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Abstract—The continuously increasing time spent on car trips
in recent years brings growing attention to the physical and
mental health of drivers on roads. As one of the key vital
signs, the heartbeat is a critical indicator of drivers’ health
states. Most existing studies on heartbeat monitoring either
require sensor attachment or could only provide sketchy heart
rates. Moreover, most approaches require the subject to remain
stationary or a quiet measuring environment, which is hard
to apply to dynamic driving environments. In this paper, we
propose a contactless cardiac cycle monitoring system, mmECG,
which leverages Commercial-Off-The-Shelf mmWave radar to
estimate the fine-grained heart movements of drivers in moving
vehicles. By exploring the principle of mmWave signal-based
sensing, we first perform studies in static environments and
find the fine-grained heart movements, represented as stages
of atria and ventricles in repetitive cardiac cycles, can be
captured by the FMCW-based mmWave radar as phase changes
in signals. Whereas in driving environments, such phase changes
are caused and influenced by not only the heartbeat of drivers
but also driving operations and vehicle dynamics. To further
extract the minute heart movements of drivers and eliminate
other influences in phase changes, we construct a movement
mixture model to represent the phase changes caused by different
movements, and further design a hierarchy variational mode
decomposition (VMD) approach to extract and estimate the es-
sential heart movement in mmWave signals. Finally, based on the
extracted phase changes, mmECG reconstructs the cardiac cycle
by estimating fine-grained movements of atria and ventricles
leveraging a template-based optimization method. Experimental
results involving 25 drivers in real driving scenarios demonstrate
that mmECG can accurately estimate not only heart rates but
also cardiac cycles of drivers in real driving environments.

I. INTRODUCTION

Nowadays people spend more time on roads with car trips.

It is reported that 87.3% of U.S. residents (ages 16 and older)

spent an average of 51 minutes driving per day in 2016-

2017 [1]. The considerable time on roads brings increasing

attention and concern on drivers’ physical and mental health,

which is the cornerstone of safe traffic environments. As one

of the most important vital indicators of human health, the

heartbeats of human, especially the fine-grained heart move-

ments represented as the repetitive movements of atria and

ventricles in cardiac cycles, can not only reflect human body

conditions such as drowsy [2], fatigue [3], but also emotional

and psychological changes of human [4] [5]. Thus, monitoring

the cardiac cycles of drivers in driving environments could

contribute to rich categories of driving-assistance applications

and healthcare services. For instance, the detection of fatigue

based on cardiac cycle monitoring could raise warnings to

the driver through a smartphone App, and the detection of

sudden aggressive emotion from monitored heartbeat changes

could help the control system of vehicles taking actions (e.g.,

slow down the speed) to prevent potential accidents. Therefore,

it is highly desirable to provide fine-grained cardiac cycle

monitoring for drivers in driving environments.

Current cardiac cycle monitoring solutions usually require

daily-unavailable and intrusive infrastructures (e.g., ECG).

To release the hardware requirement, recent studies employ

Commercial Off-The-Shelf (COTS) devices, such as WiFi [6],

RFID [7] [4], audio devices [8], etc., for low-cost and non-

contact heartbeat monitoring. But due to the sensing resolution

limitation, these approaches can only estimate sketchy heart

rates, far from medical-level monitoring demands (i.e., cardiac

cycles). Moreover, due to the lack of effective interference

elimination schemes, all of these works require the target user

to be relatively stationary (e.g., sitting still or sleeping) and

the environment to be clean (e.g., home), neither of which can

be achieved in driving environments.

To support the healthcare for driving safety, our goal is

to design a non-contact and low-cost cardiac cycle monitor-

ing system for driving environments. Among various non-

contact and low-cost sensing modalities, mmWave stands out

because of its fine-grained sensing capability from the short

wavelength and large bandwidth. Toward this end, we aim to

investigate the feasibility of leveraging mmWave signals to

detect heartbeats movements for cardiac cycle monitoring in

driving environments. To realize the mmWave-based cardiac

cycle monitoring, we face several challenges in practice. First,

the mmWave signal should be designed to be able to capture

minute heart movements of human. Second, the interferences

in driving environments, including driving operations and

vehicle dynamics, should be eliminated from mmWave signals.
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Finally, the fine-grained heart movements, i.e., stages of the

atria and ventricles in each cardiac cycle, need to be recon-

structed from mmWave signals.

In this paper, we first explore the principle of mmWave

signal on sensing, and find that fine-grained heart movements,

represented as stages of atria and ventricles, can be captured by

the FMCW-based mmWave radar. Based on the observation,

we propose a cardiac cycle monitoring system, mmECG,

which leverages COTS mmWave radar to estimate fine-grained

heart movements in driving environments. Specifically, we first

design FMCW-based mmWave signals to reach sub-millimeter

level resolution for movement detection, which could capture

heart movements of drivers as phase changes in mmWave

signals. With the designed mmWave signal, all movements in

driving environments, including driving operations, breathing

and heartbeats of drivers, dynamics of vehicles, etc., are

captured as a mixed phase change in mmWave signals. Then,

we propose a movement mixture model to represent the

phase changes caused by all movements, and further design

a hierarchy VMD approach to extract the phase change of

heart movement in the mixed phase change signal mmWave

signals. Finally, we propose a template-based optimization to

reconstruct the cardiac cycle, i.e., fine-grained movements of

atria and ventricles, based on the extracted phase changes.

