Multi-Approximate-Keyword Routing Query

Bin Yao¹, Mingwang Tang², Feifei Li²

¹Department of Computer Science and Engineering Shanghai Jiao Tong University, P. R. China

²School of Computing University of Utah, USA

(ロ) (日) (日) (日) (日)

Outline

2 Preliminary

3 Exact solutions

Approximate solutions

5 Experiments

6 Related Work and Concluding Remarks

注入 米 注入

Introduction and motivation

- Approximate keyword search is important:
 - GIS data has errors and uncertainty with it.
 - GIS data is keeping evolving, routinely data cleaning and data integration is expensive
 - People may make mistakes in query input (typos)

★ ∃ → ∃

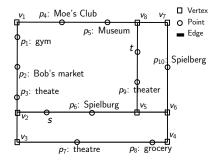
Introduction and motivation

- Approximate keyword search is important:
 - GIS data has errors and uncertainty with it.
 - GIS data is keeping evolving, routinely data cleaning and data integration is expensive
 - People may make mistakes in query input (typos)
- Shortest path search has many applications:
 - map service.
 - strategic planning of resources

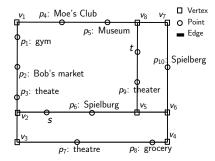
< ∃ >

Introduction and motivation

- Approximate keyword search is important:
 - GIS data has errors and uncertainty with it.
 - GIS data is keeping evolving, routinely data cleaning and data integration is expensive
 - People may make mistakes in query input (typos)
- Shortest path search has many applications:
 - map service.
 - strategic planning of resources
- Our work: Multi-Approximate-Keyword Routing (MAKR) query.
 - A combination of shortest path search and approximate keyword search
 - Given a source and destination pair (s, t) and a query keyword set ψ on a road network, the goal is to find the shortest path that passes through at least one matching object per keyword.

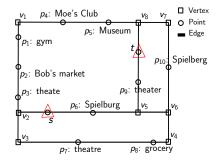


- ∢ ⊒ →



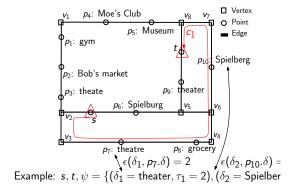
Approximate string similarity: edit distance $\epsilon(\delta_1, \delta_2) = \tau$.

- ∢ ≣ →

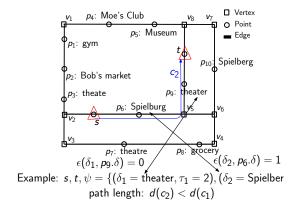


Example: $s, t, \psi = \{(\delta_1 = \text{theater}, \tau_1 = 2), (\delta_2 = \text{Spielber}\}$

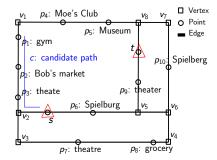
-



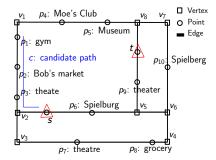
→ < ∃ →</p>



▶ < ∃ >



Example: $s, t, \psi = \{(\delta_1 = \text{theater}, \tau_1 = 2), (\delta_2 = \text{Spielber} \ \psi(c) = \{\delta_1 = \text{theater}\}$



Example: $s, t, \psi = \{(\delta_1 = \text{theater}, \tau_1 = 2), (\delta_2 = \text{Spielber} \\ \psi(c) = \{\delta_1 = \text{theater}\} \\ |\psi| = \kappa, \text{ when } \psi(c) = \psi, c \text{ becomes a qualified path} \end{cases}$

프 (프) -

Outline

2 Preliminary

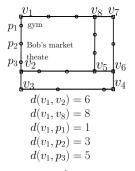
Approximate solutions

5 Experiments

6 Related Work and Concluding Remarks

문어 귀문어

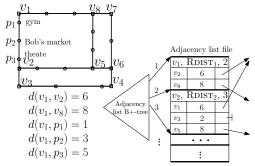
э



vi: network vertex.

- ∢ ⊒ →

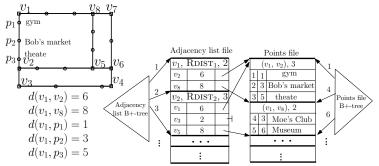
Data structure: Disk-based storage of the road network



v_i: network vertex. *RDIST_i*: distances to the landmarks.

