Multi-Approximate-Keyword Routing in GIS Data

Bin Yao!

Mingwang Tang?

Feifei Li?

yaobin@cs.sjtu.edu.cn', {tanglifeifei}@cs.utah.edu?
Department of Computer Science and Engineering, Shanghai JiaoTong University*
School of Computing, University of Utah?

ABSTRACT

For GIS data situated on a road network, shortest path
search is a basic operation. In practice, however, users are
often interested at routing when certain constraints on the
textual information have been also incorporated. This work
complements the standard shortest path search with mul-
tiple keywords and an approximate string similarity func-
tion, where the goal is to find the shortest path that passes
through at least one matching object per keyword; we dub
this problem the multi-approximate-keyword routing (MAKR)
query. We present both exact and approximate solutions.
When the number s of query keywords is small (e.g., k <
6), the exact solution works efficiently. However, when
increases, it becomes increasingly expensive (especially on
large GIS data). In this case, our approximate methods
achieve superb query efficiency, excellent scalability, and
high approximation quality, as indicated in our extensive
experiments on large, real datasets (up to 2 million points
on road networks with hundreds of thousands of nodes and
edges). We also prove that one approximate method has a
k-approximation in the worst case.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management—
Systems. Subject: Query processing

General Terms

Algorithms, Performance

1. INTRODUCTION

GIS data refer to the full spectrum of digital geographic
data. Often time, objects in GIS data consist of both spatial
and textual information, where the spatial information rep-
resents the location of the object and the textual information
contains a set of keywords (in string format) describing the
object at a particular location. The most useful GIS data
usually situate on a road network, e.g., the OpenStreetMap
project, where a basic operation is to find the shortest path

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ACM S GSPATIAL GIS’11, November 1-4, 2011. Chicago, IL, USA.
Copyright(©) 2011 ACM ISBN 978-1-4503-1031-4/11/11 ...$10.00.

U1 2 l%és Club J; vg | U7 O Vertex
i it f1 O Point
o Mo Jie] 1] o b
P1i gy l
cg
(L D1 ;)Spielberg
Do: |Bolp’s tharkiet 2 \
&P thdate No: ﬁeater
pel Spielburg Vs V6
B $ n m
I.Jv2 [S AV ") (*)
i Y B !
pr: theatre P8 ng;cely

Figure 1: Example: ¢ = {(theater, 2), (Spielberg, 1)}.
for any given source and destination pair (s,e). In prac-
tice, however, users are often interested at routing between
(s,e) when certain constraints on the textual information
have been incorporated as well. This work complements
the standard shortest path search with multiple keywords
and an approximate string similarity function, where the
goal is to find the shortest path that passes through at least
one matching object per keyword; we dub this problem the
multi-approximate-keyword routing (MAKR) query.

There are a lot of possible metrics for matching key-
words, and keyword matching based on approximate string
similarity using the string edit distance is a popular choice
[9]. Specifically, given two strings o1 and o2, the edit dis-
tance between o1 and o2, denoted as g(o1,02), is defined as
the minimum number of edit operations required to trans-
form one string into the other. The edit operations refer to
an insertion, deletion, or substitution of a single character.
For example, let o1 =‘Spielburg’ and o2 =‘Spielberg’, then
o(o1,02) = 1, by substituting the first ‘v’ with ‘¢’ in 0.
The standard method for computing o(o1,02) is a dynamic
programming formulation. For two strings with lengths |o1|
and |o2| respectively, it has a complexity of O(|o1||oz]).

That said, an example of an MAKR query is given in Fig-
ure[ll where a road network consisting of vertices (squares),
edges (bold line segments) and a set of points of interest
(circles) residing on the edges is shown. This road network
is aligned in a grid with unit length to ease the illustra-
tion. Each point of interest is associated with a string to
describe its information (e.g., name, service). Suppose that
a family wants to visit a "theatre” and a bar like ”Spiel-
berg” from s to e with the shortest distance. Clearly, due
to errors/uncertainty in the database and/or the query key-
words, a path that involves the locations named as “the-
ater” and ”Spielburg” should also be a candidate answer.
Furthermore, in many cases the order in which they visit

these desired locations does not matter. This is precisely
the multi-approximate-keyword routing (MAKR) query. In
this example, ¢1 = {s, p7,p10,¢e} and c2 = {s,ps, po, e} can
be candidate paths (there are more). Note that a segment
in a path is defined by the shortest path connecting its two
end-points. For example, the segment {p7, p10} in ¢ is given
by p7 — v4 — v — pio in Figure[[l The challenge in an
MAKR query is to find the shortest path among all candidate
paths efficiently. In this case, c2 is the answer.

