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The convenience of laptops brings with it the risk of information leakage, and conventional security systems based on the

password or the explicit biometric do little to alleviate this problem. Biometric identification based on anatomical features

provides far stronger security; however, a lack of suitable sensors on laptops limits the applicability of this technology. In this

paper, we developed a behavior-irrelevant user identification system applicable to laptops with a metal casing. The proposed

scheme, referred to as LeakPrint, is based on leakage current, wherein the system uses an earphone to capture current leaking

through the body and then transmits the corresponding signal to a server for identification. The user identification is achieved

via denoising, dimension reduction, and feature extraction. Compared to other biometric identification methods, the proposed

system is less dependent on external hardware and more robust to environmental noise. The experiments in real-world

environments demonstrated that LeakPrint can verify user identity with high accuracy (93.6%), while providing effective

defense against replay attacks (96.5%) and mimicry attacks (90.9%).
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1 INTRODUCTION

Laptops are becoming indispensable in people’s lives due to the important role in study, work and entertainment;

therefore, the information leakage of laptops may cause incalculable damage. Considering the risk of information

leakage in a public environment, institutions such as universities and enterprises commonly require staff to access

secret documents only in the office premises. Moreover, information security is further ensured by encryption,

identification and other methods [30].
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Fig. 1. Illustration of the user identification on laptops.

However, document encryption typically utilizes a specific password [48], and the information can be easily

leaked through the keystrokes [19, 20]. Identification methods based on explicit biometrics, such as the fingerprint

[7] and the face [29], are vulnerable to replay attacks [2] and mimicry attacks [31]. Therefore, even within a

company or school, an attacker may attack these systems to steal the secret documents from laptops in between

the departure of legitimate user, and we need to build a reliable user identification system for the information

security of laptops.

This has prompted researches into alternative biometric features, such as user behavior [22, 33, 51] and

anatomical features [3, 11, 16, 18, 28, 41, 47]. These schemes have proven effective in terms of identification

accuracy; however, behavior-based schemes are prone to information leakage and scanning physiological features

requires the sensors in mobile phones [15, 16, 18, 22, 47] or other external devices [11, 28, 41, 51]. BreathPrint

[3] extracts information from the breath of users through a microphone; however, it is susceptible to external

interference. Furthermore, laptops are not equipped with the various sensors found in mobile phones, which

hinder the acquisition of rich biometric information.

Leakage current through the metal casing of laptops, such as the MacBook, can be attributed to the safety

capacitor in the power adapter. In recent studies [9, 40, 49], researchers have verified the feasibility of using

electrical signals for user identification. As shown in Fig. 1, we developed a user identification system predicated

on the fact that the capacitance of the human body can be affected by various anatomical characteristics, such

as muscle density, bone density, and fat thickness. When a user touches the laptop, leakage current through

the body transmits biometric features to a server, which compares the signal against those previously collected

from the actual registered user. The fact that most companies and scientific institutions use servers for data

storage, and metal casings are favored for their physical strength and heat dissipation performance (e.g., Apple,

HP, Huawei and Xiaomi [46]) ensures the widespread applicability of the proposed scheme.

Developing a user identification system based on leakage current imposed a number of daunting challenges.

The first challenge involved developing a stable current transmission channel to read the current flowing through

the body. Second, the weak current leaking from laptops (0.3𝑚𝐴) is highly susceptible to noise. Third, different

contact behaviors could potentially affect the propagation of current.

Initial spectral analysis of signals traveling through the body verified the feasibility of a user identification

system based on leakage current. In this paper, we used an earphone to create a stable human-machine channel

by which to capture the current leaking through the body. Based on the leakage current, we proposed a behavior-

irrelevant user identification system LeakPrint applied to laptops.

Essentially, when the user touches the laptop wearing an earphone, the laptop casing, the earphone and

the user form a current path. The resulting information is forwarded to a server, where it is sampled by a

sound card [24]. Biometric characteristics are then extracted based on the aliasing effects imposed by sampling
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high-frequency signals at a low sampling rate (48𝑘𝐻𝑧). Multi-band spectral subtraction [10] is used to denoise

the signal, and secondary denoising is applied to frequency components presenting large fluctuations. For the

sparsity of biometric characteristics, DC-SIS (Distance Correlation - Sure Independence Screening) [13] is used to

reduce the dimensionality of the signal. The samples from multiple users are filtered to build triples for the TCN

(Temporal Convolutional Network) [12] with Triplet Loss [29] to enable the extraction of behavior-irrelevant user

features. The experiments demonstrated that LeakPrint is able to identify users with high accuracy (93.6%), while

providing the effective defense against replay attacks (96.5%) and mimicry attacks (90.9%). The contributions of

this research are outlined as follows:

• We explored the phenomenon of leakage current in the metal casing of laptops, and verified the feasibility

of user identification based on the leakage current.

• We extracted user features from the frequency spectrum of the leakage current, and solved the problems of

low signal strength and sparse features;

• We extracted the behavior-irrelevant features from the leakage current based on TCN and Triplet Loss, and

built a behavior-irrelevant user identification system on laptops;

• We conducted the experiments in real-world environments and the results demonstrated the feasibility of

LeakPrint in accurately identifying users and defending against replay and mimicry attacks.

The remainder of this paper is organized as follows: In Sec. 2, we present the related works about user

identification. In Sec. 3, we verify the feasibility of leakage current-based user authentication, introduce the threat

model and system overview. The preprocessing of the leakage current and identification of user features are

detailed in Sec. 4 and Sec. 5. Sec. 6 outlines the experiments used to evaluate the proposed system. In Sec. 7, we

discuss the limitations and the future work of LeakPrint. Finally, conclusions are presented in Sec. 8.

2 RELATED WORKS

2.1 Conventional User Identification Methods

Classic methods are based on the passwords (e.g., PIN [48] and pattern lock [54]) or the explicit biometrics (e.g.,

fingerprint [7, 26], face [29], and voice identification [42]) are prone to security breaches. Passwords are easily

intercepted through side channels, such as acoustic signals [19] or vibration signals [20], whereas biometric

methods are susceptible to performance degradation due to ambient light and noise [17]. Moreover, these methods

are vulnerable to replay attacks and mimicry attacks [2, 31, 55].

2.2 Behavior-based User Identification Methods

Behavior-based identification methods identify different users by the specific way they use their computers

[33, 51] and mobile phones [22, 51]. Shen [33] used mouse movements for user identification. MagPrint [51] used

an external magnetic sensor to read the effect of user operations on the state of the CPU to enable identification

based on magnetic signals. TouchWB [22] recognized different users according to the way they swipe the screen.

Shen [33] can be deployed on laptops; however, it requires 8.77𝑠 to identify the user. MagPrint [51] can also be

deployed on laptops with identification in 200𝑚𝑠; however, it is limited to specific applications.

2.3 Biometrics-based User Identification Methods

In addition to the explicit biometrics like fingerprints and faces, other biometrics have also been used to identify

users and are resistant to different attacks, including body size [28, 34, 41], fingers [4, 11, 47], mouth [17, 18],

breath [3] and heartbeat[14–16].

