;j  
bt
k;j

qt
k;j

qti;j;

18 end
19 end
20 end
21 Find the task ltk with maximum

P
i2Mt

k
qti;kx

t
i;

22 Set ptk  1;
23 foreach i 2 Mt

k do
24 if xt

i ¼ 1 then
25 sti;k  1;

26 xt
i  0;

27 end
28 end
29 end
30 return (sti;j; r

t
i;j);

We use the above theorem and devise the greedy algo-
rithm to solve the LQM problem in each iteration t. As
shown in Algorithm 1, in each iteration t, the algorithm first
picks the candidate nodes N t

j that can participate in the
learning task ltj (lines 4-8). The main loop (lines 9-29) is then
executed until there is no node can participate in the learn-
ing tasks or all tasks have been allocated to nodes for execu-
tion. In the main loop, the algorithm first selects a subset of
winner nodes Mt

j � N t
j for each task ltj that can approxi-

mately maximize the sum of the estimated quality of ltj’s
winner nodes (lines 11-20). Specifically, the algorithm sorts
node i 2 N t

j in descending order by qti;j=b
t
i;j, i.e., the quality

contribution per unit bid price (line 13). The value of qti;j=b
t
i;j

is a ranking indicator for node i. Then, the algorithm greed-
ily includes nodes into the winner node setMt

j according to
the rankings until the total payment exceeds the budget Bt

j

(lines 14-18). Here, we determine the reward of each partici-
pating node i according to its critical payment. Denoting by
k the node with the highest ranking among all loser nodes,
the maximum bidding price b0i;j that can substitute node i as

the winner satisfies qti;j=b
0
i;j ¼ qtk;j=b

t
k;j. This means the critical

payment of node i is the bidding price b0i;j ¼
bt
k;j

qt
k;j

qti;j. The criti-

cal payment b0i;j is used as the payment to node i (line 17).
Finally, the algorithm finds the task ltk with maximumP

i2Mt
k
qti;kx

t
i (line 21), and allocates task ltk to the obtained

winner nodes (lines 22-28).
Obviously, Algorithm 1 satisfies the constraints (3), (4),

(5), and (6). The constraints truthfulness, individual ratio-
nality and computational efficiency will be proved in
Section 5.

4.3 Auto-Weighted Model Aggregation

In each iteration t, for each learning task ltj, after one or mul-
tiple gradient-descent updates, each winner node i will
commit their local model parameters wwt

i;j to the platform,
and then the platform will aggregate them to update the
global model parameters wwt

j. Given a set of winner nodes
Mt

j as well as their local model parameters, the objective of
FAIR is to find the optimal aggregation weight �� ¼
f�t

i;jgi2Mt
j
, such that the loss function Lðwwt

jÞ of the aggre-
gated model of ltj can be minimized, i.e., getting �	�	 ¼
argminLðwwt

jÞ, which can be formulated as

min
��

Lðwwt
jÞ;

s:t: wwt
j ¼

X
i2Mt

j

�t
i;jww

t
i;j;

X
i2Mt

j

�t
i;j ¼ 1;

�t
i;j � 0; 8i 2Mt

j: (12)

In (12), the local model parameters fwwt
i;jgi2Mt

j
are fixed,

which can be treated as constants, while the aggregation
weight variables �� are the ones that need to be optimized.
To this end, we propose an auto-weighted model aggrega-
tion mechanism to gradually optimize the aggregation
weights by the gradient descent method. Generally, the
cloud platform has a small data set for each learning task,
which is used to test the global model accuracy achieved in
each iteration. The amount of data maintained in the plat-
form is relatively smaller compared to the data aggregated
from all participating nodes, and thus is not enough to train
a high-accuracy model. However, the data set usually has a
balanced data distribution with correct labels, which can be
regarded as a benchmark dataset [21]. FAIR utilizes the bench-
mark dataset to optimize the model aggregation weights to
generate high-quality aggregated models. Specifically, for
each learning task, the data samples in the benchmark data-
set are first fed into the global model for forward propaga-
tion. Specially, when the input passes through a linear
transformation layer of the global model, the input will
actually be fed into the linear transformation layer of each
local model, and then the output of each linear transforma-
tion layer is aggregated with weights �� and then put for-
ward to the next layer of the global model. Then the loss
function can be calculated by the model output by and the
target y. Afterwards, the backpropagation process is per-
formed to calculate the gradient of the loss function to the
model aggregation weights ��. With the calculated gradients,
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the gradient descent process is executed to update ��. Taking
a simple convolutional neural network (CNN)1 as an exam-
ple, as shown in Fig. 3, the linear transformation layers of
the CNN, e.g., convolutional layers, fully connected layers,
are transformed into the local models of the participating
nodes weighted with parameters ��, while the nonlinear
transformation layers remain unchanged. The images in the
benchmark dataset are first fed forward to the first convolu-
tional layer of each local model, then the outputs are
weighted by �� and pass through the ReLU activation as
well as the MaxPool layer. Likewise, the inputs pass
through each layer of the CNN model to calculate the loss
function L and then backpropagation and gradient descent
are performed to update the weight parameters ��. Overall,
compared with directly training the global model with the
benchmark dataset, there are the following two differences.
One is that in the forward propagation process, the output
of the linear transformation layer is the weighted sum of the
output of each local model linear transformation layer. The
second is that the gradient descent updates the weights of
the model aggregation rather than the parameters of the
global model. By doing so, the optimal aggregation weights
can be automatically learned.