Suppose there are k query keywords and they are speci-
fied (together with the corresponding edit distance thresh-
olds) in a set ¥. Answering an MAKR query exactly is a very
challenging problem. In fact, we can show that it is NP-hard
w.r.t k. Nevertheless, when the number of query keywords
is small, we show that it is possible to design efficient algo-
rithms to answer MAKR queries exactly. When « and/or the
dataset are large, we resort to efficient and effective approx-
imate solutions. More precisely, our main contributions in
this work are summarized as follows:

e We formalize the notion of MAKR queries in Section

e We present exact solutions for MAKR queries in Sec-
tion Hl which are also extended to top-k MAKR queries.

e We show that MAKR is NP-hard. Thus, we also design
three approximation algorithms in Section[ll They are
efficient and easy to implement. We also prove that
one is a k-approximation in the worst case compared
to the exact solution (in addition, the approximations
in practice are usually much better).

e We show empirically the efficiency and effectiveness
of our methods in Section [Our study uses large
real road networks (up to 2 million points on road net-
works with hundreds of thousands of nodes and edges).
Our approximate solutions are particularly appealing,
where they can answer an MAKR query up to 10 query
keywords on large datasets in less than a second to a
few seconds, with high quality approximations.

We introduce relevant background (of some basic tech-
niques) for our algorithms in Section B and survey the re-
lated work in Section B The paper concludes in Section [

2. PROBLEM FORMULATION

Formally, a GIS database contains a set P of points on
a road network G = (V,E). Without loss of generality,
we assume that each point is associated with only one key-
word. That said, a point from P is defined by (p;, w;) where
p; represents its location and w; is the associated keyword.
Generalizing our problem to handle multiple keywords per
point is straightforward and discussed in Section [B

An MAKR query is specified by two points s and e, as
well as a set Y of k query keyword and threshold value pairs
{(o1,71),...,(0k,T)}, where o; is the ith query keyword
and 7; is the desired edit distance for deciding whether a
keyword from an object matches with o; under p.

The road network is an undirected connected graph G =
(V,E), where V (E) denotes the set of vertices (edges) in
G. A point p € P locates on an edge e € FE. The distance
between any two points (or vertices), denoted as d(ps, p;),
is the length of the shortest path connecting them. We use
w(p) to denote the string associated with p, e.g., w(p;) = w.

Definition 1 Given an MAKR query q¢ = (s,e,v), a path
¢ = {8,De1s Daos-** ,Pay, €}, where py, € P fori=1,....¢

Symbol Description

G = (V,E) | road network with vertex (edge) set V (E)

P the set of points of interest on G

d(p1,p2) network distance between p; and p2

d~ (p1,p2) | a lower bound of d(p1,p2)

d(c) the length of the path ¢

d~(c) the lower bound of d(c)

P(c),W(c) | set of points, their strings on a path ¢

lc| number of points on the path ¢, |c|] = |P(c)]|

P the set of query (keyword, threshold) pairs

P(c) set of query keywords covered by a path ¢

K number of pairs in

(04, 7i) 1th query string and associated threshold

s, e the starting and ending points for a path

w(p) the string associated with a point p

o(wi,w2) the edit distance between strings wi and ws

P(o,T) subset of points from a point set P with their
strings satisfying o(w, o) < 7

P(’d)) {P(017T1)7"'7P(0H77K)}

Ac set of complete candidate paths

Table 1: Frequently used notations

and ¢ < K, is a complete candidate path for q if and only
if for any (oi,75) € 1, there emists j € [1,£], such that
o(wz;,04) < 7i; and for any j € [1,4], Ji € [1, K] such that
o(wz;,0i) < 73 (we say px; covers (0:,7:)). We denote the
set of all complete candidate paths as Ae.

We omit any road network vertices and query-irrelevant
points from a path in Definition [l A path c is still well-
defined as any two consecutive points in ¢ are connected by
their shortest path. We denote the path between the ith
point and (i + 1)th point in a path c the ith segment of ¢ (s
is the Oth point and e is the (/4 1)th point). The length of a
path ¢ = {s,pz1,Pass " , Pzys €}, d(c), is defined as follows:

d(c) = d(s,pzl) + d(pwlvaz)v cees +d(pfctz7 e)-

For any path ¢, we use P(c) to denote the set of points on
¢, and W (c) to denote the set of strings from P(c). A query
keyword (o5, 7;) is said to be covered by c if Jw € W (c)
such that o(w,0;) < 7. The set of query keywords from
1 that has been covered by c is denoted as ¥(c). Clearly,
¥(c) C v for a partial candidate path (e.g., {s,ps} in Figure
) and ¢(c) = 4 for a complete candidate path (e.g., ¢1 and
c2 in Figure[ll). Note that for a complete candidate path c,
1 =1(c) C W(c) and |P(c)| > k+2, as ¢ may pass through
irrelevant points in the shortest path in any of its segment.