BodyPIN [41] and Shi [34] used the effect of body size on WiFi signals to identify users. SkullConduct [28]

used bone conduction of sound to differentiate between users wearing smart glasses.
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Finger characteristics are reflected in physiological and behavioral characteristics [4, 11, 47]. FingerPass [11]

used WiFi signals to extract behavioral features from finger gestures in order to differentiate among users.

TouchPass [47] utilized the accelerometer built into mobile phones to read the response of fingers to phone

vibrations in order to extract behavior-irrelevant physiological features for user identification. Chen [4] used the

ZC sequence to capture the spatial characteristic of a finger when inputting a PIN.

Unlike speech identification, LipPass [17] and VocalLock [18] extracted the behavioral characteristics of the

lips and the vocal tract during the formation of speech. LipPass [17] distinguished users based on Doppler profiles

of the lips when speaking a particular phrase. VocalLock [18] utilized FMCW to sense the dynamic features in

the vocal tract in order to extract passphrase-irrelevant features for user identification.

BreathPrint [3] used a microphone to capture the acoustic signal of breath for user identification on mobile

phones and computers. Cardiac Scan [14] used radar to sense the heart motion signals in order to extract motion-

invariant identity descriptors from geometric and non-volatile features. The flow of blood through the finger

changes the light reflectance characteristics of skin. CardioCam [15] and Seeing Red [16] utilized the camera in

mobile phones to read heart motion signals in order to extract user specific heart features.

According to the system hardware, the above methods can be divided into those based on external devices and

those based on internal sensors.

Most of the methods based on external devices use WiFi [11, 34, 41] and radar signals [14] to obtain user

information, and therefore have specific requirements pertaining to hardware setup. For example, during identi-

fication, the user must be close to the access point [11, 41] or radar [14]. Thus, these methods are ill-suited to

scenarios covering a large area, such as large offices, conference halls.

Mobile phones are rich in sensor systems that provide multi-dimensional user characteristics such as built-in

accelerometers [47], microphones [3, 4, 17, 18, 28] and cameras [15, 16]. However, identification methods using

the microphone [4, 17, 18] or camera [15, 16] depend on the unique structure of the microphone and speaker,

or the camera and flash in the mobile phone. As a result, these methods are difficult to implement directly on

laptops.

BreathPrint [3] can be applied to laptops via an external microphone; however, the distribution of the breath

signal is predominantly below 4𝑘𝐻𝑧 and the signal is weak, such that user identification accuracy is only 40%

under 66𝑑𝐵 of ambient noise. By contrast, the biometric characteristics of the users in LeakPrint are mainly

distributed between 7𝑘𝐻𝑧 and 22𝑘𝐻𝑧 under the sampling rate of 48𝑘𝐻𝑧. Thus, even under ambient noise of 65𝑑𝐵,
identification accuracy was 81.3%. Furthermore, the sampling rate can be increased to avoid the low frequency

band in which ambient noise is concentrated.

2.4 Body Capacitance

2.4.1 Body Channel Communication. Body Channel Communication refers to the propagation of electrical signals

through the human body for the purpose of digital communication [23, 38, 39, 50]. EM-Comm [50] detected the

data into the electromagnetic radiation generated by the electronic device, and then stored the signal in the

customized wristband via touch. Body-Guided Comm [23] implemented a touch-based security token based on

human body communication. TouchCom [38, 39] built an end-to-end wearable BCC system, which can act as a

sensor in any part of the human body to enable communication.

2.4.2 Body Capacitance-based User Identification Methods. Recent researches [9, 40, 49] has demonstrated the

feasibility of using the capacitance of the body for user identification. Bioamp [9] collected user data using twelve

pairs of electrodes on a wristband in conjunction with a touch screen to read user identity information from a

contact point. Carpacio [40] used the capacitive coupling produced by a touch screen and the electrodes in a car

seat to verify the identity of the user. TouchAuth [49] explored the impact of environmental electric fields on the

human body to identify users based on electrical potential.
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(a) Leakage current under normal use. (b) Human-machine channel.

Fig. 2. Fundamental principle of leakage current: 2(a) Under normal use, leakage current flows from the laptop through the

user’s hands into the body and eventually into the ground; 2(b) Earphones can be used to capture the signal for transmission

to a server.

As an integral part of capacitance in the human body, micro-currents limit the applicability of these methods.

The micro-current involved in the above schemes are derived from touch screens [40] or special bracelets [9, 49],

which means that they are not well-suited to laptop-based user identification. LeakPrint utilizes the leakage

current from the laptop with a metal casing to capture the biometric characteristics of the user via an earphone.

Compared with other body capacitance-based methods, the proposed system is highly resistant to attacks (FAR

of 9.1%) without reliance on specific devices [9, 49] or specific implementation scenarios [40].

3 BACKGROUND

This section outlines the cause of leakage current in laptops and examines the feasibility of using leakage current

to identify the users. We also examine the threat model commonly used to target user identification systems and

present the system overview of LeakPrint.

3.1 Leakage Current

Leakage current occurs when a laptop with metal casing (e.g., MacBook) is connected to a power source. The

current comes from the Y capacitor in the adapter, referred to as the safety capacitor [36]. The Y capacitor is part

of the EMI (Electromagnetic interference) filter circuit located between the power line and ground line, which is

tasked with eliminating common mode interference and improving electromagnetic compatibility (EMC).

As a common mode capacitor, grounding of the Y capacitor generates leakage current [43], which can be

written as:

𝐼 = 2𝜋 𝑓𝐶𝑈 (1)

where 𝑓 refers to the mains frequency, 𝐶 indicates the size of the Y capacitor, and 𝑈 indicates the voltage to

the ground. The Y capacitors used in laptop adapters are typically around 5𝑛𝐹 ; therefore, a laptop powered by

the 220𝑉 /50𝐻𝑧 mains generates roughly 0.3𝑚𝐴 of leakage current at the casing.

3.2 User Identification based on Leakage Current

3.2.1 Human-Machine Channel. Researchers [9, 49] have used wristbands equipped with electrodes to collect

electrical signals from the human body; however, those methods depend entirely on external hardware. We

sought to build a more generalizable signal transmission channel between the laptop and user. As shown in

Fig. 2(a), with the user’s hands placed on the laptop and the feet on the ground, leakage current flows from the

laptop through the human body and eventually into the ground.
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Fig. 3. Spectrum of leakage current showing changes in current captured by an earphone when the user touches the laptop,

where the dotted line indicates the time when the use came into contact with the laptop, leading to an increase in signal

amplitude in the high frequency band (stable in 55𝑘𝐻𝑧 and 70𝑘𝐻𝑧).