프 (프)

Data structure: Disk-based storage of the road network

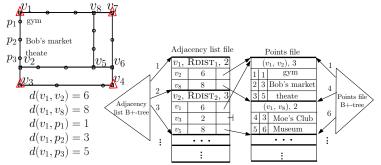


*v*_i: network vertex.

 $RDIST_i$: distances to the landmarks.

• [sl97]: CCAM: A connectivity-clustered access method for networks and network computations. In IEEE TKDE, 1997.

Data structure: Disk-based storage of the road network



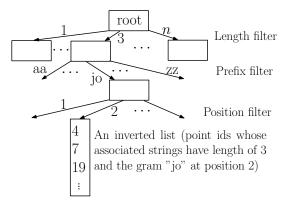
v_i: network vertex.

 $RDIST_i$: distances to the landmarks.

- [sl97]: CCAM: A connectivity-clustered access method for networks and network computations. In IEEE TKDE, 1997.
- [gh05]: Computing the shortest path: A* search meets graph theory. In SODA, 2005.

글 > - + 글 > - -

Data structure: FilterTree for Approximate Keywords-Matching



 [III08]: Efficient merging and filtering algorithms for approximate string searches. In ICDE, 2008.

э

Outline

2 Preliminary

Approximate solutions

5 Experiments

6 Related Work and Concluding Remarks

문어 귀문어

э

• Intuition: **PER-Path E**xpansion and **R**efinement.

문에 비용에 다

= 900

• Intuition: PER-Path Expansion and Refinement.

 $Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$

For each keyword $w \in \psi - \psi(c)$, add a point p from P(w) into current shortest candidate path, s.t. $\forall p \in P(w), \epsilon(p.\delta, w) \leq \tau_w$, to minimize the impact to d(c)

• • = •

э.

• Intuition: PER-Path Expansion and Refinement.

 $Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$

For each keyword $w \in \psi - \psi(c)$, add a point p from P(w) into current shortest candidate path, s.t. $\forall p \in P(w), \epsilon(p.\delta, w) \leq \tau_w$, to minimize the impact to d(c)

 $s \bullet \bigcirc p_1 : ee \qquad \bullet t \qquad \begin{cases} s, p_1, t \\ s, p_3, t \\ g_3 : yb \end{cases}$ $IO efficient priorit \\ O efficient \\$

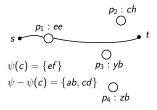
IO efficient priority queue of candidate paths: initialized with c's tha each covers a dinstinct, single $w \in \psi$

< ∃ →

Intuition: PER–Path Expansion and Refinement.

 $Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$

For each keyword $w \in \psi - \psi(c)$, add a point p from P(w) into current shortest candidate path, s.t. $\forall p \in P(w), \epsilon(p.\delta, w) \leq \tau_w$, to minimize the impact to d(c)

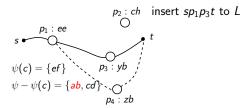


э.

Intuition: PER–Path Expansion and Refinement.

 $Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$

For each keyword $w \in \psi - \psi(c)$, add a point p from P(w) into current shortest candidate path, s.t. $\forall p \in P(w), \epsilon(p.\delta, w) \leq \tau_w$, to minimize the impact to d(c)

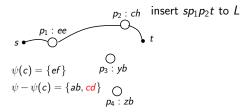


I = ►

Intuition: PER–Path Expansion and Refinement.

 $Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$

For each keyword $w \in \psi - \psi(c)$, add a point p from P(w) into current shortest candidate path, s.t. $\forall p \in P(w), \epsilon(p.\delta, w) \leq \tau_w$, to minimize the impact to d(c)



★ ∃ ▶ 3

Exact solution overview

Improvement.

- use Landmarks to estimate distances when finding points;
- modify and then combine with FilterTree to find p ∈ P(w) incrementally;
- refine d(c) when c becomes a qualified path.
 - two methods to refine d(c): PER-full and PER-partial

<23> 3</

Outline

2 Preliminary

5 Experiments

6 Related Work and Concluding Remarks

문어 귀문어

Approximate solutions for MAKR query

• Problem with the exact solution: Theorem 1: The MAKR problem is NP-hard.

프 (프)

Approximate solutions for MAKR query

- Problem with the exact solution: Theorem 1: The MAKR problem is NP-hard.
- Approximate solutions:
 - The local minimum path algorithms: A_{LMP1} and A_{LMP2} .
 - The global minimum path algorithm: A_{GMP} .