Definition 2 A multi-approzimate-keyword routing (MAKR,)
query q = (s,e,) asks for a complete candidate path c* €
Ac with the smallest length, i.e., ¢* = argmin, . 4 d(c).

We can easily generalize an MAKR query to a top-k MAKR
query, where the answer consists of the top-k shortest can-
didate paths from A., instead of only the shortest one.

Lastly, suppose we have an algorithm A that can re-
trieve a complete candidate path c¢ for any MAKR query ¢
where the optimal path is ¢*. If d(c¢*) < d(c) < ad(c),
then A is called an a-approximate algorithm, and ¢ is an
a-approximate path. For a summary of the notations fre-
quently used in the paper, please refer to Table [l

3. PRELIMINARIES

Our goal is to handle large-scale GIS data on road net-
works. Thus, we need to design and leverage on disk-based

data structures to facilitate our algorithms. We discuss these
structures in this section.

We adopt a disk-based storage model for the representa-
tion of a road network, which groups network nodes based
on their connectivity and distance, as proposed in [14]. We
introduced some necessary adjustment to this model to make
it work for our algorithms. Figure B illustrates an instance
of our model for the road network shown in Figure [l In
our model, the adjacency list of the road network nodes and
the points of interest on the network edges, along with their
associated strings, are stored in two separate files, the ad-
jacency list file and the points file respectively. Each file is
then indexed by a separate B+ tree.

Adjacency list file Points file

1,/"lv1, RDISTy, 2/ (01, v2), 3
Vs 6 111 gym
Vg 8 2|3|Bob’s market
2/'1’2, RDIST,, 3 35| theate
e SR TR ().
U3 2 H 4| 3| Moe’s Club
Us 8 —__|5] 6] Museum

Figure 2: Disk-based storage of the road network.

To facilitate our query algorithms, a small set Vr of nodes
from V is selected as the landmarks. The distance between
two nodes, two points, or a node and a point is the length
of the shortest (network) path connecting two objects of
concern. For each node v; € V, at the beginning of its
adjacency list, we store its distance to each landmark in
Vr (the set of all such distances is collectively denoted by
RDIST; in Figure B)) and the number of adjacent nodes of v;
(e.g., 2 for vy in Figure). How to select Vg and compute
RDIST; efficiently for each node v; are discussed in Section
A when RDIST; is used in our query algorithms. Next in the
adjacency list of v;, for each adjacent node v; of v;, we store
the adjacent node id, the length of the edge (vs,v;) and a
pointer to the points group in the points file for points of
interest on the edge (vs,v;). If an edge does not contain
any point, a null pointer is stored. The adjacency lists of
all nodes are stored in the adjacency list file and they are
ordered in the ascending order of the node id. A B+ tree is
built on the adjacency list file. The key of this tree is the
node id and the value is a pointer to its adjacency list. For
example, in Figure B given the node id v1, we can find its
adjacency list from the B+ tree which contains v1’s RDIST;,
number of adjacent nodes, and each of its adjacent nodes
(v2 and ws): their distances to v1 and the pointers to the
points group on each corresponding edge.

The points file collects and stores the points group (points
on the same edge) on all edges of the road network. In each
points group, we first store the edge containing this points
group and the number of points in it. Subsequently, for
each point, we store the point id, the distance of this point
to the node with smaller id on this edge, and its associated
string. The ids of points are assigned in such a way that
for points on the same edge (v, v;), points are stored by
their offset distances to the node with smaller id in ascending
order, and their ids are then sequentially assigned (crossing
over different edges as well). Note that these points groups
are stored in the points file in the ascending order of the
(smaller) node id defining an edge.