The flow of current can induce local heat stress on the body and other hazards [38]; therefore, laptop manufac-

turers seek to minimize these effects by maintaining the leakage current to roughly 0.3𝑚𝐴. The human body can

be regarded as a conductor with low impedance (a few 𝑘Ω) [27], resulting in an average SAR (specific energy

absorption rate) of roughly 0.5𝑚𝑊 /𝑘𝑔. ICNIRP guidelines [1] stipulate a limit on leakage current (20𝑚𝐴) and
average SAR (80𝑚𝑊 /𝑘𝑔). Furthermore, the impact of leakage current on the human body is lower than that of

body channel communication systems [38, 39]. Taken together, it appears that leakage current can be used to

derive biometric characteristics without overt risk to the user.

Previous studies have used devices equipped with signal generators, electrodes, and/or ADCs to generate

and read electrical signals flowing through the body [9, 40, 49]. We sought to read the leakage current using an

earphone (see Fig. 2(b)) to be collected by a sound card [24]. In preliminary experiments, we set the sampling rate

of the sound card at 192𝑘𝐻𝑧 in order to extend the bandwidth. As shown in Fig. 3, the amplitude of the signal

received by the earphone increased when the user touched the laptop.

3.2.2 User Identification based on Leakage Current. Leakage current flowing through the body can be affected

by the anatomical traits of the individual (e.g., blood vessels, muscle, fat, bone), leading to subtle differences in

impedance [21] with corresponding variations in signal attenuation at different frequencies.

Preliminary experiments were conducted to verify the feasibility of the system. A MacBook Pro was used to

collect data from two volunteers, both of whom were asked to place a hand in the same fixed position on the

right side of the touchpad, while data was collected from a single channel of the earphone.

Most of the biometric characteristics were distributed in the high frequency band (stable in 55𝑘𝐻𝑧 and 70𝑘𝐻𝑧),
as shown in Fig. 3. Samples (duration = 1𝑠) were analyzed in terms of frequency distribution after FFT (Fast Fourier

Transform). As shown in Fig. 4(a), different users presented obvious differences in distribution and amplitude

at some frequencies. As shown in Fig. 4(b), the two samples obtained from the same volunteer were extremely

similar in terms of frequency distribution, with only slight differences in magnitude.

We then sought to verify the feasibility of using leakage current for user identification by collecting signals

from eight volunteers under the same experimental setup. As shown in Fig. 4(c), we plotted the t-SNE [37] of

the biometric characteristics in a two-dimensional space. We found that as the number of volunteers increased,

the distinction between biometric characteristics decreased. Clearly, biometric characteristics based on leakage

current cannot be used directly for user identification.

The above results can be attributed to the fact that leakage current was weak, and noise hindered the extraction

of biometric characteristics. It should also be noted that most of the biometric characteristics were found at a few

specific frequencies between 55𝑘𝐻𝑧 and 70𝑘𝐻𝑧. Under these conditions, it is essential to minimize the influence

of noise, if meaningful biometric characteristics are to be extracted. Moreover, in the preliminary experiment, the
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Fig. 4. Preliminary experiments: 4(a) Biometric characteristics of 2 different users from the frequency spectrum are highly

distinguishable in some frequencies; 4(b) Biometric characteristics of the same user have high consistency; 4(c) The distinction

between the biometric characteristics of the 8 different users is significantly reduced.

volunteers touched the laptop in the same designated way. For the sake of user experience, this restriction should

be eliminated.

3.3 Threat Model

Feature extraction based on the leakage current of laptops is affected by the biometrics (e.g., human capacitance)

and behavioral features (e.g., different ways of touch). The leakage current-based user identification is threatened

by two types of attacks: replay attack and mimicry attack.

In the replay attack, the attacker steals the identification information of the legitimate user and uses that

information for identification. For example, the attacker takes a photo of the legitimate user’s fingerprint and

performs fingerprint identification [47]. For 𝐿𝑒𝑎𝑘𝑃𝑟𝑖𝑛𝑡 , the attacker can steal user information through electrodes

glued to the metal casing and use microphone playback to achieve the replay attack.

In the mimicry attack, the attacker observes the behavior of the legitimate user during identification and

mimics that behavior to perform the attack. This type of attack mainly targets identification systems that extract

behavioral features, such as gestures or commands [18]. 𝐿𝑒𝑎𝑘𝑃𝑟𝑖𝑛𝑡 is not designed with sophisticated contact

methods, and attackers may spy on legitimate users’ touch behaviors and imitate them.

3.4 System Overview

As shown in Fig. 5, after the leakage current detection and frequency domain transformation (FFT), the proposed

system is implemented in two phases: registration phase and login phase.

In the registration phase, the system is responsible for collecting samples of legitimate users and training the

identification system. After the server receives the leakage current, it preprocesses the current signal. First, we

use the signal of idle time as a noise sample and denoise the signal using multi-band spectral subtraction. Second,

more than 90% of the user features cannot be used for identification; therefore, LeakPrint uses DC-SIS to filter out

the irrelevant features to reduce the computational burden. Finally, the system uses TCN and Triplet Loss to

extract behavior-irrelevant features and produce these features as a dataset for each legitimate user.

In the login phase, the system identifies the user by leakage current. First, LeakPrint detects the touch behavior

by signal amplitude and preprocesses the signal, including denoising and dimensionality reduction. Then the

behavior-irrelevant features are extracted by TCN. Finally, the system compares the user features with those of

legitimate users in the dataset to determine the identity of the current user.
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Fig. 5. System architecture of LeakPrint.

4 PREPROCESS OF LEAKAGE CURRENT

4.1 Detection of Leakage Current

Identifying the user via leakage current requires that the system is able to detect the time when the user touches

the device. As shown in the Fig. 3, touching the laptop generates a slight increase in the amplitude of the electrical

signal in the high frequency range (above 55𝑘𝐻𝑧). We seek to sample the leakage current based on the aliasing

effect, thus reducing the limitation of the sampling rate. The aliasing effect can be written as:

𝑓𝑎 =𝑚𝑖𝑛 |𝑓𝑜 − 𝑁 𝑓𝑠 | (2)

where 𝑁 is an integer, 𝑓𝑎 , 𝑓𝑜 , and 𝑓𝑠 respectively indicate the aliasing frequency, the signal frequency, and the

sampling rate. As shown in Fig. 6(a), when using a sampling rate of 48𝑘𝐻𝑧, biometric characteristics in the target

frequency band (55𝑘𝐻𝑧 to 70𝑘𝐻𝑧) produce corresponding aliasing signals in a lower frequency band (7𝑘𝐻𝑧 to
22𝑘𝐻𝑧). Besides, high-frequency noise (above 70𝑘𝐻𝑧) also produces a corresponding aliasing signal.

The most straightforward approach to perceiving the user touching the laptop involves setting a signal strength

threshold. We set 1024 sampling points as a buffer to calculate the signal amplitude for the entire frequency band.

As shown in Fig. 6(a), the sparse biometric characteristics are easily overwhelmed by noise, such that the change

in signal amplitude induced by touching the laptop is close to zero.

