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Abstract—With the development of smart indoor environ-
ments, user authentication becomes an essential mechanism to
support various secure accesses. Although recent studies have
shown initial success on authenticating users with human activi-
ties or gestures using WiFi, they rely on predefined body gestures
and perform poorly when meeting undefined body gestures. This
work aims to enable WiFi-based user authentication with unde-
fined body gestures rather than only predefined body gestures,
i.e., realizing a gesture-independent user authentication. In this
paper, we first explore physiological characteristics underlying
body gestures, and find that statistical distributions under WiFi
signals induced by body gestures can exhibit invariant individual
uniqueness unrelated to specific body gestures. Inspired by this
observation, we propose a user authentication system, which uti-
lizes WiFi signals to identify individuals in a gesture-independent
manner. Specifically, we design an adversarial learning-based
model, which suppresses specific gesture characteristics, and
extracts invariant individual uniqueness unrelated to specific
body gestures, to authenticate users in a gesture-independent
manner. Extensive experiments in indoor environments show
that the proposed system is feasible and effective in gesture-
independent user authentication.

Index Terms—User authentication, gesture independence, WiFi
signals, adversarial learning

I. INTRODUCTION

Recent years have witnessed the surge of user authentication

deploying in various infrastructures, including typical, mobile,

and Internet of Things (IoT) devices, to provide critical guard

for user privacy. Traditional authentication approaches either

depend on knowledge (e.g., password and PIN), or rely on

inborn biometric uniqueness of human (e.g., fingerprint and

facial information), both of which require extra interactions

to interrupt ongoing operations. Recently, the behavior-based

user authentication, i.e., verifying the identity of a person from

human daily activities or gestures, attracts more attentions.

Such an authentication balances the trade-off between security

requirements and non-intrusive user experiences. For example,

allowing legitimate users to freely access privacy information

along with current activities, or preventing unauthorized users

from stealing confidential documents with malicious actions.
To achieve user authentication with human daily activities

or gestures, some works [1], [2] utilize wearable devices to
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Fig. 1: System Illustration.

extract user behavioral features, which requires users’ involve-

ments and induces additional costs. To achieve non-intrusive

authentication, other researches [3], [4] investigate vision to

realize behavior-based authentication. But they present a sim-

ilar problem to other visual applications, i.e., they depend on

lighting conditions and also raise privacy concerns. To address

these, recent works [5]–[8] exploit widely-existed WiFi signals

to sense specific daily activities or gestures for authentication.

However, these approaches rely on predefined activities

and gestures, i.e., they must be previously learned in the

registration process. In practical scenarios, if user authenti-

cation can be carried out in any body gestures (i.e., activities

and gestures), it is able to support security protections for a

wide range of real-world situations. For example, in an IoT

environment, to meet higher security requirements, a safety

guard should authenticate a user whenever the user performs

an arbitrary body gesture (such as daily activity, human-

computer interaction, etc.), so as to provide real-time secure

access for the IoT environment. Also, in the current COVID-

19 epidemic [9], for a comprehensive and safe epidemiolog-

ical investigation, a monitoring system should continuously

track a person’s identity through the person’s any potential

behaviors in the indoor environment. Towards this end, our

goal is to realize user authentication under not only defined

body gestures but also undefined body gestures, i.e., realizing

gesture-independent user authentication.
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Due to the wide deployment of WiFi infrastructures and

the contact-free manner of WiFi-based sensing, we consider

leveraging WiFi signals to achieve user authentication. To

realize such an authentication system, we face several chal-

lenges in practice. First, we need to extract fine-grained

features caused by human body gestures from commodity

WiFi signals. Second, we need to characterize the invariant

individual uniqueness that is in depth embedded underlying

various body gestures. Finally, we should accurately identify

individuals without the restriction of predefined body gestures.
In this paper, we first investigate the nature of human body

gestures, and find that inborn physiological characteristics

have a significant impact on body gestures, which induce

invariant individual uniqueness independent of specific body

gestures (i.e., unique physiological characteristics underlying

various body gestures). To extract the invariant individual

uniqueness, we further explore statistical distributions under

Channel State Information (CSI) of WiFi signals induced by

body gestures, and observe that different individuals exhibit

individual differences in statistical distributions underlying

various body gestures. Based on the observation, we propose

a user authentication system, FreeAuth, which identifies

individuals in a gesture-independent manner, i.e., the authen-

tication does not rely on predefined gestures. Specifically,

we design an adversarial learning-based model to enable the

gesture-independent authentication. FreeAuth first utilizes

Convolutional Neural Network (CNN) to extract fine-grained

features from CSI of WiFi signals induced by body ges-

tures. Based on the extracted features, FreeAuth employs

Recurrent Neural Network (RNN) to extract specific gesture

characteristics through sequential relationships under CSI se-

quences, which aims to suppress behavioral interferences of

body gestures. Meanwhile, FreeAuth uses Gaussian Mixture

Model (GMM) to characterize individual uniqueness unrelated

to specific body gestures through statistical distributions under

CSI sequences, which aims to enhance the capability of

extracting unique physiological characteristics. Through op-

timizing the two opposed objectives with adversarial learning,

i.e., minimizing the specific gesture characteristics extracted

from RNN and maximizing the individual uniqueness char-

acterized from GMM, FreeAuth can identify individuals in

a gesture-independent manner. We evaluate the performance

of the proposed system in real indoor environments, and the

results show that FreeAuth effectively authenticates users

in a gesture-independent manner. Fig. 1 illustrates a typical

scenario of the system.
We highlight our contributions as follows.