We highlight our main contributions as follows:

• We design a non-contact cardiac cycle monitoring system,

mmECG, which leverages COTS mmWave radars to estimate

fine-grained heart movements in driving environments.

• We model diverse movements induced by heartbeats and

driving environments in mmWave signals and design a hier-

archy VMD to estimate the basic heart movement embedded

underlying mmWave signals.

• We conduct experiments in real driving environments

and the results show that mmECG achieves an average error

of 0.37bpm for heart rate estimation, 11.2ms for heart rate

variation estimation, and 6.8ms for cardiac cycle estimation.

II. PRELIMINARY

In this section, we present the background on physiology

of the human heartbeat and the principle of using mmWave

signal to detect minute vibrations and movements. Then,

we investigate the feasibility of capturing fine-grained heart

movements with mmWave signals.

A. Background of Human Heartbeats

Human heart-beating is a physiological activity of human

body, in which the heart pumps blood through the blood

vessels of the circulatory system, presenting as repetitive heart

movements, i.e., cardiac cycles. As illustrated in figure 1, a

cardiac cycle contains 5 basic heart stages, which begins with

the atria contraction, and progresses to the isovolumic contrac-

tion, ventricular ejection, isovolumic relaxation, and finally

the ventricular filling [9]. Typically, the electrocardiogram

(ECG) is a common approach to measure human heartbeats for

diagnosing numerous cardiac abnormalities, such as cardiac
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Fig. 1. Illustration of a cardiac cycle and corresponding ECG measurement.

rhythm disturbances, inadequate coronary artery blood flow,

and electrolyte disturbances.

The basic principle of ECG measurement is to employ

electrodes placed on the skin for detecting the electrical

activity of the heart [10]. There are three key components in

the ECG, i.e., P wave representing the depolarization of atria,

QRS complex indicating the depolarization of ventricles, and

T wave exhibiting the repolarization of ventricles [10]. And

the heart stages in a cardiac cycle, divided into the stages

of atria and ventricles, have a clear relationship with the

three key components in the corresponding ECG measurement

[11], as shown in figure 1. P wave in ECG is followed by

the atrial contraction (systole), which extends until the QRS

complex in ECG appears. After the QRS complex, the atria

relaxes (diastole). Then, QRS complex in ECG is followed by

ventricular contraction (systole), whose end is marked by the

end of T wave. Also, the end of T wave indicates the beginning

of ventricular relaxation (diastole).

The tight correlation between ECG and heart movements

indicates that the movement of atria and ventricles, which

bring chest vibrations that could be captured by mmWave, are

able to provide the profound information of human heartbeats

for healthcare monitoring.

B. Principle of Using mmWave to Detect Heart Activities

Millimeter wave (mmWave)-based sensing technology is

developing rapidly in recent years. Because of the small

wavelength, mmWave is able to sense minute movements,

e.g., human heartbeat activities. Specifically, a mmWave-based

FMCW radar continuously transmits chirp signals to an object,

and collects the received signal. Then, the displacement Δd
of the object can be calculated as Δd = λΔφ

4π , where λ is

the wavelength associated with the average frequency of the

transmitted mmWave, Δφ is the phase change caused by the

displacement of object in the dechirped signal between the

received and transmitted signals. It can be seen that a smaller

wavelength (i.e., higher frequency) of the transmitted wave-

form leads to a better resolution for displacement detection.

Thus, we leverage a 77 ∼ 81GHz off-the-shelf mmWave radar

(with one of the highest frequency range in COTS mmWave

sensors) to build the system, the resolution of displacement is

about 1mm per π phase changes in the dechirped signal, which

can achieve sub-millimeter level resolution for the movement

detection.
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Fig. 2. Illustration of mmWave-based fine-grained heart movements detection.

Existing study [12] shows that mmWave can easily penetrate

most kinds of cloth, but can hardly penetrate or be absorbed

by the skin of human. So theoretically, the chest vibrations

induced by heart movements, which is roughly in millimeter-

level, can be captured using mmWave signal. Figure 2 illus-

trates the basic idea of mmWave-based fine-grained heartbeat

activities detection. A mmWave radar continuously transmits

FMCW signal through the transmitter end (Tx) to the region

of human chest. Most of the mmWave signal is reflected by

the chest, and further captured by the receiver end (Rx) of

mmWave radar. During this process, the minute vibrations of

chest caused by the movements of atria and ventricles are

captured by the FMCW radar.

C. Feasibility of Detect Fine-grained Heart Movements

We conduct an experiment in the lab to validate the basic

idea of leveraging mmWave-based FMCW radar for capturing

fine-grained heart movements. In particular, we ask a volunteer

to sit on a chair, with chest directly towards a mmWave radar.