A band pass filter with high-order cutoff is well suited to the main frequency distribution of the electric

signal. To eliminate the effects of human voices (below 1𝑘𝐻𝑧) and other low-frequency noise, we employed a

band-pass filter (7𝑘𝐻𝑧 to 22𝑘𝐻𝑧) to improve the SNR of the signal. Note that threshold-based detection methods

are susceptible to outliers; therefore, we employed a mean window to dilute these effects. Considering that a long

mean window would reduce the change in signal amplitude generated by touching the laptop casing, we set a

mean window length of 10. The mean window can be described as follows:

𝑆𝑚𝑒𝑎𝑛 (𝑖) =
𝑖+𝑁∑
𝑗=𝑖

𝑆 ( 𝑗) (3)

where 𝑆 (𝑖) represents the signal filtered by the bandpass filter, 𝑆𝑚𝑒𝑎𝑛 (𝑖) represents the signal filtered by the

mean window, and 𝑁 indicates the window size.
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Fig. 6. Leakage current detection, where the dotted line indicates the time of contact: 6(a) Spectrum of the leakage current

obtained at the sampling rate of 48𝑘𝐻𝑧, where the aliasing frequency includes user characteristics and high-frequency

noise. 6(b) The signal amplitude in the lower frequency band (7𝑘𝐻𝑧 to 22𝑘𝐻𝑧) processed using a mean window (blue) and

momentum (red).

Since the change in signal amplitude caused by touch is lower than the amplitude oscillation, we used

momentum to weaken the influence of signal oscillation on detection. The process of momentum attenuation can

be written as follows:

𝑆𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 (𝑖 + 1) = 𝑆𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 (𝑖) + 𝛼 (𝑆𝑚𝑒𝑎𝑛 (𝑖 + 1) − 𝑆𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 (𝑖)) (4)

where 𝑆𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 (𝑖) represents the signal after momentum attenuation. We set the momentum decay coefficient

𝛼 at 0.5 when the amplitude change was greater than 0.002; otherwise, it was set to 0.05. As shown in Fig. 6(b),

the effects of touching the laptop can be detected by setting a threshold for the signal amplitude.

4.2 Denoising of Leakage Current

The combination of a mean window and momentum proved effective in detection of leakage current. While signal

patterns related to biometric indicators are easily drowned out by noise. We divided the noise into two categories:

ambient noise (e.g., voices) and signal aliasing caused by high-frequency noise in electrical signals (e.g., other

electrical appliances [32]). The ambient noise remained after using the bandpass filter to preprocess the signal,

and the high-frequency noise can be regarded as additive noise with non-uniform distribution in the frequency

band. Multi-band spectral subtraction [10] divides the frequency spectrum into several small frequency bands,

from which spectral noise was subtracted respectively. Subtraction of the 𝑖𝑡ℎ frequency band can be written as

follows:

‖𝑌𝑖 (𝑘)‖2 = ‖𝑆𝑖 (𝑘)‖2 − 𝛽𝑖 ‖𝑁𝑖 (𝑘)‖2 (5)

where 𝑏𝑖 < 𝑘 < 𝑒𝑖 represents the frequency range of the band, 𝑆𝑖 and 𝑁𝑖 respectively represent filtered user

signal samples and noise signal samples, respectively. We acquired 1𝑠 samples of both the leakage current and

noise, and generated the spectral signals using FFT. 𝛽𝑖 is related to the SNR (signal-to-noise ratio) of the signal in

a given frequency band:

𝛽𝑖 = 𝑐1 · 𝑙𝑜𝑔10
( ∑𝑒𝑖

𝑘=𝑏𝑖
‖𝑆𝑖 (𝑘)‖2∑𝑒𝑖

𝑘=𝑏𝑖
‖𝑁𝑖 (𝑘)‖2

)
+ 𝑐2 (6)

A lower SNR means that the proportion of noise signals in the frequency band is larger, such that the coefficient

must be increased to reduce the influence of noise. While a higher SNR requires a smaller coefficient to preserve
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(a) Spectral subtraction of leakage current.
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(b) Spectral subtraction of noise signal.
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Fig. 7. Multi-band spectral subtraction: 7(a) Leakage current before (red) and after (blue) spectral subtraction; 7(b) Noise

signal before (red) and after (blue) spectral subtraction, showing obvious residual noise at specific frequencies; 7(c) Wide

fluctuations in noise at specific frequencies.

the biometric characteristics. Therefore, we set 𝑐1 to −1.5, and set 𝑐2 to 1 to ensure that denoising would have a

noticeable effect.

As shown in Fig. 7(a) and Fig. 7(b), the effect of multi-band spectral subtraction was evaluated using a sample

of leakage current and noise. Spectral subtraction acts on the entire frequency band; therefore, to preserve the

biometric characteristics as much as possible, we set a smaller spectral subtraction coefficient. Nonetheless, even

after spectral subtraction, the signal was still affected by the high-amplitude noise at specific frequencies.

To consider this residual high-amplitude noise in analysis would require secondary denoising. Note that

the characteristics of noise differ at different frequencies. Thus, we analyzed noise samples obtained at each

frequency to derive a statistic model of changes in amplitude. As shown in Fig. 7(c), the amplitude of noise at

some frequencies fluctuated considerably over time (i.e., abnormal noise), which made it very difficult to remove

via spectral subtraction.

In the current study, we employed adaptive denoising [45] to deal with abnormal noise. Adaptive noise

reduction adjusts the denoising strategy according to the characteristics of the sample. In this paper, secondary

denoising began with the filtering out of potential abnormal noise based on the variance in each frequency noise

sample. Note however that due to the sensitivity of the biometric characteristics, it is essential to confirm the

frequencies of the abnormal noise. We designated frequencies with fluctuations greater than twice the average

value as abnormal noise, and collected noise samples in real time for updating. We then addressed the frequency

corresponding to abnormal noise associated with leakage current. Only samples that exhibited amplitude greater

than the standard deviation of the noise frequency underwent secondary denoising:

‖𝑌𝑖 (𝑓 )‖2 = ‖𝑌𝑖 (𝑓 )‖2 −
√
2 · 𝑠𝑡𝑑 (𝑓 ) (7)

where 𝑓 represents potential abnormal noise, 𝑠𝑡𝑑 (𝑓 ) indicates the standard deviation of noise, indicating the

range of fluctuation in the noise at those frequencies. Fig. 8(a) and Fig. 8(b) respectively present the leakage

current and noise signal after secondary denoising. Most of the noise in the 7𝑘𝐻𝑧 to 22𝑘𝐻𝑧 frequency band

was effectively suppressed without altering the leakage current at frequencies corresponding to the biometric

characteristics.