• We explore the physiological characteristics underlying

human body gestures, and observe that different individ-

uals exhibit individual differences in statistical distribu-

tions underlying various body gestures.

• We propose a user authentication system, FreeAuth,

which can identify individuals in a gesture-independent

manner using WiFi signals. To the best of our knowl-

edge, this work is the first research to enable gesture-

independent authentication for indoor environments.

• We design an adversarial learning-based model, which

can suppress behavioral interferences of body gestures

and extract invariant individual uniqueness unrelated to

specific body gestures for gesture-independent authenti-

cation.

• We evaluate the performance of the system in real envi-

ronments, and the results show that FreeAuth can ef-

fectively identify users in a gesture-independent manner.

II. PRELIMINARY

In this section, we present the insight of invariant individual

uniqueness underlying body gestures, and then explore the

feasibility of leveraging WiFi signals to extract invariant

individual uniqueness for gesture-independent authentication.

A. Insight of invariant Individual Uniqueness Underlying
Body Gestures

To explore the insight of invariant individual uniqueness

underlying body gestures, we first analyze the generative

process of a body gesture. Usually, a body gesture is performed

by a person’s limbs and torso in a manner that suits the

person’s physiology. Hence, human body gestures are always

constrained by human physiological characteristics (e.g., the

length of limbs, the power generated by limb movements).

These physiological characteristics intrinsically induce the

behavioral uniqueness for different people. For example, peo-

ple with different muscle masses perform gestures in differ-

ent accelerations and velocities, resulting in their behavioral

uniquenesses. Hence, the behavioral uniqueness is determined

by the distinct physiological characteristics of each person.

An existing work [10] demonstrates that human body gestures

are shaped by the inborn physiological characteristics, which

encourages us to extract unique physiological characteristics

underlying body gestures for authentication.

Different from the extrinsic behavioral characteristics, the

intrinsic physiological characteristics are gesture-independent,

i.e., such features remain static for a specific individual regard-

less of body gesture kind. The physiological characteristics

relate more to the inborn physical and biochemical functions of

people [11], so they hardly change in different body gestures,

which induce the invariant individual uniqueness. Towards this

end, we are motivated to investigate the feasibility of extracting

unique physiological characteristics underlying various body

gestures to realize gesture-independent user authentication.

B. Feasibility Study of Gesture-Independent Individual Iden-
tification Using WiFi

To study the feasibility of gesture-independent user au-

thentication, we conduct an experiment to extract unique

physiological characteristics underlying body gestures using

WiFi signals. The Channel State Information (CSI) of WiFi

signals describes the channel properties of propagation paths,

which provides fine-grained sensing information of human

movement [12]. Thus, we employ WiFi signals to conduct the

experiment and analyze the CSI induced by body gestures. In

the experiment, two participants perform three body gestures,
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Fig. 2: Illustration of normalized relative CSI for two users.

i.e., turning on a light, fetching a cup, and plug a power

adapter, respectively. We employ a laptop equipped with an

Intel WiFi Link 5300 NIC and 3 external receive antennas

to capture WiFi signals. Fig. 2 illustrates the normalized

relative CSI phase induced by a body gesture of two users

respectively. The relative CSI is derived by the CSI from

consecutive antennas, which is described in Section III-B. It

can be observed from Fig. 2 that the signal patterns of the two

users are different when they perform the same body gesture.

Such differences result from unique behavioral characteristics

of each user, demonstrating an effective and robust WiFi-based

gesture-dependent user authentication similar to previous stud-

ies. Similarly, the other two gestures of fetching a cup and

plug a power adapter also exhibit such differences caused by

behavioral uniqueness of the users.

However, from Fig. 2, it is difficult to directly observe

individual differences of physiological characteristics under-

lying body gestures from CSI of WiFi signals. In order

to extract the unique physiological characteristics of each

individual for gesture-independent authentication, inspired by

text-independent speaker verification [13], we ignore the tem-

poral sequences of CSI, and model the underlying statistical

distributions of physiological observations to extract invariant

uniqueness of each individual. To model the statistical dis-

tributions from CSI induced by body gestures, we employ

the Principle Component Analysis (PCA) method, which de-

rives the correlations between different CSI sequences and

exhibits the principal components with minimum correlation

for eliminating redundant information. Such a method can

exhibit the statistical distributions under CSI sequences. Fig. 3

shows the distributions of two principal components from CSI

induced by two users performing the three different gestures.