The distance between the radar and the volunteer is around

40cm. Then, we generate FMCM wave whose frequency

sweeps the range of [77, 81]GHz to capture the heartbeat

activities, during which the volunteer sits still and holds the

breath to avoid the interferences of any movements other than

heartbeats. Meanwhile, an ECG sensor is attached to record

ECG signals as the ground truth.

Figure 3 shows the normalized phase changes of mmWave

measurement and corresponding ECG measurement in 2s,

which contains three complete cardiac cycles of the vol-

unteer. It can be seen from the figure that there are clear

time relationships between mmWave and ECG measurements.

Taking the second cardiac cycle as an example, there are

three typical time relationships. First, the beginning time of

the second increase trend in mmWave measurement, i.e., t1,

relates to the middle part of P wave in ECG, which is the

beginning of atrial systole. Second, the time of the maximum

value in mmWave measurement, i.e., t2, corresponds to Q

wave in ECG measurement. Since QRS complex is taken as

a combination in ECG measurement and the time interval

between Q wave and R wave is normally less than 0.03s
[13], t2 could roughly represent the end of atrial systole and

the beginning of ventricular systole. Third, the time of the

minimum value in mmWave measurement, i.e., t3, corresponds

to the end of T wave in ECG measurement, which is the end

of ventricular systole. Based on the aforementioned analysis,

the fine-grained movements of atria and ventricles captured

by mmWave could roughly match the ECG measurement to

exhibit the cardiac cycles. Therefore, it is feasible to leverage

T

Q
S

R

P

t1 t2 t3

Fig. 3. Comparison of ECG measurement and mmWave measurement.

mmWave-based FMCW radar for capturing the fine-grained

heart movements, and further determine the stages of atria

and ventricles for the diagnosis.

According to the study above, the fine-grained movements

of atria and ventricles could be captured by mmWave sig-

nals in a static environment without the existence of other

body movements. However, in driving environments, there

are various movements such as driving operations, breathing

and heartbeat of drivers, dynamics of vehicles, etc., and all

the movements cause phase changes in mmWave signals.

Therefore, our goal is to eliminate interferences from other

movements in dynamic driving environments and extract fine-

grained heart movements of drivers.

III. SYSTEM DESIGN

A. System Overview

We devise a fine-grained cardiac cycle monitoring system,

mmECG, which estimates minute heart movements of drivers

in driving environments leveraging mmWave signals. Figure

4 shows the system architecture of mmECG. The whole

system consists of three steps: mmWave Signal Pre-processing,

Basic Heart Movements Estimation and Cardiac Cycle Re-
construction. In mmWave Signal Pre-processing, we design

the chirp mmWave signal to achieve satisfactory distance and

time resolutions for cardiac cycle monitoring. The designed

mmWave signal is transmitted to drivers and reflected signals

are captured by the same radar. Then, the phase changes

in mmWave signals caused by all the movements in driving

environments are calculated from the received signal. After-

wards, in Basic Heart Movements Estimation, a movement

mixture model is constructed to represent the phase changes

of mmWave signals caused by all the movements in driving

environments. Based on the model, a hierarchical Variational

Mode Decomposition (VMD) approach is designed to separate

the interferences from the phase changes induced by heart

movements based on their unique frequency characteristics.

Finally, in Cardiac Cycle Reconstruction, mmECG segments

the extracted phase changes into cardiac cycles utilizing shape

similarity of heartbeats in mmWave signals, and further lever-

ages a template-based optimization approach to reconstruct the

atrial and ventricular stages in each cardiac cycle.

B. mmWave Signal Pre-processing

mmECG first pre-processes mmWave signals to detect sub-

tle movements of objects.
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Fig. 4. System architecture of mmECG.

Designing Sensing Signal. mmECG employs the mmWave-

based radar to detect the skin vibrations of human chest in-

duced by heartbeats for cardiac cycle monitoring. Specifically,

the radar leverages FMCW technique to transmit chirps with

linearly increased frequency from the transmitting antennas,

and then utilizes the receiving antennas to collect the reflected

signals. After that, the radar would mix the transmitted and re-

ceived FMCW signals to generate the Intermediate Frequency

(IF) signal, which embeds all the information sensed by the

radar, including the cardiac cycles.

Subtle Movements Detection. To capture the subtle move-

ments of cardiac cycles, mmECG derives phase changes of

mmWave signals from the IF signal. Specifically, mmECG

performs FFT operation (Range-FFT) on the IF signal to

obtain a Range-Profile for the target.

Based on the range profile, the phase changes of successive

chirps in FMCW signals are calculated to detect the subtle

heart movements. Theoretically, the sampled mmWave signal

s(d, k) after the FFT operation is S(d, k) = r(d, k)+i(d, k)·j,

where r(d, k) and i(d, k) are the real and imaginary parts of

the mmWave signal respectively, d and k are the distance bin

and label of chirps of the signal respectively, j is the imaginary

unit. Hence, the phase change Δφ(d, k) is derived as

Δφ(d, k) = arctan
i(d, k)

r(d, k)
. (1)

Hence, with the phase change, mmECG could achieve the sub-

millimeter level movement detection in each distance bin.