5 PERFORMANCE ANALYSIS

In this section, we theoretically prove the truthfulness, indi-
vidual rationality, and computational efficiency of FAIR.

Theorem 2. FAIR is truthful.

Proof. In each iteration t, node i might report a truthful bid
price bti;j ¼ cti;j or any other untruthful bid price bbti;j. The
four bidding results of node i are as follows:

1) {win, win}: Node i wins in iteration t with both
truthful bid bti;j and untruthful bid bbti;j. In this

case, the utility of node i is ut
i;jðbti;jÞ ¼ ut

i;jðbbti;jÞ ¼
bt
k;j

qt
k;j

qti;j � cti;j.

2) {loss, loss}: Node i loses in iteration t with both
truthful bid bti;j and untruthful bid bbti;j. In this

case, the utility of node i is uti;jðbti;jÞ ¼ ut
i;jðbbti;jÞ ¼ 0.

3) {win, loss}: Node i wins in iteration t with truthful
bid bti;j and loses with untruthful bid bbti;j. In this

case, the utility ut
i;jðbti;jÞ ¼

bt
k;j

qt
k;j

qti;j � cti;j ¼
bt
k;j

qt
k;j

qti;j�

bti;j � 0. Because node i wins with bid bti;j and we

have
qt
i;j

bt
i;j

� qt
k;j

bt
k;j

according to nodes’ ranking in Algo-

rithm 1. The utility ut
i;jðbbti;jÞ ¼ 0, and hence

ut
i;jðbti;jÞ � uti;jðbbti;jÞ.

4) {loss, win}: Node i loses in iteration t with truthful
bid bti;j but wins with untruthful bid bbti;j. In this
case, the utility ut

i;jðbti;jÞ ¼ 0 and the utility

ut
i;jðbbti;jÞ ¼ bt

k;j

qt
k;j

qti;j � cti;j ¼
bt
k;j

qt
k;j

qti;j � bti;j � 0. Because

node i loses with bid bti;j and we have
qt
i;j

bt
i;j

� qt
k;j

bt
k;j

according to node ranking. Thus, ut
i;jðbti;jÞ �

ut
i;jðbbti;jÞ still holds.

As ut
i;jðbti;jÞ � uti;jðbbti;jÞ holds in all cases, which means

that node i cannot improve its utility by reporting any

untruthful bid. Therefore, we can conclude that FAIR is

truthful. tu
Theorem 3. FAIR is individually rational.

Proof. If node i loses in iteration t, its utility ut
i;j ¼ 0. Other-

wise, node i wins with truthful bid bti;j ¼ cti;j since we

have proved that nodes bid truthfully. The node utility

uti;j ¼ rti;j � cti;j ¼
bt
k;j

qt
k;j

qti;j � bti;j � 0 due to
qt
i;j

bt
i;j

� qt
k;j

bt
k;j

. There-

fore, ut
i;j � 0 for each node i, and FAIR is proved to be

individually rational. tu
Theorem 4. The time complexity of task allocation and payment

scheme in FAIR is OðL2N logNÞ, where L ¼ jLtj is the num-
ber of learning tasks in iteration t, and N ¼ jN j is the number
of nodes in setN . The time complexity of the model aggregation
algorithm in FAIR is OðE 
 S 
M 
 LÞ, where E is the number
of epochs to train the aggregation weight, S is the number of
samples in the benchmark dataset of learning task ltj, and M is
the number of nodes in winner setMt

j. Both time complexities
are polynomial, which are computationally efficient.