In the figure, the x-axis is the first dominant component of

PCA results, indicating the major movement information of

each gesture. The y-axis is a specially screened component of

PCA results. It can be observed from Fig. 3(a) that the three

different body gestures are distinctly separated, which supports

the accurate gesture recognition using WiFi. This result is

consistent with existing researches of WiFi-based gesture
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Fig. 3: Distributions of the three gestures performed by the two users in two
principal components.

recognition. Moreover, from another perspective shown in Fig.

3(b), we can observe that although performing different body

gestures, the two users are still roughly distinguishable. The

result demonstrates that the invariant individual uniqueness

exists in statistical distributions underlying the CSI induced by

body gestures. With the encouraging experiment result, we are

motivated to design a gesture-independent user authentication

using commodity WiFi.

III. SYSTEM DESIGN

In this section, we present the design details of the gesture-

independent user authentication system, FreeAuth.

A. System Overview

Fig. 4 shows the system architecture, which is divided into

a model construction stage and a user authentication stage.

In the model construction stage, FreeAuth requires users

to perform several body gestures, and employs WiFi signals

to sense the body gestures as training data for one-off model

construction. FreeAuth first preprocesses the received signals

through calculating relative CSI, and then segments the signals

into episodes of each body gesture based on the changing rate

of relative CSI. Then, FreeAuth constructs an adversarial

neural network, including a Convolutional Neural Network

(CNN)-based feature extractor, a Recurrent Neural Network

(RNN)-based gesture suppressor, and a Gaussian Mixture

Model (GMM)-based user authenticator. In the adversarial

neural network, the feature extractor extracts fine-grained

features from the input signals, and the features are fed into

the gesture suppressor and user authenticator respectively.

After that, the gesture suppressor extracts specific gesture

characteristics, while the user authenticator characterizes indi-

vidual uniqueness unrelated to specific body gestures. Through

training the neural network in an adversarial learning way,

FreeAuth finally obtains a trained feature extractor which can

extract features independent of specific body gestures, and a

trained user authenticator which is able to identify individuals

through the extracted features.

In the user authentication stage, FreeAuth authenticates

a user based on the body gestures performed the user.

FreeAuth first preprocesses and segments the CSI of received

WiFi signals induced by the user’s body gestures, which is the

same as that in the model construction stage. Then, FreeAuth
uses the trained feature extractor to extract features from the
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Fig. 4: System architecture of FreeAuth.

body gesture performed by the user, and further applies the

trained user authenticator to identify the user.

B. Signal Preprocessing

FreeAuth first preprocesses raw CSI by calculating relative

CSI and segmenting body gesture sequences.

Relative CSI Calculation. Since commodity WiFi has a

centimeter-level wavelength (e.g., 5.17cm for 5.8GHz band),

CSI can capture centimeter-level movement of human. How-

ever, the errors in raw CSI of WiFi signals hinder the direct use

of CSI for human movement sensing. To eliminate errors in

CSI, we employ relative CSI, which is calculated by conjugate

multiplication between the CSI of two adjacent antennas in

the same receiver. The reason is that although different WiFi

cards are not time-synchronized, all the transceiver chains on

a single WiFi card share the same sampling clock, which have

the same hardware errors [14]. In addition, to eliminate low

(e.g., < 5Hz) and high (e.g., > 100Hz) frequency noises,

we also employ Butterworth filter on the received CSI. The

passband of the filter is set between 5Hz − 100Hz which

covers the frequency range of most body gestures [5]. Hence,

FreeAuth first mitigates the impact of errors and noises on

raw CSI of WiFi signals.

Signal Segmentation. To effectively extract features from

body gestures, FreeAuth segments consecutive signal series

into episodes of each independent body gesture. Since the

errors in CSI relative phase are eliminated through conjugate

multiplication, the variance of relative phase only results from

human movement. Hence, to separate each body gesture from

adjacent ones in a consecutive signal series, we propose to

detect variance of relative phase and compare the variance

with a threshold for signal segmentation. The variance of

relative phase is calculated by the difference between adjacent

elements. However, in practice, some variances within a body

gesture are also below the threshold. Fig. 5(a) shows the

variances of two body gestures, i.e., standing up and walking.

We can observe that some variances in walking are below the

threshold, which may result in a false segmentation and discard

useful behavioral information. To accurately segment body

gestures, we employ sliding windows to measure the overall

variance condition within each time window. Specifically, if

half of the variances are above the threshold, the signal in

the sliding window is considered as the component of a body

gesture, and the first point higher than the threshold is judged

as the start of the body gesture. On the contrary, half of the
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Fig. 5: Illustration of signal segmentation.

variances lower than the threshold is considered as interval,

which the last point higher than the threshold is judged as the

end of the body gesture. The length of sliding windows and

the value of threshold are empirically studied. Fig. 5(b) shows

the gesture segmentation accuracy under different threshold

values and window lengths. It can be observed that there is

a trade-off between threshold and window length, where seg-

mentation accuracy could reach 99.4% with a threshold of 0.04
and window length of 600. Hence, through sliding windows

with the empirically studied parameters, FreeAuth effectively

segments signals into episodes of each body gesture.