C. Basic Heart Movements Estimation

Since mmECG achieves sub-millimeter level movements

detection after signal preprocessing, all movements of a driver

in driving environments, including driving operations (e.g.,

steering and braking), subtle body movements (e.g., breathing

and heartbeat) and vibrations brought by driving, could be

captured by the phase changes of mmWave signal. However,

the phase changes caused by a movement located in a certain

distance bin could influence several adjacent distance bins.

In other words, when there are multiple movements at the

same time, each distance bin contains the phase changes

caused by a mixture of movements. Thus, even different

movements happen in different distance bins with respect to

the mmWave sensor, we can not directly distinguish each

movement according to distance.

To extract heart movements from phase changes of

mmWave signal, we first construct a movement mixture model

to represent the transitivity of phase changes brought by

all the movements. Then, based on the constructed model,

we design a hierarchy VMD approach to separate different

movements from the phase changes in mmWave signals and

further estimate basic heart movements.

1) Constructing Movement Mixture Model: We first exploit

the transitivity of phase changes in mmWave signal. As an

electromagnetic wave, after been transmitted by the mmWave

sensor, mmWave signal in the space within the sensing range

forms a mmWave field, which is a physical field of mmWave

energy. When there is a movement in the space, it stirs the

mmWave field and cause the spread of the mmWave signal,

just like the spread of ripple.

Thus, the phase changes of mmWave signals caused by

movements can be transitive among different range bins. Based

on the transitivity of phase changes, we further model the

phase changes in each distance bin as a linear mixture of dif-

ferent movements. Specifically, for a time unit and N distance

bins, given K movements M1,M2, . . . ,MK and the phase

changes of each movement in the corresponding movement

bin C1, C2, . . . , CK , the phase changes in a distance bin

Bn, n ∈ 1, 2, . . . , N, are denoted as:

PBn
=

K∑
i=1

αinCi, (2)

where αin is the attenuation coefficient of the phase changes

caused by the movement Mi in distance bin Bn, which

satisfies αin ∈ [0, 1]. Therefore, the phase changes extracted

from mmWave signals can be modeled as a mixture of the

phase changes induced by different movements, which can be

represented by:

PB(N×1) = α(N×K) × C(K×1), (3)

modulated by the attenuation coefficient matrix α.

2) Separating Movements Leveraging Hierarchy VMD:
According to the constructed movement mixture model, es-

timating the heart movement of a driver from the mmWave

signal is to find out the phase changes caused by the heart

movement in the distance bin related to the chest of the driver.

Although we could obtain the overall phase changes of all

movements in each distance bin, i.e., PB , from mmWave

signal based on the movement mixture model, the phase

changes C can not be calculated from Eq.3 because the

attenuation matrix α is unknown.

To obtain the phase changes caused by the heart movement

of drivers, we need to separate all the movements in the

sensing range of mmWave sensor in driving environments.

Typically, there are four main categories of independent move-

ments in driving environments: 1) Operations of drivers, which

refer to movements of driving operations (such as steering

and braking), with large moving range (sub-meter-level) and

relatively low frequency (0.1-2Hz). 2) Breathing of drivers,

with medium moving ranges (centimeter-level) and medium

frequency (0.16-0.6Hz) [14]. 3) Heartbeat of drivers, with

small moving ranges (millimeter and sub-millimeter-level) and

relatively high frequency (0.7-3.5Hz) [15]. 4) Vibrations in

the driving environments, with different range and frequencies

according to the level of vibrations. Since four categories of
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Fig. 5. Illustration of hierarchy VMD approach.

movements have different but overlapped frequency ranges,

simply applying band-pass filter may not works to separate

different movements. Thus, we consider applying Variational

Mode Decomposition (VMD) approach [16], which works as a

self-adaptive filter to decompose a mixed signal into different

modes, to fit the requirements of movements separation in

mmWave signal.

When applying VMD method, there are key parameters to

be determined ahead to ensure the performance of decom-

position, including the number of components k, the band-

width restriction of components α and the initial frequency

of each components f0. Moreover, since the four categories

of movements have very different ranges both in amplitude

and frequency, there can hardly be a combination of the

parameters that could separate all four movements well at

once. In order to deal with the issue and extract the phase

changes related to the heart movements, we design a hierarchy

VMD approach, to separate the movements step by step, as

shown in figure 5. There are two VMD blocks in the hierarchy

VMD approach, the first block is to separate the movements

causing large amplitude changes of phase in mmWave signals,

including behaviors of drivers and large vibrations of vehicles.