Proof. We analyze the worst case of Algorithm 1 where
jLt

ij ¼ L and jN t
jj ¼ N . In the worst case, the main loop in

line 9 terminates after L times of iterations. Besides, the
computational complexity of sorting qti;j=b

t
i;j (line 13) is

OðNlogNÞ, where finding the smallest k (line 14) is OðNÞ,
and finding the task ltk with maximum

P
i2Mt

k
qti;kx

t
i (line

21) is OðNLÞ. Therefore, the computational complexity of
Algorithm 1 is OðL2NlogNÞ. In the model aggregation
algorithm, the data samples in the benchmark dataset of
each learning task are passed through the local model of
each selected winner node. And we set the maximum
number of passes of the entire benchmark dataset as E.
Therefore, the computational complexity of the model
aggregation algorithm is OðE 
 S 
M 
 LÞ. tu

6 PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of FAIR. Specifically, we first detail the eval-
uation methodology with experiment setup, learning mod-
els/datasets, and benchmark design. Then, we evaluate the
performance of FAIR in terms of incentive and model aggre-
gation. Finally, we investigate the impact of mislabeled and

Fig. 3. Auto-weighted model aggregation.

1. The CNN has the following structure: Convolutional ! ReLU!
MaxPool! Convolutional! ReLU! MaxPool! Fully connected!
ReLU! Fully connected! Softmax.
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non-IID data as well as the learning budget on the perfor-
mance of FAIR.

6.1 Evaluation Methodology

Experiment Setup. We build the FAIR simulation system by
adopting the widely-used PyTorch 1.4.0 software environ-
ment. The detailed experiment settings are shown in Table 2,
where the bid price, the number of data samples used for
training, the number of nodes with mislabeled or non-IID
training data, and the learning budget of each task are vari-
able parameters. In Table 2, jN j and jLtj are the number of
candidate nodes and learning tasks in each iteration, respec-
tively, and Bt

j is the learning budget for the task ltj. For each
node i, the bid price bti;j and the amount of dataDt

i;j used for
training in task ltj are generated uniformly within ranges
[1,3] and [100,1000], respectively. Note that, we set up the
scale of computing nodes as well as the amount of training
data for each node in accordance with the total number of
samples in the adopted datasets. Besides, among jN j candi-
date nodes, we assume there are Ne nodes with mislabeled
training data samples and Nd nodes with non-IID data dis-
tribution, where the nodes with mislabeled or non-IID data
are randomly selected from N . For the nodes with misla-
beled data, the ratio of mislabeled samples is controlled by
the parameter Re, which is randomly generated among the
ranges in Table 2. For the nodes with non-IID data distribu-
tion, we set 10 different non-IID levels denoted by: H 2
f1; 2; . . . ; 7g indicating that the node has only H type labels
for samples and they evenly belong to H type labels; or k 2
f0:8; 0:6; 0:4g, where taking an example, s ¼ 0:8 indicates
that 80% of the data belong to one label and the remaining
20% data evenly belong to other labels. Besides, we set the
local epochs of each node to be 2, i.e., the nodes communi-
cate with the platform every 2 epochs to exchange model
updates. The number of epochs E to train the model aggre-
gation weights is set to 10.

Models and Datasets. We evaluate the performance of
FAIRwith four commonly adopted learning models, includ-
ing Multi-layer Perceptron (MLP),2 LeNet-5 [22], ResNet-
18 [23], and MobileNet [24]. The above four models are
trained with the following datasets: MNIST [25], Fashion-
MNIST (FMNIST) [26], CIFAR-10 [27], and the Street View
House Numbers (SVHN) [28] dataset, respectively. MNIST
is a dataset of handwritten digits and FMNIST is a dataset
of Zalando’s fashion article images, both of which have a
training set of 60 thousand examples and a test set of 10
thousand examples. The CIFAR-10 dataset consists of 50
thousand training images and 10 thousand test images in 10

classes. SVHN is a real-world house number image dataset
with 73 thousand training data and 26 thousand test data.

Incentive Benchmarks. To examine the performance of our
proposed quality-aware incentive mechanism in FAIR, the
following reasonable benchmarks are designed.