C. Adversarial Learning-based Model Construction

The CSI of WiFi signals induced by body gestures contains

specific gesture characteristics and the underlying physiolog-

ical characteristics of each individual. Hence, we propose

an adversarial learning-based authentication model, i.e., an

adversarial neural network [15], to suppress the behavioral

interference of body gestures and extract invariant individual

uniqueness unrelated to specific body gestures for gesture-

independent authentication.

1) Designing the Adversarial Neural Network for Gesture-
Independent Authentication: Fig. 6 shows the architecture

of the adversarial neural network designed for gesture-

independent authentication.

Feature Extractor. The feature extractor extracts fine-

grained features from CSI of WiFi signals induced by body

gestures to characterize individual uniqueness (i.e., physiolog-

ical characteristics of each individual). The input of feature

extractor is the preprocessed CSI of WiFi signals. In order

to make full use of the CSI of all communication links and

all subcarriers, FreeAuth reshapes the received CSI under

t communication links and m subcarriers in each communi-

cation link to (m · t) × n-dimension, where n is the length

of each segmented relative CSI amplitude or phase. Then,

FreeAuth integrates the relative CSI amplitude and phase

as a two-channel input I with 2 × (m · t) × n-dimension,

which embeds non-linear features induced by body gestures.

Since the Convolutional Neural Network (CNN), especially the

convolutional operation, is specialized in well abstracting non-

linear features, we select it as the basis of feature extractor.

The proposed CNN-based feature extractor consists of six

layers, i.e., three convolutional layers and three pooling layers.

The convolutional layer abstracts the input I as a compressed

representation through the convolutional operation, and the

pooling layer further reduces the dimension of the compressed
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representation. Specifically, the input I is first fed to the

first convolutional layer with 32 convolutional kernels of

5 × 5-dimension to derive a compressed feature map. After

that, the compressed feature map is normalized by the batch

normalization operation, and further activated by a Rectified

Linear Unit (ReLU) function for accelerating the convergence

velocity during model training. Then, the activated feature map

is further fed to the first max pooling layer of 2×2-dimension

to reduce the feature dimension. By analogy, the reduced

feature map is fed to the second convolutional and pooling

layers, as well as the third convolutional and pooling layers

in turn. The second and third convolutional layers are with 64

4×4-dimension and 128 3×3-dimension convolutional kernels

respectively. Both convolutional layers are normalized with

the batch normalization and activated by the ReLU function.

Also, the second and third pooling layers both conduct the

max pooling operation of 2× 2-dimension. Through the stack

of the 6 layers, the feature extractor finally extracts a feature

map Z, which is further fed to the gesture suppressor and user

authenticator respectively.

Gesture Suppressor. Since the fine-grained features are

extracted from the CSI induced by body gestures, specific

gesture characteristics are inevitably contained underlying the

extracted features. Hence, we need to suppress the behavioral

interferences of body gestures to extract features independent

of specific body gestures. We thus develop a gesture suppressor

to suppress the behavioral interferences of body gestures.

The behavioral interferences of body gestures are embedded

underlying the sequential relationship of input representations,

which depict the content of body gestures. Therefore, we

employ the Recurrent Neural Network (RNN) that explores

the sequential relationship [16] in the inputs to construct the

gesture suppressor.

The gesture suppressor consists of two RNN layers with

Long Short-Term Memory (LSTM) units and a softmax layer.

Specifically, the gesture suppressor first partitions the feature

map Z from the feature extractor into N small fragments,

i.e., Z = [Z1, Z2, ..., ZN ]. Then, the fragmented inputs Z
are fed to the two stacked RNN layers with LSTM units

successively. Based on the two RNN layers, feature R is

extracted as the output to represent the sequential relationships

of body gestures underlying the extracted feature Z. The

output R is further activated by the softmax layer to derive the

probability Ŷg which represents the probability of recognizing

body gestures, i.e.,

Ŷg = softmax(WgR+ bg), (1)

where Wg and bg are the weight and bias respectively, and

Ŷg = {Ŷ 1
g , · · · , Ŷ n

g }. The probability is under the constraints

that 0 � Ŷ k
g � 1 and

∑n
k=1 Ŷ

k
g = 1. This probability serves

as the basis of gesture-loss for model construction, which aims

to suppress the behavior interferences of body gestures.
User Authenticator. As mentioned in Section II-B, the

physiological characteristics exist in statistical distributions

underlying the CSI induced by body gestures. Inspired by text-

independent speaker identification [13], we employ Gaussian

Mixture Model (GMM) to construct a user authenticator to

identify individuals in a gesture-independent manner. GMM

can utilize multiple Gaussian distributions to fit the statisti-

cal distributions of an arbitrary input, which indicates that

the statistical distributions of CSI can be extracted from

GMM to characterize physiological characteristics for gesture-

independent authentication.
The GMM-based user authenticator consists of a Fully

Connected layer (i.e., FC layer) and a GMM layer [17].