- ₹ 🖹 🕨

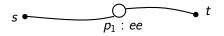
$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$

문에 비용에 다

Ξ.

$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$

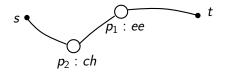
For each segment (p_i, p_j) , find a point p, $p.\delta$ similar to keywords in $\psi - \psi(c)$, to minimize sum of $d(p_i, p)$ and $d(p, p_j)$.



프 (프) -

$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$

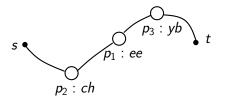
For each segment (p_i, p_j) , find a point p, $p.\delta$ similar to keywords in $\psi - \psi(c)$, to minimize sum of $d(p_i, p)$ and $d(p, p_j)$.



- ∢ ≣ ▶

$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$

For each segment (p_i, p_j) , find a point p, $p.\delta$ similar to keywords in $\psi - \psi(c)$, to minimize sum of $d(p_i, p)$ and $d(p, p_j)$.



$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$

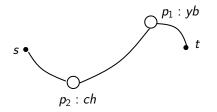
글 에 세 글 에 다

$$\mathsf{Q}:\mathsf{s},\mathsf{t},\psi=\{(\mathsf{ab},1),(\mathsf{cd},1),(\mathsf{ef},1)\}$$

For each keyword $w \in \psi - \psi(c)$, we iterate through the segments in c and add the point $p \in P(w)$, which minimizes d(c), to one segment (p_i, p_j) of c.

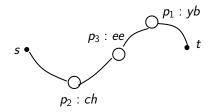
$$\mathsf{Q}: \mathsf{s}, \mathsf{t}, \psi = \{(\mathsf{ab}, 1), (\mathsf{cd}, 1), (\mathsf{ef}, 1)\}$$

For each keyword $w \in \psi - \psi(c)$, we iterate through the segments in c and add the point $p \in P(w)$, which minimizes d(c), to one segment (p_i, p_j) of c.



$$\mathsf{Q}: \mathsf{s}, \mathsf{t}, \psi = \{(\mathsf{ab}, 1), (\mathsf{cd}, 1), (\mathsf{ef}, 1)\}$$

For each keyword $w \in \psi - \psi(c)$, we iterate through the segments in c and add the point $p \in P(w)$, which minimizes d(c), to one segment (p_i, p_j) of c.



$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$

5•

Bin Yao, Mingwang Tang, Feifei Li Multi-Approximate-Keyword Routing Query

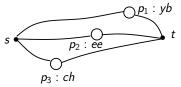
글에 비밀어 다

э.

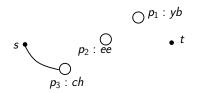
• t

 $Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$ For each keyword $w \in \psi - \psi(c)$, find a point $p \in P(w)$ to minimize sum of d(s, p) and d(p, t).

 $Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$ For each keyword $w \in \psi - \psi(c)$, find a point $p \in P(w)$ to minimize sum of d(s, p) and d(p, t).



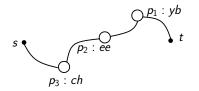
$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$



▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ ∽ � �

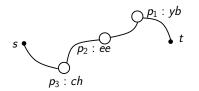
A >

$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$



문제 비문제

$$Q: s, t, \psi = \{(ab, 1), (cd, 1), (ef, 1)\}$$



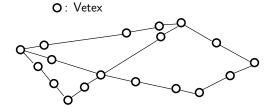
• Theorem 2: The A_{GMP} algorithm gives a κ -approximate path. This bound is tight.

→ < Ξ → </p>

- Challenges in all approximate methods:
 - how to find p ∈ P(w) incrementally for each type of objective function (instead of finding P(w) all at once and iterate through points in P(w) one by one)?
 - how to avoid exact distance computation as much as possible?

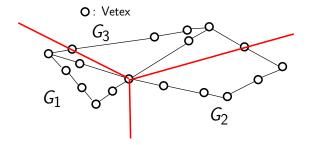
★ ∃ → ∃

• Voronoi-diagram-like partition (by Erwig and Hagen's algorithm).



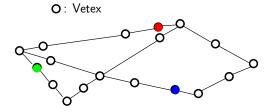
- ∢ ⊒ →

• Voronoi-diagram-like partition (by Erwig and Hagen's algorithm).