4.3 Feature Screening of Leakage Current

Feature sparseness of leakage current is another important issue in user identification. As shown in Fig. 8(a),

the bandwidth of leakage current spans 15𝑘𝐻𝑧, and only a small portion reflects biometric characteristics. A
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(a) Secondary denoising of leakage current.
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(b) Secondary denoising of noise signal.
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Fig. 8. Secondary denoising of leakage current: 8(a) Leakage current before (red) and after (blue) secondary denoising; 8(b)

Noise signal before (red) and after (blue) secondary denoising, showing suppression of frequency corresponding to abnormal

noise; 8(c) Distance correlation between different frequencies and user labels, indicating that most frequencies cannot be

used for user identification.

large number of redundant features would increase the computational burden and reduce accuracy in user

identification. Signal redundancy can be reduced by decreasing the dimensionality of data. The most common

approach is Principal Component Analysis (PCA); however, this method imposes requirements pertaining to the

number of samples. The wide bandwidth of leakage current would require the collection of an enormous volume

of user data, which would no doubt have a negative effect on the user experience.

As an alternative to PCA, DC-SIS (Distance Correlation - Sure Independence Screening) [13] analyzes univariate,

which lessens the restriction on the number of samples. Sure screening ensures that all important variables

have attributes with a probability of 1 after screening. DC [35] describes the dependence between two random

variables and solves the dependence of traditional SIS [6] on the normal distribution of features. The distance

covariance between two random vectors u and v with finite first moments to the nonnegative number 𝑑𝑐𝑜𝑣 (u, v)
is given by the following:

𝑑𝑐𝑜𝑣2 (u, v) =
∫
𝑅𝑑𝑢+𝑑𝑣

‖𝜙u,v (t, s) − 𝜙u (t)𝜙v (s)‖2𝜔 (t, s)𝑑t𝑑s (8)

where 𝜙u (t) and 𝜙v (s) represent the respective characteristic functions of u and v, and 𝜙u,v (t, s) represents the
joint characteristic function of u and v. 𝑑𝑢 and 𝑑𝑣 are the dimensions of u and v, and

𝜔 (t, s) = {𝑐𝑑𝑢𝑐𝑑𝑣 ‖t‖1+𝑑𝑢𝑑𝑢
‖s‖1+𝑑𝑣

𝑑𝑣
}−1 (9)

where 𝑐𝑑 = 𝜋 (1+𝑑)/2Γ{(1 + 𝑑)/2}, and the DC between u and v with finite first moments is defined as follows:

𝑑𝑐𝑜𝑟𝑟 (u, v) = 𝑑𝑐𝑜𝑣 (u, v)√
𝑑𝑐𝑜𝑣 (u,u)𝑑𝑐𝑜𝑣 (v, v)

(10)

Let xk = (𝑥𝑘1, ..., 𝑥𝑘𝑛)𝑇 be the feature vector of the 𝑘𝑡ℎ dimension from the 𝑛 ×𝑚 sample X, y = (𝑌1, ..., 𝑌𝑛)𝑇
be the label vector, and 𝜔 = (𝜔1, ..., 𝜔𝑚)𝑇 be a m-vector of correlation between the features and the label:

𝜔𝑘 = 𝑑𝑐𝑜𝑟𝑟 (xk, y) (11)

Using the correlation vector, key features can be filtered from ultra-high dimensional features. For a given

𝜂 ∈ (0, 1), we sort the m components of the vector 𝜔 according to the size of the component, and define the

model as follows:

𝑀𝜂 = {1 ≤ 𝑖 ≤ 𝑝 : 𝜔𝑖 is among the first [𝜂𝑚] largest of all} (12)
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Fig. 9. Architecture of User Identification Network.

where [𝜂𝑚] represents the integer part of 𝜂𝑚. Correlation learning is used to rank features in terms of importance

according to the marginal correlation between the features and the label, while screening out the features that

are not strongly marginal correlated with the label. As shown in Fig. 8(c), for the leakage current spanning a

bandwidth of 15𝑘𝐻𝑧, we screened out the 512, 1024 and 2048 features that were most relevant to the users. Based

on these results, we estimate that more than 93% of the features are irrelevant to biometric characteristics and

should therefore not be used for user identification.

5 BEHAVIOR-IRRELEVANT USER IDENTIFICATION

5.1 User Identification Model

CNN (Convolutional neural network) has proven highly effective in the extraction of spectral features [47, 51, 56].

In LeakPrint, we built the user identification model based on TCN (Temporal Convolutional Network) [12] and

ResNet [8], as shown in Fig. 9. The proposed CNN comprises three components: the convolutional layer, the

TCN module and the fully connected layers. Each TCN module comprises three layers, including two dilated

convolutional layers, and a max pooling layer (with RELU activation function). The convolutional layer performs

the initial extraction of the input features to improve the correlation between the subsets corresponding to the

different features of the dilated convolutional layer. In the TCN module, the dilated convolutional layer [52] has a

larger perception field with the same amount of computation by inserting space in the convolutional layer. The

residual structure incorporates features of various depths and solves the gradient disappearance problem during

the training process. The max pooling layer reduces the dimensionality of the features [25]. User identification is

achieved using two fully-connected layers based on the user-level features.

Specifically, the first convolutional layer uses 32 convolutional kernels of 3 × 1-dimension to generate a

correlated subset for adjacent features of the dilated convolutional layer. The two dilated convolutional layers in

the TCN module both use 64 convolutional kernels of 3 × 1-dimension to extract features, with dilation rates

of 2 and 4. After the max pooling layer and RELU activation function, two TCN modules respectively extract

features at biometric-level and user-level. The numbers of neurons in the two fully connected layers are 512 and

64, respectively.

5.2 Behavior-irrelevant Feature Extraction

In the preliminary experiments, the laptops were touched by users in a strictly controlled manner. As the metal

casing of the laptop has a very low resistance, and therefore has very little effect on the propagation of leakage

current. Recent biometric-based studies confirmed the impact of user behavior on biometric features [18, 47].

Nonetheless, touching the laptop using fingers, the palm, or the wrist would no doubt alter the contact area
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(a) Experimental setup of LeakPrint. (b) Different positions of the laptop.

Fig. 10. Experimental setup: 10(a) Experimental setup of LeakPrint. The unknown user touches the laptop with one hand,

the server detects the leakage current via the earphone. We use the third party software Audacity to present the leakage

current; 10(b) Five regions of the laptop casing.

between the user and laptop, with a corresponding effect on the propagation of leakage current. Therefore, we

need to extract common biometric features from the different touch behaviors.