In the fully connected layer, the feature map Z is first

linearly combined with the weight W1 and bias b1, and then

activated by Rectified Linear Unit (ReLU) function to derive

an intermediate representation x, i.e., x = ReLU(W1Z+ b1).
Afterwards, the intermediate representation x is further fed

into the GMM layer. The GMM layer consists of a model

sub-layer to fit the statistical distributions of input features,

three parameter sub-layers to store relative parameters, and an

output sub-layer to calculate identity probability. In particular,

assume there are n users registering in the system. The model

sub-layer thus contains n nodes, each of which employs a

GMM model to fit the distributions of each registered user

under input features. Each node s (which corresponds to a

registered user) is a likelihood function, which consists of g
Gaussian functions, i.e.,

p(x|s) =
g∑

i=1

ωsiN (x, μsi,Σsi), (2)

where N (x, μsi,Σsi) is the ith Gaussian function for node

s, ωsi, μsi and Σsi are the weight, mean and covariance for

the ith Gaussian function respectively. To support the model

sub-layer, the three additional parameter sub-layers store the

weights ωs = [ωs1, · · · , ωsg], means μs = [μs1, · · · , μsg],
and covariances Σs = [Σs1, · · · ,Σsg] for all the nodes s
(s ∈ [1, · · · , n]) of the model sub-layer, respectively. After

calculating the likelihoods, the GMM layer further derives the

logarithm joint distribution in the output layer, i.e.,

log(p(x, s)) = log(p(s)) + log(p(x|s)), (3)

where p(s) is the prior of each registered user. The posterior

probability p(s|x) thus can be derived as

p(s|x) = p(x, s)∑
s p(x, s)

. (4)
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Based on the posterior probabilities, the GMM-based user

authenticator finally derives the user identity probability Ŷu =
{Ŷ 1

u , · · · , Ŷ n
u }, where Ŷ s

u = p(s|x), s ∈ [1, n]. The probability

is under the constraints that 0 � Ŷ s
u � 1 and

∑n
s=1 Ŷ

s
u = 1.

This probability servers as the basis of user-loss for model

construction, which aims to enhance the capability of extract-

ing individual uniqueness.

2) Training the Authentication Model Based on Adversarial
Learning: Although the three sub-networks has seemingly

collaborative function, the authentication model can achieve

gesture independence only when they collaborate effectively.

FreeAuth trains the authentication model through adversarial

learning for gesture-independent authentication.

To train the authentication model, FreeAuth first initializes

the structure and parameters of the designed adversarial neural

network. Since the number for registered users only determines

the structure of GMM layer, we initial the structure of the

GMM layer by configuring it with n nodes same with the

number of registered users. Then, we initialize the parameters

of the neural network. The weights and biases of the CNN-

based feature extractor are initialized as random values from

normal distribution and a constant of 0.1 respectively. The

weights and bias of the RNN-based gesture suppressor are

initialized as orthogonal matrices (which are derived from

singular value decomposition of a normal distribution matrix)

and a constant of 0.1 respectively to avoid gradient vanishing

and explosion. For the GMM-based user authenticator, the

μ-layer and Σ-layer are set as random values from normal

distribution and unit matrices respectively, and the ω-layer is

initialized with uniform values of 1/g.

After initialization, the adversarial neural network is then

trained to enable gesture-independent authentication based on

adversarial learning. Given the input I , the feature extractor

abstracts a feature map Z. Then, the feature map Z is fed

to the gesture suppressor and user authenticator to derive

gesture probability vector Ŷg and user identity probability

vector Ŷu respectively. After that, we derive gesture-loss and

user-loss from the two kinds of probabilities. Specifically,

given the identified identity probability vector Ŷu from the

user authenticator and the ground truth Yu, the user-loss is

defined as:

Lu = −
|U |−1∑

i=0

Y i
u log(Ŷ i

u), (5)

where Y i
u and Ŷ i

u are the ith entries in the corresponding

probability vectors, and |U | is the length of the two proba-

bility vectors determined by the number of registered users.

Similarly, given the recognized gesture probability vector Ŷg

and the encoded gesture probability vector of ground truth Yg ,

the gesture-loss is defined as:

Lg = −
|G|−1∑

k=0

Y k
g log(Ŷ k

g ), (6)

where Y k
g and Ŷ k

g are the kth entries in the corresponding

probability vectors, and |G| is the length of the two probability

vectors determined by the number of gesture kinds in the

training data.