� Knapsack greedy mechanism: It greedily selects winner
nodes based on the amount of data used for training
divided by the bid price, i.e., Dt

i;j=b
t
i;j, where the data

quality and truthfulness of nodes are not considered.
� Bid price first mechanism: It preferentially selects

nodes with the lowest bid price in order to recruit as
many participating nodes as possible within the bud-
get, but it cannot guarantee the truthfulness of
nodes.

� Random mechanism: It randomly selects a fraction of
participating nodes for each learning task within the
budget, which is widely used in state-of-the-art
researches, e.g., [7], [29], [30], [31].

Model Aggregation Benchmarks. To compare the perfor-
mance of our proposed auto-weighted model aggregation
component in FAIR, the following two reasonable bench-
marks are adopted.

� FedAvg: It is an efficient model aggregation algo-
rithm for federated learning, which has been widely
adopted in current federated learning frameworks.
In the algorithm, the aggregation weights of commit-
ted model updates are determined by the number of
data samples used for training [7], [32], [33];

� FAIR INFOCOM: It is a quality-aware model aggre-
gation algorithm proposed in our previous work,
where the aggregation weights are calculated based
on the amount of training data and the local training
loss reduction [34].

6.2 Performance of User Incentive

We first investigate the user incentive performance in FAIR.
We adopt the experiment setting I in Table 2, where there is
only one learning task with 30 candidate nodes in each iter-
ation. Among 30 candidate nodes, 20 nodes have incorrectly
labeled data samples with the mislabel rate generated ran-
domly from range (0,1), and 20 nodes have non-IID data
samples with data distributions generated from the 10 dif-
ferent non-IID levels as described in Section 6.1. In addition,
the benchmarks adopt the Federated Averaging (FedAvg)
algorithm [7] for model aggregation, and for fair compari-
son, we also present the performance of FAIR with the
FedAvg model aggregation mechanism (named FAIR
FedAvg). The model accuracy of each learning task with dif-
ferent incentive mechanisms is shown in Fig. 4. We can
observe that for all learning tasks, the mechanism of FAIR
FedAvg can outperform the other benchmarks significantly
by converging more rapidly with a higher accuracy, which
demonstrates the efficacy of the quality-aware incentive
mechanism in FAIR. In addition, it can be seen that with
integrating the auto-weighted model aggregation compo-
nent in FAIR, the learning performance can be further
enhanced in terms of both convergence speed and model
accuracy. For instance, when evaluating on the LeNet-5
FMNIST task, after 30 communication rounds (iterations),

TABLE 2
Experiment Parameters

Settings jN j jLtj bti;j Dt
i;j Ne Re Nd Bt

j

I 30 1 [1,3] [100,1000] 20 (0,1) 20 20
II 30 1 [1,3] [100,1000] [0,30) 0.8 0 20
III 30 1 [1,3] [100,1000] 0 - [0,30) 20
IV 50 3 [1,3] [100,1000] 20 (0,1) 40 [5,20]

2. It has two hidden layers with 50 neurons each using ReLu activa-
tions, and its output layer has a softmax function.
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the Knapsack greedy, Random, and Bid price first mechanisms
can only achieve accuracy scores of 72.7%, 69.5% and 59.9%
respectively, while FAIR FedAvg can achieve a score of
78.7% and FAIR can further push the accuracy to 81.8%,
improving the performance by 8.3%, 13.2%, 23.9%, and
12.5%, 15%, 36.6%, respectively. Besides, the FAIR and FAIR
FedAvg mechanisms require only 3 and 9 iterations to
achieve the model accuracy of 70%, but the Knapsack greedy,
Random, and Bid price first mechanisms require 18, 21, and
more than 30 iterations, respectively. In summary, com-
pared to the benchmarks, FAIR advances dramatically in
model accuracy and learning convergence speed, which is
valuable to distributed learning systems in providing high-
quality intelligent services at low negotiation cost.

6.3 Performance of Model Aggregation

We then examine the model aggregation performance of
FAIR, which is evaluated with the MLP, LeNet-5, ResNet-
18, and MobileNet models, trained by the MNIST, FMNIST,
CIFAR-10, and SVHN dataset respectively. Each model is
trained with 20 participating nodes under four different sce-
narios:3 a) Clean IID: the local training dataset of each partic-
ipating node is IID without mislabeled data samples; b)
Noisy IID: the data distribution of the 20 participating nodes
are IID, but there are 15 nodes with mislabeled data sam-
ples, and the ratio of mislabeled data samples is randomly
generated from the range (0,1); c) Clean non-IID: for the 20
participating nodes, they do not have mislabeled data sam-
ples, but there are 15 nodes having non-IID data distribu-
tion; d) Noisy non-IID: for the 20 participating nodes, 15
nodes have incorrectly labeled data samples and 15 nodes
have non-IID data distribution. Besides, the amount of

training data samples of the 20 participating nodes is gener-
ated uniformly from the range [100,1000].