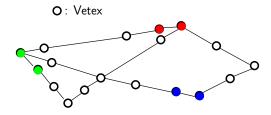
- ∢ ⊒ →

• Voronoi-diagram-like partition (by Erwig and Hagen's algorithm).



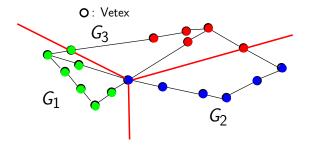
- ∢ ⊒ →

• Voronoi-diagram-like partition (by Erwig and Hagen's algorithm).



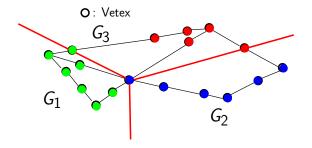
- ∢ ≣ →

• Voronoi-diagram-like partition (by Erwig and Hagen's algorithm).



- ∢ ≣ ▶

• Voronoi-diagram-like partition (by Erwig and Hagen's algorithm).



 $d^{-}(p, G_i)$: lower bound distance from p to the boundary of G_i , computed using the landmarks.

$$d^-(s,G_i)+d^-(G_i,t)\leq d^-(s,p)+d^-(p,t), orall p\in G_i.$$

▶ < ∃ > ...

- Top-k MAKR query:
 - Exact methods.
 - Approximate methods.

문어 세 문어

Ξ.

- Top-k MAKR query:
 - Exact methods.
 - Approximate methods.
- Multiple strings.

문어 세 문어

Ξ.

- Top-k MAKR query:
 - Exact methods.
 - Approximate methods.
- Multiple strings.
- Updates.

문어 세 문어

Ξ.

Outline

2 Preliminary

3 Exact solutions

Approximate solutions

5 Experiments

6 Related Work and Concluding Remarks

문어 귀 문어

Experiment setup

• All experiments were executed on a Linux machine with an Intel Xeon CPU at 2.13GHz and 6GB of memory.

Experiment setup

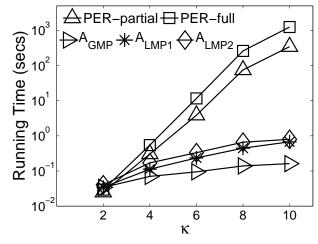
- All experiments were executed on a Linux machine with an Intel Xeon CPU at 2.13GHz and 6GB of memory.
- Data sets:
 - road networks from the *Digital Chart of the World Server*: City of Oldenburg (OL,6105 vertices, 7029 edges) California(CA,21048 vertices, 21693 edges) North America (NA,175813 vertices, 179179 edges)
 - building locations in OL, CA and NA from the *OpenStreetMap* project.

Experiment setup

- All experiments were executed on a Linux machine with an Intel Xeon CPU at 2.13GHz and 6GB of memory.
- Data sets:
 - road networks from the *Digital Chart of the World Server*. City of Oldenburg (OL,6105 vertices, 7029 edges) California(CA,21048 vertices, 21693 edges) North America (NA,175813 vertices, 179179 edges)
 - building locations in OL, CA and NA from the *OpenStreetMap* project.
- The default experimental parameters:

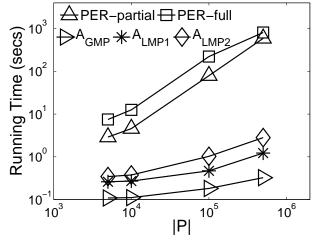
Symbol	Definition	Default Value
<i>P</i>	number of points for exact solution	10,000
P	number of points for approximate solution	1,000,000
κ	number of query strings	6
au	edit distance threshold	2
	road network	CA

→ Ξ →



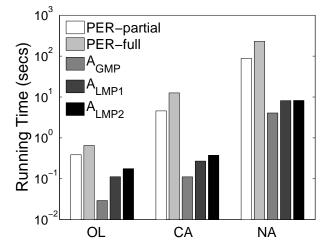
|P| = 10,000

< ∃ →



|P| = 10,000

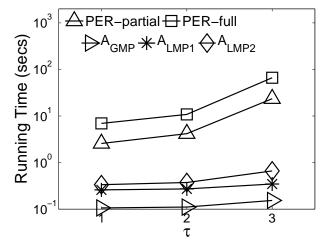
< ∃ >



|P| = 10,000

æ

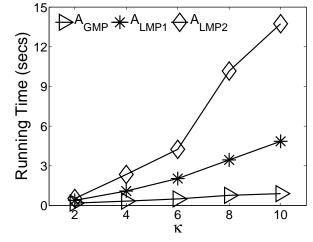
< ∃ >



|P| = 10,000

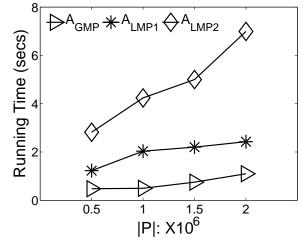
문어 문

Scalability of approximate solutions:



|P| = 1,000,000

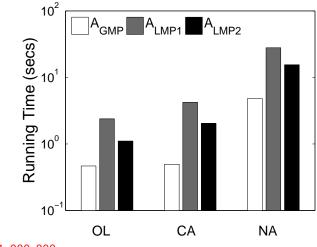
3 x 3



|P| = 1,000,000

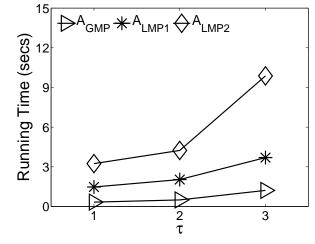
3 x 3

Scalability of approximate solutions:



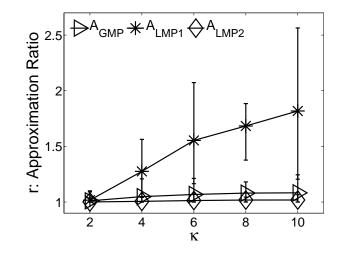
문어 문

Scalability of approximate solutions:

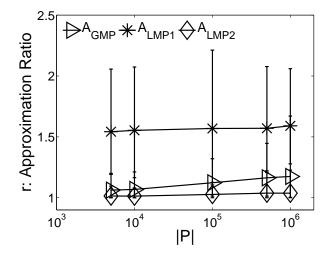


|P| = 1,000,000

3 x 3

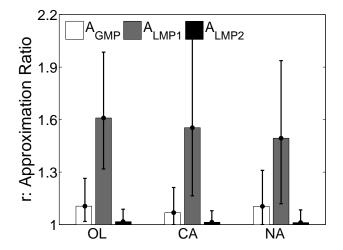


문어 문



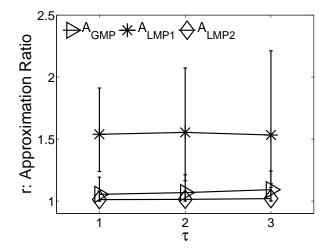
æ

< ∃ >



æ

< ∃ >



æ

< ≣ >

Outline

2 Preliminary

3 Exact solutions

Approximate solutions

문어 귀 문어

• The optimal sequenced route (OSR) query [sks07].



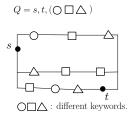
 $\bigcirc \Box \bigtriangleup$: different keywords.

• [sks07]: The Optimal Sequenced Route Query. In VLDBJ, 2007.

글 🖌 🖌 글 🛌

-

• The optimal sequenced route (OSR) query [sks07].



• [sks07]: The Optimal Sequenced Route Query. In VLDBJ, 2007.

→ < Ξ → </p>

• The optimal sequenced route (OSR) query [sks07].

$$Q = s, t, (\bigcirc \Box \bigtriangleup)$$

• [sks07]: The Optimal Sequenced Route Query. In VLDBJ, 2007.

□ > < E > < E > E - のへで

Related work

- The optimal sequenced route (OSR) query [sks07].
- Exact keyword query and only handles the query keywords sequentially.

 $Q = s, t, (\bigcirc \Box \triangle)$

• [sks07]: The Optimal Sequenced Route Query. In VLDBJ, 2007.

< ∃ >

- The optimal sequenced route (OSR) query [sks07].
- Exact keyword query and only handles the query keywords sequentially.
- In MAKR queries, "categories" are dynamically decided only at the query time.

$$Q = s, t, (\bigcirc \square \triangle)$$

• [sks07]: The Optimal Sequenced Route Query. In VLDBJ, 2007.

Thank You

$\ensuremath{\mathbb{Q}}$ and $\ensuremath{\mathbb{A}}$

Bin Yao, Mingwang Tang, Feifei Li Multi-Approximate-Keyword Routing Query

★ Ξ → < Ξ → </p>