With the two loss functions (i.e., Eq. (5) and Eq. (6)),

FreeAuth can be optimized to extract gesture-independent

individual uniqueness through maximizing the gesture-loss

while minimizing the user-loss. However, since the specific

gesture characteristics are more significant than the underlying

physiological characteristics in the initial inputs, the optimiza-

tion objective at the beginning of model training needs to

lay emphasis on suppressing the behavioral interferences of

body gestures. With the gradual optimization of suppressing

behavioral interferences, the model training should turn to

focus on characterizing invariant individual uniqueness for a

gesture-independent authentication. Hence, linear combination

of the two losses with subtract operations cannot balance the

above optimization priority. Based on the analysis above, we

employ a non-linear function (i.e., the exponential function)

to combine the gesture-loss and user-loss, i.e.,

minL = min(α(Lu + b) + βe−Lg+c), (7)

where α and β are weights of the user-loss and gesture-loss

respectively, and b and c are the biases for user-loss and

gesture-loss respectively. The non-linear function takes advan-

tage of the property of the exponential function to gradually

lower the priority of suppressing behavioral interferences of

body gestures, and thereby relatively raises the priority of

characterizing individual uniqueness with the gradual opti-

mization. Using the combined optimization objective above,

the adversarial neural network-based authentication model can

be gradually trained with the capability of extracting invariant

individual uniqueness from the feature extractor, and identi-

fying individuals through the extracted individual uniqueness

from the user authenticator.

IV. EVALUATION

In this section, we evaluate the system performance of

FreeAuth in indoor environments.

A. Experimental Setup & Methodology

We use laptops quipped with Intel WiFi Link 5300 NIC

and Linux 802.11n CSI Tool [12] as WiFi transmitter and

receivers for extracting CSI of WiFi signals. The transmitter

continuously emits 5GHz WiFi signals at 2000 sampling rate,

and the two receivers with external antennas capture the WiFi

signals and extract CSI through the tool. The distance between

adjacent antennas is half the wavelength of the WiFi signal.

To evaluate the performance of FreeAuth under various

environmental backgrounds, we conduct the experiment in

three indoor environments, i.e., a meeting room, a lab, and

an apartment. Fig. 7 shows the layout of the three indoor

environments, where users are asked to perform body gestures

within the rectangular region formed by the transmitter and

receivers. The size of the sensing area is 2m × 2m. A video

camera is placed in each environment to record the ground

truth of body gestures and user identities.
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Fig. 7: Experimental environments.

A total of 30 volunteers including 18 males and 12 females,

aged between 21 and 45, are recruited in the experiment.

These volunteers are recruited by offline advertisements in

the university. We divide them equally into a legitimate user

group and spoofer group, each of which contains 9 males and 6

females with the similar age distributions. The legitimate users

register on FreeAuth through performing body gestures, and

the spoofers attempt to deceive the system.

We totally design 20 body gestures that are commonly

used in daily life for the experiment. To avoid the impact

of subjective selection of these gestures, we conduct 5-fold

cross validations, in which different combinations of all the

gestures are used as training and testing sets respectively.

Specifically, the 20 gestures are divided into 5 groups, each

of which contains 4 gestures, as shown in Table I. During

each cross validation, 4 groups’ gestures are set as known
gestures for model training, i.e., 16 gestures are provided by

each legitimate user as training data for the system. And the

left one group’s gestures are set as unknown gestures where the

4 gestures are out of use for training but only for evaluation.

Finally, we obtain final evaluation performance by averaging

the 5 cross validations. During each cross validation, the

legitimate users are required to perform each known gesture

12 times to train the authentication model. For evaluation, a

user performs 15 times for each body gesture, including the

known and unknown gestures.

Overall Performance. Fig. 8 shows the confusion matrices

of legitimate user identification under known and unknown

gestures respectively. The confusion matrix exhibits which

legitimate identity or not a legitimate identity (i.e., an empty

identity represented by ‘E’) is identified for each user. We

can observe that for known gestures, FreeAuth can achieve

overall 91.3% authentication accuracy with a deviation of

2.1% for identifying legitimate users. The result indicates that

FreeAuth can achieve satisfactory performance on traditional

user authentication. On the other hand, for unknown ges-

tures, FreeAuth achieves the overall accuracy of 88.5% in

TABLE I: Body gestures and corresponding groups.

Group 1
Stand up, Turn on the light,

Pick up the phone, Type keyboard

Group 2
Walk, Wear the coat,

Open the door, Clean the desk

Group 3
Sit down, Throw the rubbish,

Hang out the cloth, Wear glasses

Group 4
Turn around, Pick up a cup,

Plug the power adapter, Sweep the floor

Group 5
Open the drawer, Take off the hat,

Pick up the tableware, Turn the book
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(b) Unknown gestures.

Fig. 8: Confusion matrices of authentication accuracy under known and
unknown gestures.
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(b) Unknown gestures.

Fig. 9: FAR and FRR for unknown gestures.

legitimate user identification with a deviation of 2.4%. The

difference of authentication accuracies between known and

unknown gestures is only 2.8%, which is insignificant. The

results demonstrate that FreeAuth is effective in identifying

users in gesture-independent manner.