Fig. 5 shows the average model accuracy over 30 itera-
tions, and we can make the following three major state-
ments. First, FAIR can outperform the benchmarks in all
scenarios for all learning models. For example, under the
Noisy non-IID scenario, when evaluated on the LeNet-5
model, the FedAvg and FAIR INFOCOM mechanisms can
only achieve the average accuracy score of 46% and 41%
respectively, while FAIR can reach the score of 72%, which
can improve the performance by 56.5% and 75.6%, respec-
tively. Second, the traditional FedAvg algorithm is quite sen-
sitive to the mislabeled and non-IID data, where the
learning accuracy degrades dramatically when the data
qualities of participating nodes are poor, but FAIR can work
robustly under all scenarios. Taking the LeNet-5 model as
an example, the model accuracy achieved by the FedAvg
algorithm will decrease from 80% to 46% when the data
condition changes from Clean IID to Noisy non-IID, while
the accuracy achieved by FAIR just decreases from 81% to
72%. Similar observations can be also achieved for other
learning models under those scenarios. Third, the FAIR
INFOCOM mechanism can overcome the negative effect of
mislabeled data samples, but fails to deal with the non-IID
data condition. We can observe that, compared to the
FedAvg mechanism, the FAIR INFOCOM mechanism per-
forms robustly under the Noisy IID scenario, but its perfor-
mance degrades significantly when there exist non-IID data
distributions (e.g., under the Clean non-IID and Noisy non-
IID scenarios). The phenomenon can be explained as fol-
lows. We find that when a node has non-IID data distribu-
tion, its local training loss becomes small and thus the FAIR
INFOCOM mechanism will give it a large aggregation
weight, leading to the degradation in model accuracy. How-
ever, for a node with mislabeled data samples, its local
training loss is large and thus receives a small aggregation

Fig. 4. Performance comparison with different incentive mechanisms.

Fig. 5. The model aggregation performance of MLP MNIST (MM), LeNet-5 FMNIST (LF), ResNet-18 CIFAR-10 (RC), MobileNet SVHN (MS) under
four different scenarios.

3. Note that, the incentive process is not considered in this
experiment.
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weight, where the FAIR INFOCOMmechanism can perform
well under this situation. In contrast, FAIR can work
robustly under both scenarios with mislabeled data samples
or non-IID data distribution.

6.4 Impact of Training Data Quality

After guaranteeing the overall performance, we then inves-
tigate the impact of local training data quality by comparing
the performance of FAIR with the benchmarks under differ-
ent data noise and non-IID levels. Specifically, when exam-
ining the impact of mislabeled data, the experiment
setting II in Table 2 is adopted, where we set the local data
of each node with IID distribution but vary the mislabeled
noise level of the 30 candidate nodes. The noise level refers
to the percentage of nodes within the candidate nodes that
have 80% mislabeled data. Likewise, when examining the
impact of non-IID data distribution, the experiment
setting III in Table 2 is adopted, where we set the local data
of each node with being correctly labeled but vary the non-
IID level of the candidate nodes. The non-IID level refers to
the percentage of candidate nodes that have only one class
of labeled data.

Fig. 6 shows the average model accuracy over 30 itera-
tions under different noise and non-IID levels. We can
achieve the following three major observations. First, under
all experimental settings, FAIR can outperform the other
benchmarks significantly, and the performance gap
becomes larger as the noise or non-IID level increases. For
example, in the ResNet-18 CIFAR-10 task, when the non-IID
level reaches 60%, the other benchmarks achieve an accu-
racy of no more than 20%, but FAIR and FAIR FedAvg can
guarantee the accuracy to 50% and 43%, respectively. Sec-
ond, although the model accuracy decreases with the noise
or non-IID level for all mechanisms, the performance of
benchmarks start to decrease dramatically even at low noise
or non-IID levels (e.g., the level of � 60%), while the