And the second block is to separate movements bringing

small amplitude of phase changes, such as breathing and

small vehicle vibrations, leaving the phase changes of heart

movements. For both blocks, the number of components k
is set as 2 to separate one components from the mmWave

signal. And the bandwidth restriction of components α and

the initial frequency of the target component f0 are determined

automatically by the parameter generation engine, which takes

the phase changes of mmWave signal as input, and outputs the

parameters α and f0 for the corresponding VMD block.

Figure 5(b) shows the detailed architecture of the parameter

generation engine. The engine has two pipelines to generate

the initial frequency f0 and the bandwidth restriction of

components α, respectively. For the initial frequency f0, after

receiving the phase changes in mmWave signal as input,
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Fig. 6. Illustration of hierarchy VMD result on a 10s mmWave signal.

the engine performs FFT to the phase changes over time

to turn the phase changes into frequency domain. Then, the

engine analyzes the frequency components and chooses the

component with largest value in frequency domain as the

initial frequency f0 of the VMD block. The intuition is that the

VMD block always separate the component with the largest

phase change amplitude in mmWave signals, and the initial

frequency should be set close to the component in order to

guarantee the separation performance.

As for the bandwidth restriction parameter α, the parameter

describes the bandwidth restriction for the separated com-

ponent. If α is too small, then the signal would be over-

separated, and if α is too large, the signal would be under-

separated. However, it is hard to determine whether the signal

is over-separated or under-separated before the separation. So

to determine the parameter α, we extract the statistic features,

including the amplitude, variance, etc., from the input signal to

train a SVM regressor for determining α. The SVM regressor

is trained with 10 hour mmWave data and corresponding

breathing and heartbeat ground-truth data collected from 5
perticipants in real driving environments. Then, both the

parameter f0 and α can be generated automatically by the

parameter generation engine given the input signal.

Based on the generated parameters, the hierarchy VMD

approach can separate the behaviors and breathing of the

driver, as well as vehicle vibrations from the phase changes

of mmWave signal and extract the heart movements. Figure

6 illustrates the result of hierarchy VMD on a 10s mmWave

signal, which is collected in real driving environments. The

signal of body movements is separated by the first VMD block

from the original signal, as shown in figure 6(a). It can be

seen that the signal after separation is clearly periodic, since

it contains mainly the signal of breathing movements and heart

movements. Using the signal after separation as the input of

the second VMD block, the breathing movements is separated

and the signal of heart movements is estimated, as shown in

figure 6(b).

94
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on November 27,2022 at 17:42:11 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Illustration of cardiac cycle segmentation.

D. Cardiac Cycle Reconstruction

After the basic heart movement is extracted from the phase

changes of mmWave signals, mmECG reconstructs the implicit

cardiac cycle behind the heart movements to estimate fine-

grained movements of atria and ventricles.

1) Segmenting Cardiac Cycle: To reconstruct the cardiac

cycle, mmECG first estimates the length of each cardiac

cycle by segmenting the extracted phase changes of mmWave

signals into pieces. Each segment relates to a cardiac cycle.

The key insight is that, in spite of the subtle diversities of

amplitude, frequency, etc., in each heartbeats of a driver, the

general shape of successive human heartbeats are similar in the

phase changes of mmWave signal. So the problem of cardiac

cycle segmentation can be constructed as an optimization

problem [4]. Specifically, mmECG aims to find a segmentation

S = {s1, s2, . . . , sn, . . .} with the length of each segments

{|s1|, |s2|, . . . , |sn|, . . .} that maximizes the similarity of each

segments, which can be denoted as:

argmax
S

∑
si,sj∈S

cor(si, ω(μ, |si|)), (4)

where μ is a template for the shape of an cardiac cycle in phase

changes of mmWave signal. ω(μ, |si|) re-samples template

μ to the length of segment si, and cor() is the correlation

coefficient between template μ and segment si. Similar to [4],

we leverage dynamic programming to solve the optimization

problem, and get an segmentation of cardiac cycles as shown

in figure 7. It can be seen that the length of the segments

are very close to the ground truth of corresponding ECG

measurements, except the time shift caused by the lack of

calibration for cardiac cycles in Eq.4.

2) Reconstructing Atria and Ventricles Stages: Based on

the segmentation of cardiac cycles, mmECG further recon-

structs atrial and ventricular stages by determining the key

time points in each cardiac cycle, which are the beginning

time of atrial systole t1, the end time of atrial systole and the

beginning time of ventricular systole t2, and the end time of

ventricular systole t3, as described in Section 2.3.

In order to realize the determination, we first design a

template of atria and ventricles movements in the phase change

of mmWave signal, and then apply an optimization method

on the template to find the key time points t1, t2 and t3 for

each cardiac cycle in mmWave signals. To design the template,

mmECG segments the phase changes in mmWave signals with

purely heart movements based on peak detection method and

            Segmented Signals
             Averaged Template

t1 t2 t3

R1 R2

Fig. 8. Illustration of the template of cardiac cycle.