LeakPrint uses Triplet Loss [29, 53] to blunt the influence of these factors on the leakage current. Triplet Loss

is meant to maximize the distance between two samples with different labels, and minimize the distance between

two samples with the same label within the feature space during the encoding process. Specifically, Triplet Loss

constructs triplets based on the training set. The triplets can be written as follows:

(𝐼𝑎, 𝐼𝑝 , 𝐼𝑛) (13)

where 𝐼𝑎 and 𝐼𝑝 are from the same user, and 𝐼𝑛 is from another user. The distance of the samples in the feature

space can be written as:

‖ 𝑓 (𝐼𝑎) − 𝑓 (𝐼𝑝 )‖22 +𝑚𝑎𝑟𝑔𝑖𝑛 < ‖ 𝑓 (𝐼𝑎) − 𝑓 (𝐼𝑛)‖22 (14)

where 𝑓 (𝐼 ) represents the process of feature extraction and the corresponding loss function can be written as:

𝐿 =𝑚𝑎𝑥 (‖ 𝑓 (𝐼𝑎) − 𝑓 (𝐼𝑝 )‖22 − ‖ 𝑓 (𝐼𝑎) − 𝑓 (𝐼𝑛)‖22 +𝑚𝑎𝑟𝑔𝑖𝑛, 0) (15)

5.3 Attacker Detection

Identifying and defending against attackers is crucial to the feasibility of user identification systems. LeakPrint

compares user-level features of leakage current in the login phase versus the legitimate users to perform user

identification and attack detection. We set 𝑛 users as legitimate users, and collect 𝑁 samples for each user. The

feature distance between an unknown user 𝑓𝑢𝑛𝑘𝑛𝑜𝑤𝑛 and the legitimate user 𝑓𝑖 is defined as follows:

𝐷𝑖 =
1

𝑁

𝑁∑
𝑘=1

‖ 𝑓𝑢𝑛𝑘𝑛𝑜𝑤𝑛 − 𝑓𝑖𝑘 ‖22 (16)

The distances between the unknown user and all the legitimate users is [𝐷1, ..., 𝐷𝑛]. If the minimum distance

between the unknown user and all the legitimate users is larger than the given threshold 𝛿 , then the unknown

user is determined as an attacker; otherwise, the unknown user is identified as the legitimate user presenting the

minimum distance.
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(a) Confusion matrix in an office. (b) Confusion matrix in the conference hall. (c) ROC in two environments.

Fig. 11. Micro Benchmarks of LeakPrint in two real-world environments.

6 EVALUATION

6.1 Experimental Setup

In the experiment, LeakPrint was implemented on a MacBook Pro, and a desktop computer was used as the

server, as shown in Fig.10(a). We chose the earphone with metal dust mesh (Meizu) to collect the leakage current.

The MacBook was always on charge and placed on the desk. The user wore the earphone normally and touched

the MacBook, and the earphone was connected to the server. We also sought to assess the influence of other

electrical appliances in the circuit [32] by conducting experiments in two real-world environments: an office

(multiple electrical interference) and a conference hall (few electrical interference).

We hired 40 participants to validate LeakPrint, containing 27 males and 13 females with ages ranging from 19

to 47 (average age of 29.6 and SD of 8.53). 30 participants (10 females) played the role of legitimate users and 10

participants played the role of attackers. We divided the participants who played the role of legitimate users into

a training group and a test group (15 people each). In the benchmark experiments, first, we let the participants in

the training group perform the registration phase and pre-train the encoder with these samples. Second, we let

the participants in the test group perform the registration and login phases to evaluate the system’s identification

accuracy of legitimate users. Finally, we let the attackers perform the login phase to verify the system’s defense

capability against attacks. In the experiments with different environments and different parameters, we evaluated

the identification accuracy of the system by the legitimate users in the test group and the resistance of the system

to the attacks by the attackers in the same way. The specific operations of the registration phase and the login

phase are as follows.

Registration phase. The legitimate users were asked to touch five regions of the laptop (Fig. 10(b)) with each

hand (fingers, palms, and wrists) for 1𝑚𝑖𝑛, for a total of 15 different ways of touch. The samples were 1𝑠 in
duration and 240 samples were obtained under each hand/region configuration (both hands, dual channels of

the earphone). Then, the system filtered the feature frequencies of the legitimate users with DC-SIS. Finally, the

system used TCN to extract the behavior-irrelevant features and produced a dataset for each legitimate user.

Login phase. The participants were asked to touch the laptop with all 15 configurations for 15𝑠 in two envi-

ronments. Then, the system performed feature extraction and extraction on the user samples in the same way.

Finally, the feature of the participants were compared with the dataset of legitimate users for identification.
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(d) FAR of LeakPrint for attacks.

Fig. 12. Comparison of different LeakPrint versions.

System parameters. The sampling rate was set at 48𝑘𝐻𝑧, and FFT was used to generate the spectral character-

istics of the users. In the registration and login phases, the same parameters were used to process the leakage

current: the sample time (1𝑠), the feature length (1024), the size of training set for each volunteer (240) and the

threshold of the attacker detection (0.8). These parameters are discussed in detail in Section. 6.4.

The performance of LeakPrint was assessed using the following metrics:

Identification Accuracy: The probability that user 𝐴 is correctly identified in all relevant samples.

Confusion Matrix: Each row of the matrix represents the predicted result, and each column represents the

actual label. The 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the matrix indicate the proportion of the 𝑖𝑡ℎ user identified as the 𝑗𝑡ℎ
user.

False Accept Rate (FAR): The probability of identifying an attacker as a legitimate user.

False Reject Rate (FRR): The probability of identifying a legitimate user as an attacker.

Equal Error Rate (EER): The common value when FAR and FRR are equal.

6.2 Micro Benchmarks

We first evaluated the identification performance of LeakPrint in two environments (Fig. 11(a) and Fig. 11(b)). The

15 legitimate users were denoted as (𝑈1,𝑈2, ...,𝑈15), and the attackers were denoted as 𝐴. The average accuracy
of LeakPrint in identifying legitimate users was 92.8% and 93.6% respectively in the two environments. The FAR

of attacks was 9.1% and 8.7%, the FRR was 7.2% and 6.4%, and the EER was around 8.6% and 7.1% in the two

environments. As shown in Fig. 11(c), we plotted the ROC (Receiver Operator Characteristic) curves consisting

of FAR and FRR for the two environments. These results demonstrate that LeakPrint can accurately identify

the identity of legitimate users and detect attackers, even under the effects of other influence of other electrical

appliances.

We then examined the effects of touching the laptop in various areas using various parts of the hand. As shown

in Table. 1, LeakPrint achieved high detection accuracy regardless of the way the laptop was touched.

Table 1. Identification accuracy of different touches in different positions.

Position 1 Position 2 Position 3 Position 4 Position 5

Finger 92.5% 94.2% 93.8% 95.1% 95.6%

Palm 91.7% 94.3% 94.1% 92.8% 93.1%

Wrist 92.1% 93.6% 92.5% 94.6% 95.5%
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(c) Influence of feature length.

80 120 160 200 240 280 320
Training Set Size

70

80

90

100

A
cc

ur
ac

y 
(%

)

0

10

20

30

F
R

R
 (

%
)

Accuracy
FRR

(d) Influence of training set size.

Fig. 13. Evaluation of the LeakPrint system.

To verify the need to preprocess the current signal and extract of behavior-irrelevant features, we built two

incomplete systems for comparison: 𝐿𝑒𝑎𝑘𝑃𝑟𝑖𝑛𝑡𝑊𝑃 (Signal without Preprocessing) and 𝐿𝑒𝑎𝑘𝑃𝑟𝑖𝑛𝑡𝐵𝑅 (Behavior-

Relevant Features). As shown in Fig. 12(a), Fig. 12(b) and Fig. 12(c), we compare the identification accuracy and

FAR of three versions. 𝐿𝑒𝑎𝑘𝑃𝑟𝑖𝑛𝑡 significantly outperformed the other two versions, thereby demonstrating that

signal preprocessing and behavior-irrelevant feature extraction are both indispensable.