Fig. 9(a) and Fig. 9(b) show the FAR and FRR under

known and unknown gestures in the three environments. It

can be observed that for known gestures, FreeAuth achieves

an overall FAR of 7.8% and FRR of 8.7%. As for unknown

gestures, FreeAuth achieves overall FAR and FRR of 10.1%

and 11.5% respectively, which are only slightly higher than

that of known gestures. This result further demonstrates that

FreeAuth can authenticate users in the gesture-independent

manner. Also, we observe that the accuracy deviation among

different environments is not significant, i.e., only 0.9% in

average. This result indicates that FreeAuth is robust in

authenticating users under different indoor environments with

various room sizes and layouts.

Comparison with Baseline Approaches. By authenticating

users in the gesture-independent manner, FreeAuth enables

more general and flexible authentication capability compared

with existing gesture-dependent approaches. We further eval-

uate the effectiveness of our system on user authentication

by comparing with 3 state-of-the-art gesture-dependent ap-

proaches, i.e., Smart [5], WiID [8], and FingerPass [16],

which act as the baseline for comparison. For variable control,

the process of training and evaluation for the three approaches

follows the guideline of FreeAuth described in the evaluation

setup, so all the four approaches are with the same training

data and evaluation methodology.

Fig. 10 shows the authentication performance of the four

approaches under known and unknown gestures respectively.

For known gestures, we can see that the three baseline ap-

proaches achieve over 92% accuracy, and FreeAuth achieves

a similar authentication accuracy of 90.7%, which demon-
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Fig. 11: Authentication accuracy
under cross validations.

strates an effective traditional authentication capability of the

proposed system. On the other hand, for unknown gestures,

the three baseline approaches suffer from significant perfor-

mance decline for about 30% compared with FreeAuth. This

is because the existing approaches do not involve gesture-

independent techniques to their systems. Moreover, we can see

that the deviation of authentication accuracies of FreeAuth is

smaller than other approaches. This is because the adversarial

learning can avoid the impact of different gestures on model

training, and FreeAuth extracts more generalized features

from different gestures to enable robust user authentication.

The above result demonstrates the improvement of FreeAuth
over baseline approaches.

Robustness Performance. To evaluate the robustness per-

formance of FreeAuth under different gesture sets, we

analyze the authentication accuracy among different rounds

of cross validation. Since the cross validation mechanism

conducts several rounds of evaluation where different com-

binations of gesture sets are used as training and testing

samples, the deviation among different validation rounds is

able to exhibit the robustness of FreeAuth among different

gesture sets. Fig. 11 shows the authentication accuracy among

the cross validations in three environments with known and

unknown gestures. It can be first observed that the differences

between different environments are insignificant, which is

consistent with previous results. Besides, the performances

among cross validations for the known gestures are more stable

than that of unknown gestures. Specifically, the deviation

of authentication accuracies under known gestures for cross

validations is only 2.06%, while that under unknown gestures

is 6.13%. This result indicates that different gesture sets could

affect the authentication performance under unknown gestures.

Impact of Loss Function. Loss function is a key design

of the adversarial neural network in FreeAuth. In this ex-

periment, in addition to the exponential function combining

the user-loss and gesture-loss (i.e., L = Eq. (7)), we em-

ploy three other loss functions, i.e., only user-loss function

(L1 = α1Lu), linear function for loss combination (L2 =
α2Lu + β2(−Lg) + c2), and logarithmic function for loss

combination (L3 = α3Lu + β3 log(−Lg + c3)).

Fig. 12 shows the authentication accuracy of FreeAuth
with the four different loss functions. It can be observed that

FreeAuth with the loss function L has the best authenti-

cation performance among all proposed loss functions. For

other three loss functions, the authentication accuracies under

unknown gestures decrease below 70%. This is because L1

L L1 L2 L3
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Fig. 12: Authentication accuracy
with different loss functions.
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Fig. 13: Authentication accuracy
for in-the-wild evaluation.

only minimizes the user-loss without suppressing the body

gesture interferences, which lefts abundant gesture-specific

information in the extracted features. The linear function L2

takes both user-loss and gesture-loss into consideration, but

the simple linear combination of the two losses cannot well

balance the priority of interference suppression and uniqueness

extraction. As for the logarithmic function L3, it optimizes

the model following to gradually strengthen the suppression

of gesture interferences, and thereby occupies the priority of

extracting individual uniqueness, which is not an appropriate

optimization way to extract the gesture-independent features.

In-the-wild Evaluation. Since FreeAuth aims to realize

gesture-independent user authentication, the evaluation that

releases the restriction of performing specific gestures can

comprehensively evaluate the system performance. Hence, we

conduct an in-the-wild evaluation where users perform body

gestures without any gesture kind restriction, to mirror the

reality of actual gesture-independent authentication scenarios.

Fig. 13 shows the authentication accuracy of in-the-wild

experiment. We can see from the figure that the mean authen-

tication accuracies are 85.1%, 85.4%, and 84.8% for the three

environments respectively, which demonstrates an insignificant

impact of environment layout. The overall authentication ac-

curacy of in-the-wild experiment is 85.1%. Compared with the

overall authentication accuracy (i.e., 89.9%) for all designed

gestures, the authentication accuracy of in-the-wild scenario

does not decline much. This result indicates that our system

can achieve an acceptable performance for practical gesture-

independent authentication. However, it can be also observed

that the variances among different users are significant. For

example, in the apartment, the best authentication performance

for a user is 90.5% while the worst is only 78.5%. By analyz-

ing the behavior contents of these users from the video, we

conclude that the user who performs more complex and con-

spicuous body gestures tends to be identified more precisely.