2 3 1 4 5

6
7

8
9

Fig. 9. Illustration of radar placements in driving environments.

re-samples each segment to the average length. After that, the

segments are averaged to a template that represents a typical

cardiac cycle, as shown in figure 8. It can be seen that t3 is

determined as the end time of a cardiac cycle, while t1 and

t2 are the intermediate time points within the cardiac cycle.

Since the relative time of t1 and t2 can be different in each

cardiac cycle, we assume that t1 and t2 can move within the

range R1 and R2, respectively. During the movements of t1
and t2, the overall length of template remains fixed, and the

parts beside t1 and t2 scales accordingly.

Based on the template, we set the length of the template for

the ith cardiac cycle Lci to be the same as the length of ith
segmented cardiac cycles in figure 7, and then we slide the

template tempi to calibration t3 to the ith cardiac cycle ci in

figure 7. Within the template tempi, mmECG further searches

for the best position of t1 and t2 that maximizes the similarity

between the cardiac cycle and the template,

arg max
t1,t2,t1∈R1,t2∈R2

cor(ci, tempi), (5)

where cor(ci, tempi) represents the correlation coefficent be-

tween cardiac cycle ci and dynamic template tempi. By

searching the range of R1 and R2 for t1 and t2, respectively,

mmECG obtains the optimal solution for t1 and t2. Together

with t3, these three key time points of atrial and ventricular

stages are determined by mmECG.

By reconstructing atrial and ventricular stages, mmECG

could get medical-level heartbeat information of drivers, which

could be helpful for the healthcare of drivers on roads.

IV. EVALUATION

In this section, we evaluate the performance of mmECG
under the collected data from 25 different volunteers in real

driving environments.
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Fig. 10. Overall HR estimation. Fig. 11. Overall HRV estimation. Fig. 12. Overall CC estimation. Fig. 13. Key points estimation error.

A. Experimental Setup and Methodologies

We implement mmECG with a commercial TI AWR1642

mmWave radar [17] as the sensing front end and a Dell XPS

13 laptop as the data processing back end. The mmWave radar

is equipped with two on-board transmitter antennas and four

receiver antennas, and is connected with a TI DCA1000EVM

data capture card [18] to achieve the high-speed data trans-

mission between the mmWave radar and laptop. On the other

hand, we utilize a Heal Force PC-80B ECG monitor [19] to

capture the ground truth of ECG measurement. The collected

data and ground truth data are paired and separated into 30s-

samples for further processing and evaluation.

In the experiments, the mmWave radar is placed in front

of the volunteer driver on the dashboard of a car. Specifi-

cally, there are 9 different positions for sensor placement as

illustrated in Figure.9. Within the 9 positions. The distance

between mmWave radar and volunteer’s chest is between

40cm and 80cm. And the corresponding angle is in the

range of [−20◦, 20◦]. During the experiments, we recruit

25 volunteers (14 males, 11 females, ages[19, 52]), and 3

different cars (Lexus RX350, BMW X3, Honda Accord).

During experiment, each volunteer randomly drives a car in

different road conditions including plain road, cobblestone

street, and bumped road, which generate different kinds of

dynamics. And we collect the measurements with mmECG

under the aforementioned setups. In total, we collect about

200 hours data, which corresponds to 24000 samples.

We define several metrics for the evaluations.

• Heart Rate(HR) Estimation Error: The error of the

estimated heart rate RE from ground truth heart rate RG

measured by ECG devices, which is defined as the absolute

difference between RE and RG, i.e., ΔHR = |RE −RG|.
• Heart Rate Variation(HRV) Estimation

Error: The error of the RMSSD [20] of estimated

heart movements RMSSDE from the RMSSD of

ground truth measured by ECG devices RMSSDG,

i.e., ΔHRV = |RMSSDE − RMSSDG|, where

RMSSD =
√

1
N

∑N
i=2(IBIi − IBIi−1)2, in which

IBIi is the duration of the ith cardiac cycle.

• Cardiac Cycle(CC) Estimation Error: The error of the

RMSSD of estimated key time points(i.e., t1, t2 and t3) of

each cardiac cycle from the RMSSD of ground truth measured

by ECG devices. For instance, for time point t1, the error is

Δt1 = |RMSSDt1
E − RMSSDt1

G |. For all three time points,

the overall cardiac cycle estimation error is the average of the

sum of three individual time points estimation error.

B. Overall Performance

We evaluate the overall performance of mmECG for dif-

ferent groups of volunteers. Since HR directly exhibits a

coarse-grained result of heart movement estimation, we first

estimate the HR based on the segmented cardiac cycles in

mmECG. Figure 10 shows the heart rate(HR) estimation

error of mmECG under different genders and age groups.

It can be seen that HR estimation errors of all genders and

age groups are lower than 0.6bpm, showing that mmECG

can achieve accurate HR estimation in driving environments.