6.3 Performance on Attacker Resistance

The performance of LeakPrint was also evaluated under different attacks, the attacker can attack the system in

two ways. During the login process of a legitimate user, the attacker glues electrodes to the metal enclosure

to record the current signal, since current signals in parallel circuits can interact with each other [32]. The

microphone is then used to play that signal to perform the replay attack. And in the mimicry attack, the attacker

tries his best to mimic the touch behavior of the legitimate user.

In this experiment, the 15 legitimate users were asked to perform the user identification. We then replayed the

leakage current signal using a speaker as the replay attack, and had 10 attackers mimic the behavior of legitimate

users by touching the laptop for 30 times (1𝑠 each).
As shown in Fig. 12(d), the FAR of LeakPrint did not exceed 9.1%, regardless of the threat model. Replay

attacks using speakers were severely disturbed by environmental noise, and mimicry attacks could not match

the biometric characteristics. Besides, the threshold for attacker detection can also be adjusted according to the

application scenario. However, there are certain special circumstances that can cause LeakPrint to fail, such as the

possibility that an attacker could replay the stolen data in an extremely quiet environment, or that the attacker’s

biometric characteristics happen to match a legitimate user.

6.4 Influence of System Parameters

The performance of LeakPrint was also evaluated under various system parameters, including sampling rate,

sample time, feature length, training set size and threshold for attacker detection.

6.4.1 Influence of Sampling Rate. To reduce limitations on hardware, we perceived the leakage current with the

sampling rate of 48𝑘𝐻𝑧; however, differences in the sampling rates could lead to differences in the aliasing signal

at different frequencies. Furthermore, the noise distribution in various frequency bands could also conceivably

affect user identification. In this experiment, we evaluated LeakPrint in terms of identification accuracy, FAR and

FRR at various sampling rates ranging from 48𝑘𝐻𝑧 to 192𝑘𝐻𝑧. As shown in Fig. 13(a), when the sampling rate

was increased from 48𝑘𝐻𝑧 to 192𝑘𝐻𝑧, identification accuracy increases from 93.6% to 94.5% and FAR dropped

from 9.1% to 7.4%. The results indicate that an increase in sample rate has a positive impact on the identification
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Fig. 14. Evaluation of the LeakPrint system.

results. Typically, most servers can achieve the minimum sample rate required (48𝑘𝐻𝑧). Therefore, LeakPrint can
be deployed at low cost in most universities, companies, etc.

6.4.2 Influence of Sample Time. At a given sampling frequency, the resolution of user features in the spectrum

was inversely proportional to the sample time. In this experiment, we evaluated the LeakPrint in terms of

identification accuracy, FAR and FRR under various sample times ranging from 0.25𝑠 to 2𝑠 . As shown in Fig. 13(b),

when the sample time was increased from 0.25𝑠 to 2𝑠 , identification accuracy increased from 84.6% to 94.1% and

FAR dropped from 16.9% to 8.9%. When the sample time was increased from 1𝑠 to 2𝑠 , the system did not improve

significantly. Considering the impact of identification speed on the user experience, we set the sample time at 1𝑠 .
Nevertheless, as the number of users is further increased, we can improve the fine-grained level of physiological

features by increasing the sample time to optimize the identification performance of the system.

6.4.3 Influence of Feature Length. To reduce the impact of high-dimensional samples on identification accuracy,

we used the DC-SIS algorithms to extract key features from the spectrum. Thus, we evaluated LeakPrint in terms

of identification accuracy, FAR and FRR under feature lengths ranging from 256 to 2048. As shown in Fig. 13(c),

increasing the feature length from 256 to 1024 greatly improved the performance of the system. As shown in

Fig. 8(c), when the feature length was increased beyond 1024, most of the improvement would have little or no

effect. We therefore set the feature length at 1024. However, the feature length is closely related to the features of

legitimate users. The features of the users in different groups, and the differences in the features between users

will respond to the different feature frequencies and feature lengths of the leakage current. Therefore, we have to

set different feature frequencies and feature lengths for different user groups with DC-SIS.

6.4.4 Influence of Training Set Size. The training set size determines the amount of time required to collect

samples of legitimate users. A larger training set would no doubt improve generalization performance; however,

it would also increase the initial workload and perhaps inconvenience the user. We evaluated the accuracy of the

system with training sets of various sizes. As shown in Fig. 13(d), increasing the size of the training set from 80 to

320 increased identification accuracy from 75.4% to 93.6%, accuracy plateaued when the size reached roughly 240.

In this experiment, we did not examine FAR, due to the fact that a small training set would lead to over-fitting,

such that the FAR of the attack would have little practical reference value.

6.4.5 Influence of Threshold for Attacker Detection. Our determination of whether an unknown user is legitimate

is based on the distance between user-level features; therefore, the threshold for attacker detection is crucial to

the security of the system. As shown in Fig. 14(a), identification accuracy and FAR are both positively correlated

with this threshold. For laptops with few security risks, we recommend setting a higher threshold to obtain
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Fig. 15. Evaluation of the LeakPrint system.

higher identification accuracy (above 98%). For laptops with a high probability of being attacked, we recommend

setting a lower threshold to make the system more resistant to attacks (below 6%).

6.4.6 Influence of Evaluation Time Points. To verify the relationship between the physiological features and

evaluation time, we evaluated LeakPrint at different time points. As shown in Fig.14(b), first, we evaluated the

system at multiple time points during the day. We performed the registration phase at 9:00 a.m. and the login

phase every hour thereafter (including special cases such as before and after meals). On the other hand, we set

the timeline of the experiment to one month. We performed the registration phase on the first day and the login

phase every three days thereafter (Fig.14(c)).

It can be seen that the identification accuracy can be maintained above 91.2% and the FAR is below 8.5% at

different time points of the same day. The result implies that the physiological features of the human body are

stable in the short-term. Moreover, as the time interval increases, the identification accuracy decreases from 92.1%

to 75.7% and the FAR remains below 8.2%. This confirms that the physiological features change slowly over time.

Although we did not encounter this situation in the experiments, we cannot rule out that the attacker’s features

may gradually approximate the samples in the legitimate user dataset over time. Therefore, we recommend

updating the user dataset in real time to maintain the accuracy of identification and resistance to attacks.

6.4.7 Influence of Ambient Noise. We evaluated identification performance under ambient noise of 45𝑑𝐵 (normal

office) and 65𝑑𝐵 (noisy conference room). As shown in Fig. 14(d), the system was more sensitive to ambient noise

at a sampling rate of 48𝑘𝐻𝑧, as indicated by a decrease in identification accuracy from 93.6% to 81.3%. Increasing

the sampling rate significantly increased the robustness of the system by reducing the effect of ambient noise in

lower frequency bands. Overall, higher sampling rates provided greater stability in noisy environments.