performance of FAIR remains stable within the low noise or
non-IID levels. Taking the LeNet-5 FMNIST task as an exam-
ple, when the non-IID level increases from 0% to 60%, the
accuracy of Knapsack greedy, Random, and Bid price first
mechanisms decrease from 82% to 64%, 59%, and 66%
respectively, but FAIR and FAIR FedAvg only decrease from
83% to 81% and 77%, respectively. Third, for the mislabeled
data condition, our proposed mechanisms of FAIR, FAIR
INFOCOM, FAIR FedAvg can outperform the other bench-
marks in most cases. Besides, for the non-IID condition, the
mechanisms of FAIR and FAIR FedAvg can still maintain the
performance superiority regardless of the non-IID level, but
the FAIR INFOCOM mechanism fails to achieve it. As
described in Section 6.3, mislabeled data results in a smaller
local training loss reduction while non-IID data leads to a
larger local training loss reduction. As a result, FAIR INFO-
COM prefers to select correctly labeled but non-IID nodes,
which results in the performance improvements in misla-
beled data scenarios but performance drops in non-IID data
scenarios.

6.5 Impact of Budget

Finally, we evaluate the performance of FAIR under multi-
task scenarios and further investigate the impact of learning
budget, where the experiment setting IV in Table 2 is
adopted. There are 50 distributed nodes and 3 learning
tasks in each iteration. Among the 50 nodes, the training
datasets of 20 nodes have incorrectly labeled samples with
the mislabeled ratio randomly generated from range (0,1),
and 40 nodes have non-IID data with data distributions gen-
erated from the 10 different non-IID levels as described in
Section 6.1. With different learning budgets, we plot the
average accuracy of the MLP, LeNet-5, and ResNet-18 mod-
els in Fig. 7. We can observe that for all mechanisms, the
average learning quality increases with the constrained
budget. In addition, compared to the benchmarks, FAIR

Fig. 6. Performance comparison under different noise and non-IID levels.
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advances significantly in model accuracy and convergence
speed under all settings, and the performance gap becomes
larger when the learning budget is set to be smaller. For
example, when the learning budget is set to be 5, after 30
iterations, the Knapsack greedy, Random, Bid price first mecha-
nisms can only achieve the accuracy score of 52%, 61%, and
54%, while FAIR and FAIR FedAvg can enhance the accuracy
score to 72% and 70%, respectively. Besides, the FAIRmech-
anism requires fewer iterations to reach a target model accu-
racy, which means that it can output satisfied learning
models with less budget and low negotiation cost among
distributed nodes, benefiting its practical usages.

7 RELATED WORK

Recently, there has been extensive research attention dedi-
cated to the performance optimization of federated learning
from the aspects of communication [35], [36], [37], pri-
vacy [29], robustness [38], personalization [39], and incen-
tive [40], [41], etc. For example, Kone�cn�y et al. proposed to
compress model updates [35], and Wang et al. proposed
Communication-Mitigated Federated Learning to avoid
uploading irrelevant updates [36], to reduce the communi-
cation overhead of federated learning. Wei et al. applied dif-
ferential privacy to add noise to the model updates to
prevent information leakage of participating nodes [29]. So
et al. proposed a Byzantine-resilient secure aggregation
framework to guarantee the robustness of federated learn-
ing against Byzantine faults [38]. In [39], Wu et al. proposed
a personalized federated learning framework for in-home
health monitoring. In this section, we mainly focus on sur-
veying the incentive mechanism and quality quantification
approaches of federated learning, since they are more rele-
vant to our research.

7.1 Incentive Mechanism

There have been some incentive mechanisms proposed in
federated learning. Pandey et al. devised an incentive mech-
anism based on the Stackelberg game to improve the global
model with communication efficiency [12]. Zhan et al. pro-
posed a deep reinforcement learning-based incentive mech-
anism to determine the optimal pricing strategy for the
server and the optimal training strategies for edge
nodes [10]. In [11], Le et al. considered the resources and
energy cost of mobile nodes and proposed an auction-based