Figure 11 shows the heart rate variation(HRV) estimation error

of mmECG. It can be seen that the HRV estimation errors for

all genders and age groups are lower than 14ms, indicating

that mmECG can accurately estimate the HRV of drivers

in driving environments. Figure 12 finally shows the cardiac

cycle(CC) estimation error of mmECG. We can observe that

the CC estimation errors for all genders and age groups are

lower than 9ms. Further, for each of the three key time points

t1, t2 and t3 in cardiac cycles, the estimation results are shown

in figure 13. It can be observed that the estimation error for

all the three key time points are lower than 10ms, which

is accurate enough to provide fine-grained heart movements

information of drivers as a health indicator. It also can be

seen from figure 13 that the estimation error of t3 is lower

than t1 and t2, which is because that t3 has more robust shape

characteristic as the ending time point of each cardiac cycle

in mmWave signals.

Moreover, for females, their estimation errors of HR, HRV

and CC are slightly higher than that of males as shown in

figure 10, 11 and 12, because the average heartbeat rates

of woman is higher than that of man [21]. Meanwhile, the

estimation errors of younger volunteers for HR estimation

(as shown in figure 10) are slightly higher than that of

older volunteers, but are slightly lower than that of older

volunteers in HRV estimation (as shown in figure 11) and

CC estimation (as shown in figure 12). The reason is that HR

of younger people are usually higher than older people [9],

which brings more variations on HR estimation. For HRV

and cardiac cycles, the higher heart rate brings short time

for each cardiac cycle, resulting in lower estimation errors.

Overall, mmECG could achieve accurate estimation for all

of the three kinds of measurements, i.e., HR, HRV and CC

estimation. Since CC estimation exhibits finer-grained cardiac

cycle results compared with HR and HRV, the following

evaluations focus on showing the CC estimation error for

evaluating the performance of mmECG.
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Fig. 15. Performance under different distances.

C. Impact of mmWave Radar Placements

Figure 14(a) shows the average CC estimation error under

different angles of the mmWave radar with respect to drivers.

It can be seen that the lowest estimation error is achieved

at the angle of 0◦. When the angle goes far from 0◦, the

error increases, specially after the angle being ±20◦. This is

because the small wavelength of mmWave induces the narrow

main beam, indicating a highly-directional field-of-view of the

mmWave radar (i.e., within the angle range [−15◦, 15◦] [17]).

When the driver’s body gets close to the boundary of the field-

of-view, the sideband of the mmWave signal has much less

power, leading to dramatical performance degradation. Figure

14(b) further shows the CDF of CC estimation error under

different angles. It can be seen that when the angle is within

the range of [−15◦, 15◦], more than 80% errors are lower than

14ms. Considering the width that the mmWave radar can cover

is 46cm (i.e., with the angle of [−15◦, 15◦] and distance of

40cm), which is much wider than the width of a human body

indicating that mmECG could accurately monitor a driver’s

cardiac cycle with a reasonable setup.

We also evaluate the impact of distance between mmWave

radar and human chest on mmECG. Figure 15(a) shows the

average CC estimation error under different distance of the

mmWave radar with respect to drivers, and the corresponding

CDF of CC estimation errors are plotted in figure 15(b). It can

be observed that when the distance is within 80cm, which is

natural in driving environments, the averaged CC estimation

error is no more than 12ms, and the CC estimation error is

lower than 20ms for more than 90% cases. The result shows

that mmECG could accurately monitor the cardiac cycle with

under available distances in driving environments.

D. Impact of Heart Rates

Since heart rate could influence the duration of each cardiac

cycle directly, we thus evaluate the impact of heart rates of

drivers on the performance of mmECG. Figure 16(a) shows

the averaged CC estimation error under different heartbeats

of drivers, and figure 16(b) plots the corresponding CDF
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Fig. 17. Performance of mmECG under different road types and traffic
conditions.

of CC estimation error. It can be seen that mmECG could

achieve averaged CC estimation error lower than 11ms under

all heart rates of drivers, with CC estimation error less than

20ms for more than 80% samples, showing that mmECG

could accurately estimate the cardiac cycles of drivers under

different heart rates. Moreover, when the heart rate of drivers

increases from slow(i.e., <= 60bpm) to fast(i.e., > 120bpm),

the averaged CC estimation error first decreases and then

increases. As we know the higher heart rate the higher heart

rate brings shorter duration for each cardiac cycle, resulting

to lower estimation error brought by variation. And the reason

that the errors increase when drivers’ heart rates are higher

than 100bpm is because the breathing movements are normally

become heavy when the heart rates are very high, which

decrease the SNR of heart movements in mmWave signals,

and further increase the estimation error of mmECG.

E. Impact of Traffic Conditions

Traffic conditions may influent drivers’ driving behaviors

and vehicle conditions, thus could impact the performance of

mmECG. We analyze the collected traces of different traffic

conditions (during peak time and off-peak time) and different

road types (on local road and highway), respectively. Figure

17(a) and 17(b) show the averaged CC estimation error and

CDF of CC estimation error under all four combinations of

road types and traffic conditions, respectively. It can be seen

that the averaged CC estimation error is lower than 11ms and

the CC estimation error is lower than 18ms for more than

80% samples under any combination of road types and traffic

conditions. Moreover, during peak time, the estimation error

is slightly larger because drivers may perform more driving

operations during heavy traffic, which brings interferences to

mmECG. For different road types, the estimation error on local

roads is slightly larger because on local roads, vehicles may

suffer from poor road conditions, such as bumpy roads, which

brings extra interferences.
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Fig. 18. Performance of mmECG on abnormal heartbeat detection.