6.5 Influence of Devices

We evaluated the performance of LeakPrint using a variety of laptops and earphones under various working

conditions.

6.5.1 Influence of Different Earphones. As an important part of signal collection, we evaluated and discussed

various aspects of the earphones, including the type of earphones, earphone aging and other issues. First, we can

regard earphones as electrodes in contact with the human body, and different types of earphones can seriously

affect the reception of leakage current. As shown in Fig. 15(a), we have chosen three different types of earphones

for comparison (type 1: earphones with metal dust mesh, type 2: earphones with plastic dust mesh, and type

3: earphones with headband). For each type, we chose three different earphones. When using different types

of earphones to receive signals, the accuracy will be significantly reduced by the weakening of signal strength

(Fig. 15(b)). Therefore, we recommend using earphones with metal dust mesh. Besides, earphones of the same type
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Fig. 16. Evaluation of the LeakPrint system.

have similar conductive properties, and replacing the same model (or type) of earphones during the identification

process will not affect the accuracy of the system. While different brands achieve different music playback by

adjusting the frequency response of the earphones (e.g. Harman and ToneTeam Curve [44]), this is mainly focused

on the human ear hearing range (below 20𝑘𝐻𝑧). Therefore, it does not affect the reception of the leakage current

by the server (above 55𝑘𝐻𝑧).
Second, we can regard the aging of the earphones as a slight rusting of the electrodes, while the human body

can be regarded as a conductor with the impedance of a few 𝑘Ω [27]. Therefore, the aging of the earphones will

not have a serious impact on the leakage current. Finally, the choice of the sound channels of the earphones also

affects the reception of the leakage current. We separated the current signal received by the dual channels into

two samples, so that we can also perform effective identification in the case of a single channel damage.

6.5.2 Influence of Different Laptops. In this experiment, we evaluated LeakPrint on different laptops, including

three Apple laptops, two HP laptops, two Huawei laptops and one Xiaomi laptop. As shown in Fig. 15(c), the

system maintains the high identification accuracy, which demonstrates that the system can be deployed on the

majority of laptops with metal casing. Furthermore, given the excellent strength and heat dissipation performance

of the metal casing, companies such as Apple, Xiaomi and Huawei are focusing on laptops with metal casings

[46]. Therefore, we believe LeakPrint has high promotion prospects.

6.5.3 Influence of Different Working Conditions. As shown in Fig. 16(a), we evaluated LeakPrint when running a

variety of applications on the laptop: Internet (Chrome), Business (Microsoft Word), Game (MineCraft) and Multi-

media (PotPlayer). The overall accuracy exceeded 88.7%, indicating identification performance was unaffected by

applications running in the background.

On the other hand, the charging current of an adapter differs according to the state of the laptop battery (i.e.,

fully charged or not fully charged). We therefore evaluated LeakPrint with the battery in various charging states.

As shown in Fig. 16(b), the state of the battery did not affect identification accuracy, due to the fact that leakage

current is related only to voltage, the frequency of the mains, and the size of the safety capacitor.

7 DISCUSSION

In this paper, we developed a high-precision user identification system based on leakage current. In this section,

we discuss the limitations of LeakPrint as a research prototype and provide an outlook on future work.

Security Aspects. Compared to other methods implemented on the laptop, LeakPrint is more resistant to attacks.

Fingerprint identification can be easily attacked by fingerprint theft [2]; face identification can be attacked by

wearing a special mask [31]; and password entry can cause bypass information leakage [19, 20, 48]. For LeakPrint,

it is difficult for an attacker to steal leakage current from the bypass or to mimic the capacitive characteristics
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of a legitimate user’s body. 𝐿𝑒𝑎𝑘𝑃𝑟𝑖𝑛𝑡 is also superior to other methods applied with laptops, BreathPrint [3]

performed the user identification based on the breathing sound and the lower signal band (below 4𝐾𝐻𝑧) reduces
the robustness of the method in real world environments.

Nonetheless, it is conceivable that changes in some anatomical features (e.g., muscle and bone density) could

change sufficiently over time to render stored samples of the legitimate users obsolete. Thus, we believe that

LeakPrint could collect data samples on an on-going basis and update the datasets to reflect gradual changes in

biometric.

In this paper, we build the system and conduct experiments with the premise that the device is secure. It is

possible for an attacker to change the acquisition device of the system (e.g., a earphone with storage function)

and steal the raw data to attack the system. We will do further research for device security in future work.

Different Occasions and Devices. The leakage current used in LeakPrint comes from a safety capacitor in the

adapter, so the leakage current can be generated in different scenarios configured with a power source. However,

in the mobile scenarios, signal collecting devices are more difficult to configure than power source (e.g. the server

in the system). We will focus on the development of convenient collecting devices in our future work.

Moreover, the leakage current may also be present in some household appliances, such as the metal casing or

the metal button of some smart appliances. Since the operating current of household appliances is higher than

that of laptops, we have to pay more attention to physical safety. We will investigate household appliances with

the leakage current and explore the possibility of extending the system to these devices in our future work.

Future Work. We will optimize LeakPrint both in terms of hardware and algorithm. While the earphone offer

advantages such as easy availability and low cost, it limits the application of the system in mobile scenarios. As

an alternative to the earphone and server, we attempt to use mobile devices such as smart watches to capture the

leakage current or detect the effects of the leakage current on the human body. The electrodes on the special

bracelet are able to read the leakage current flowing through the body [38, 39, 49]. Besides, based on the ability

of the current to stimulate muscles and cause involuntary movement [5], such slight movements may affect the

blood vessels and thus alter the acquisition of ECG (electrocardiogram) by smart watches [15, 16]. Currently,

we are unable to acquire the corresponding sensor data directly from smart watches. We attempt to verify our

conjecture in future work using a bracelet configured with light sensors and electrodes.

On the other hand, we try to capture the dynamic features of human capacitance over time using temporal

models such as LSTM [51], thus to improve the robustness of the system to fluctuations in capacitance features.

Moreover, LeakPrint relies on anatomical features, which can be regarded as a static feature. In the future, we will

explore the integration of gestures or actions with data related to leakage current, with the aim of developing an

identification system based on static biometric as well as dynamic behavioral features.

8 CONCLUSION

This paper presents a user identification system for laptops with a metal casing. The proposed LeakPrint system

uses an earphone to detect leakage current flowing through the body, and then transmits the signal to a server

for identification. Based on the aliasing effect, the leakage current captured at the sampling rate of 48𝑘𝐻𝑧 are
used in conjunction with denoising, dimension reduction, and feature extraction to enable behavior-irrelevant

user identification. The experiments demonstrated the feasibility of LeakPrint in identifying users with a high

degree of accuracy (93.6%), with excellent resistance to attack (FAR of 9.1%). Considering the ubiquity of servers

in companies and research institutes, the system could be deployed in a variety of scenarios at low cost.
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