incentive mechanism to maximize the social welfare of the
wireless federated learning services market. However, none
of them considers the learning quality of participants, which
is crucial for efficient federated learning while the quality
difference among participating nodes is common in practi-
cal distributed learning systems. On the other hand, Kang
et al. proposed an incentive mechanism combining reputa-
tion with contact theory to encourage high-reputation nodes
to participate in learning [40]. Zeng et al. proposed an incen-
tive mechanism FMore with multi-dimensional procure-
ment auction to motivate high-quality nodes with low cost
to participate in learning, where the data size and data cate-
gory are considered [42]. Jiao et al. designed auction-based
incentive mechanisms to maximize the social welfare of the
federated learning services market, where the data size and
non-IID data issue of participating nodes are consid-
ered [41]. Likewise, none of them considers the mislabeled
data issue of participant’s local training data, as well as the
budget of federated learning tasks. Besides, they require
participating nodes to report their private information, e.g.,
data distribution, which violates the original intent of feder-
ated learning for privacy preserving. Different from them,
we consider the data size, mislabeled samples, and non-IID
distribution issues simultaneously, devise a privacy-pre-
serving approach to quantify the learning quality of nodes,
and propose a quality-aware incentive mechanism to moti-
vate high-quality nodes with low cost to participate in fed-
erated learning within the limited budget. Furthermore,
rather than an incentive mechanism design alone, we also
integrate an auto-weighted model aggregation mechanism
to jointly build high-quality federated learning models.

7.2 Learning Quality Quantification

For fair profit distribution in the incentive mechanism, there
have been some metrics proposed to quantify the contribu-
tion of each federated learning participant. Wang et al. pro-
posed a deletion method, which estimates the contribution
of a participant by omitting it and measuring the accuracy
degradation of the retrained model [43]. However, this
method requires repeating the entire federated learning pro-
cess for each contribution measurement, which is computa-
tion-and communication-resource consuming. To address
this challenge, Song et al. proposed a metric named contribu-
tion index based on Shapley value, which reconstructs the

Fig. 7. The average accuracy of MLP MNIST, LeNet-5 FMNISTand ResNet-18 CIFAR-10 under different learning budgets.
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models on different combinations of datasets throughmodel
updates so as to avoid extra training [44]. Nonetheless, it still
takes exponential time for contribution measurement, which
is usually inapplicable in large-scale federated learning sys-
tems. Considering the contribution difference among partici-
pants, existing studies usually adopt the distance between
the global model and the node local models to determine the
model aggregation weights [45]. They assign a higher weight
to the node whose model updates carry more different infor-
mation, which, however, is not applicable when there exist
low-quality nodes, since the distance between the low-qual-
ity model updates and the global model can be larger, and
thus the low-quality nodes will be assigned with larger
aggregation weights, resulting in model accuracy degrada-
tion. Overall, considering the efficiency and robustness, the
above methods are not suitable for large-scale and reliable
quality quantification. Instead, in this paper, we propose a
learning quality quantification method in a privacy-preserv-
ing manner, which is applicable and effective to be inte-
grated into FAIR to assist the quality-aware incentive
mechanism for node selection and profit distribution.

In our previous work [34], we have demonstrated the
efficiency of quality-aware federated learning. In this work,
we further extend it by upgrading the components of qual-
ity estimation and model aggregation, where an online
quality quantification method and auto-weighted model
aggregation algorithm are newly devised, respectively. We
have conducted extensive new experiments and demon-
strated its superior performance in various scenarios com-
pared to our previous work.

8 CONCLUSION AND FUTURE WORKS

In this paper, we have proposed FAIR, a novel quality-aware
federated learning framework, which can significantly
enhance the federated learning quality with quality-aware
user incentive and auto-weightedmodel aggregation. Partic-
ularly, we have designed and implemented three major tech-
nical components in FAIR: 1) learning quality estimation, 2)
quality-aware incentive mechanism, and 3) auto-weighted
model aggregation. In addition, we have theoretically
proved FAIR to be truthful, individually rational, and com-
putationally efficient. Extensive experiments under various
federated learning scenarios have been carried out, and the
results have demonstrated the efficacy of FAIR in terms of
user incentive and model aggregation, which can perform
reliably under different levels of data quality and con-
strained learning budgets.

In our future work, we will further enhance the incentive
performance of FAIR and conduct more practical evalua-
tions to demonstrate its using benefits. First, FAIR selects
nodes for learning tasks based on the historical learning
quality records of them. In the future, we will try to estab-
lish a reputation assessment for each node based on its
behaving performance in various learning tasks, such that
more valuable information can be used for efficient node
selection. Second, we will extend FAIR to a wider range of
applications, where we will use large-scale and real-world
datasets, e.g., OpenImage [46], Reddit [47], Taobao [48], to
demonstrate the practical benefits of FAIR.
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