F. Abnormality Detection Performance

We also evaluate the performance of mmECG on abnormal

heartbeat detection, such as atrial fibrillation. For this experi-

ment, we develop an additional function to detect the abnormal

heartbeats. As mentioned in Section III-D, mmECG employs

a template built by pre-collected normal heartbeats for cardiac

cycles reconstruction. Based on the template indicating normal

heartbeats, mmECG could detect the abnormal heartbeats by

calculating the correlation between the detected cardiac cycle

and the template. If this correlation is less than a threshold δ,

the detected cardiac cycle would be considered as abnormal.

Also, to collect the ground truth, we invite professional physi-

cians to diagnose the collected ECG samples for figuring out

the abnormal heartbeats. Among the 240, 00 collected samples,

381 of them are considered abnormal.

Figure 18 shows the performance of mmECG on abnormal

heartbeat detection under different thresholds δ. It can be

observed that as the δ increases from 0.1 to 1, the precision

of abnormal heartbeat detection first keeps as 100% when δ is

smaller than 0.32 and then decreases to 0, while the recall of

abnormal heartbeat detection increases from 0 to 100%. And

the F1-score, which combines precision and recall, first in-

creases until δ = 0.55 and then decreases. Therefore, mmECG

sets δ = 0.55 for the threshold selection, which corresponds to

the 88.9% for the F1-score of abnormal heartbeat detection.

The results show that mmECG can effectively monitor the

health state of drivers.

V. RELATED WORK

In this section, we review the key researches about mmWave

sensing and vital sign detection.

mmWave Sensing Background. The mmWave techniques

have been employed for sensing human gestures [22], [23],

indoor localization and floor map constructions [24]–[27],

enabling precise navigation functions for indoor environments.

Further researches also investigate the feasibility of using

mmWave in authenticating user identity [28] or lip read-

ing [29]. All of these studies demonstrate the feasibility of

extending mmWave to sensing areas. Along this direction, we

are motivated to realizing the fine-grained heartbeat monitor-

ing leveraging mmWave techniques.

Vital Sign Detection. Some researches monitor the coarse-

grained breathing for health monitoring, such as breathing

rate and events for daily and sleep monitoring respectively.

For example, some work [30], [31] employ smartwatches

to track one’s breathing for health monitoring. However,

such a monitoring manner introduces intrusive experience.

To improve the user experience, other researches realize the

breathing monitoring systems using wireless signals, such as

commercial WiFi [32], low-cost RFID [33], [34], and audio

devices [35]–[37].

Some other researches focus on detecting heartbeats for

health monitoring. Early work [38] develops dedicated in-

frastructures to achieve the heartbeats monitoring. To reduce

the cost for widely deployments, some other studies integrate

advanced signal processing techniques into COTS devices to

provide the capability of heartbeats monitoring. For example,

some researches realize the heartbeats monitoring systems

using commercial WiFi [6], low-cost RFID [7], audio de-

vices [8], and even mmWave [39]. Another work [4] even

realizes the emotion recognition system by monitoring one’s

heartbeats through RFID signals. However, due to the limited

resolution of COTS devices, the heartbeats monitoring can

only realize the heart rate measurements, which is far from

the professional diagnosis under specialized infrastructures.

Furthermore, all the aforementioned researches require the

users to maintain a static posture, which hardly supports

various conditions, especially the driving environments with

consistent vibrations. Most recently, a few researches start to

focus on heartbeats monitoring under dynamic environments

[40] [41], but they still can not reach information finer than

heart rates or HRV measurements.

Different from aforementioned researches, our work aims

to monitor the cardiac cycles represented as the systole and

diastole movements of atrial and ventricular under dynamic

environments, instead of the brief heart rates or HRV mea-

surements, to support the health monitoring. The most related

works are seismocardiography monitoring using RF signals

[42] [43] [44], these works focus on the seismocardiography

reconstruction, which is parallel to our work.

VI. CONCLUSION

In this paper, we propose a cardiac cycle monitoring system,

mmECG, which leverages the COTS mmWave radar to moni-

tor the cardiac cycle of drivers for potential healthcare services

in driving environments. mmECG first designs FMCW-based

mmWave signals to detect the heart movements of drivers as

phases changes in mmWave signals. Based on the detected

phase changes, a movement mixture model is constructed and

the phase changes caused by heart movements are extracted

with a hierarchy variational mode decomposition(VMD) ap-

proach. Finally, mmECG applies a template-based optimiza-

tion estimating fine-grained movements of atria and ventricles

based on the extracted phase changes. The experiments under

real driving environments validate the performance of mmECG

on cardiac cycle monitoring.
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