This is because these gestures provide more information about

behavioral and physiological characteristics of the individual.

Impact of Training Data Size. The training data size

depends on the number of samples for each body gesture, and

the number of body gesture kinds for training. A large training

data size requires frequent performing of body gestures during

registration, while a small training data size could not support

the model with sufficient generalization ability.

We first evaluate the performance of FreeAuth under

different numbers of samples for each body gesture. Fig.

14(a) shows authentication accuracies with different numbers
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Fig. 14: Authentication accuracy under different training sizes.

of samples for each gesture in model training under known

and unknown gestures respectively. We can see that as the

number of samples for each gesture increases, the authenti-

cation accuracies first increase rapidly, and then go stable.

When the number of samples for each gesture increases to 12,

FreeAuth could achieve around 91% and 88% authentication

accuracies under known and unknown gestures respectively.

More training samples would not contribute to an improvement

in system performance.

We also evaluate the performance of FreeAuth under

different numbers of body gesture kinds. In this experiment,

we involve 12 samples for each body gesture, which follows

the results of the previous experiment. The numbers of gesture

kinds for testing under known and unknown gestures are both

set as 4 for variable control of the experiment. Fig. 14(b)

shows the authentication accuracy of FreeAuth under dif-

ferent numbers of body gesture kinds in model training under

known and unknown gestures. It can be observed from the

figure that under known gestures, the authentication accuracy

remains stable at around 90% as the number of body gesture

kinds increases. But for unknown gestures, the authentication

accuracy first increases rapidly and then tends to be stable

with the increase of body gesture kinds. This is because as the

number of body gesture kinds increases, FreeAuth is capable

with rich prior knowledge of physiological characteristics from

various body gestures, which helps to improve the capability

of FreeAuth on gesture-independent user authentication. It

can be also observed that as the number of body gesture kinds

increases to 10 for model training, FreeAuth approaches 90%

authentication accuracy for both known and unknown gestures.

Such a number of body gesture kinds during registration is

acceptable for most users.

V. RELATED WORK

In this section, we review some existing works that are

related to FreeAuth.

Biometrics-based User Authentication. Biometrics-based

authentication approaches are widely investigated and realized,

which exploits the physiological uniqueness of individuals for

user authentication. Early studies utilize fingerprint [18], face

recognition [19], and voiceprint [20] for authentication. How-

ever, these approaches either are vulnerable to replay attacks

or require specialized infrastructures for attack resistance. To

handle these problems, some works [21]–[24] achieve liveness

verification using low-cost approaches. However, all these

approaches are one-off user authentications and usually induce

intrusive user experiences.

Gesture-based User Authentication. To enable user au-

thentication, some studies explore the individual uniqueness

from human behaviors. Existing works require users wear-

ing on-body devices [1], [2] to capture body behaviors for

authentication. Other researches use special vision devices

[3], [4] to capture human behaviors to identify individuals.

However, the wearable-based approach are intrusive for users,

and vision-based methods require customized devices. To

employ low-cost and widely deployed infrastructures, other

studies explore WiFi signals to sense human movements for

user authentication. Specifically, some researches implement

user authentication through sensing human gaits [25], [26].

Following works extend to realize user authentication with

coarse-grained activities [5] or fine-grained gestures [6], [8],

[16]. However, these work can only authenticate users when

they perform predefined activities and gestures.

Wireless Radio-based Application. WiFi infrastructures

are widely deployed in indoor environments recently, which

realizes the WiFi-based sensing to support various applica-

tions. Previous studies utilize WiFi signals to realize wireless

sensing applications, such as crowd counting [27], indoor

localization [28], [29], activity recognition [30]–[34], gesture

recognition [35]–[37], human tracking [38]–[40], and breath-

ing rate monitoring [41], etc. Following works [15], [42]–

[44] utilize machine learning or model translation methods

to realize cross-domain WiFi sensing. All of these works

demonstrate the surge of the wireless radio-based applications.

VI. CONCLUSION

In this paper, we propose a user authentication system,

FreeAuth, which leverages WiFi signals to identify indi-

viduals in a gesture-independent manner. First, we explore

the physiological characteristics underlying body gestures, and

find that different individuals exhibit individual differences

in the statistical distributions under WiFi signals induced by

various body gestures. We propose an adversarial learning-

based model, which can suppress the behavioral interferences

of body gestures, and extract invariant individual unique-

ness unrelated to specific body gestures. With the model,

FreeAuth can continuously identify individuals through ar-

bitrary body gestures. Experiment results in real indoor envi-

ronments demonstrate that FreeAuth is effective in gesture-

independent user authentication.
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