For example, the points file in Figure B partially reflects

the example in Figure[Mland it indicates that the edge (v1, v2)
contains three points {p1, p2,ps}; d(p1,v1) = 1 and w, is
“oym”, d(p2,v1) = 3 and wo is “Bob’s market”, and d(ps, v1) =
5 and ws is “theate”. For any edge {vi,v;}, we represent it
by placing the node with the smaller id first. If v; < vj,
then in the adjacency list of v;, the entry for v; will have its
pointer of the points group pointing to the points group of
(vi,v;), i.e., no duplication of points group will be stored.
For example, the pointer of the points group for v; in the
adjacency list of v points to the points group of (v1,v2) as
shown in Figure A B+ tree is also built on the points
file, where each data entry corresponds to a points group
with keys being the first point id of each points group and
values being the pointer to the corresponding points group.
Clearly, this allows fast retrieval of a point p and the points
group containing it from the points file, using p’s id.

Our storage model is simple and effective. It supports
our query algorithms seamlessly and efficiently. Our design
is partly inspired by the adjacency list module in [12, 14].
Furthermore, we also build auxiliary string indices to index
the collections of strings in a road network, for efficient ap-
proximate string search.

1

3 & Length filter

N Prefix filter

associated strings have length of 3
and the gram "jo” at position 2)

Figure 3: An example of a FilterTree from [10].

Given a collection of strings, we use the FilterTree [10]
to index them. The FilterTree combines several string fil-
ters (e.g., length filter, position filter, count filter) with the
g-gram inverted lists for a collection of strings and organizes
these filters in a tree structure, in order to support efficient
approximate string search. An example of a FilterTree is
shown in Figure The nodes in the first level of the tree
are grouped by the string length. The second level nodes
are grouped by different grams (in this example, 2-grams).
Then we identify the children of each gram by the position
of that gram in the corresponding strings. Each such child
node maintains an inverted list of point ids (whose associ-
ated strings contain this gram at a particular position of a
given length). Using our structures, these point ids can be
used to search the B+ tree of the points file to retrieve the
corresponding strings and other relevant information.

In our algorithms, we either build one FilterTree for the
entire collection of strings on a road network, or multiple
FilterTrees for a set of disjoint partitions of the road network
(one for each collection of strings from a partition). The
details will become clear when we introduce the respective
algorithms. Given a collection of points P with strings, a
query string o and a threshold 7, the FilterTree on P can
efficiently find all points P* (o, 7) in P that are most likely
having their strings’ edit distances to o less than or equal
to 7, possibly with false positives (but there are no false
negatives). The exact set of points, denoted by P(o,7),
that are similar to o with edit distances less than or equal
to 7, can then be identified by calculating the exact edit
distances between every candidate point in Pt (o, 7) and o.

Lastly, Dijkstra’s algorithm [5] is the classical method for
finding the shortest path between two points on a graph.
ALT algorithm [8] has introduced significant improvement
by reducing the expansion area of Dijkstra’s algorithm. The
basic idea in ALT algorithm is to use a small set of reference
nodes from the graph, then to compute and store the net-
work distances between each node and each reference node.
Using simple triangle inequality, lower bound of the distance
between two points can be easily obtained using these refer-
ence distances; during the expansion from the source to the
destination, a node that offers the smallest possible distance
from the source to the destination (through it) is selected as
the next node in the expansion (which is achieved by lever-
aging the lower bound for the distance between a node and
the destination). The landmarks in our data structure serve
as the reference nodes, and support the calculation of the
lower bound distance of any two nodes (or two points, or a
point and a node) efficiently.

Consider deriving d~ (ps,p;) < d(ps,p;), without loss of
generality, suppose p; € (vi,v2) and p; € (vs,vs). From
RDIST; (see Figure Bl), we can find the distance between a
node v; and any landmark (reference node) in Vg. For any
reference node vy, clearly, d(pi, p;) > |d(pi, vr) —d(pj,vr)| =
d~ (pi,pj). Note that d(pi,vr) = min(d(p;,v1) + d(vi,vr),
d(pi,v2) + d(v2,vy)), where d(vi,vr), d(ve,vr) are available
from RDIST; and RDIST2 respectively, and d(ps, v1), d(pi, v2)
are available from the points group on the edge (v1, v2). Sim-
ilarly, d(pj, vr) can be easily computed. This process can be
easily generalized to find d™ (ps;,v;) or d™ (vi, vj).

Now, given any path ¢ = {s,pz,... Dz, €}, a lower
bound distance d™ (c) for d(c) can be easily computed as
the summation of the lower bound distance of each segment
(which is the distance between two points), i.e.,

d”(c) =d (8,pzy) +d" (PaysPg) + - +d (Pzy,e). (1)

4. EXACT METHODS

We propose two progressive path expansion and refinement
(PER) algorithms which build up partial candidate paths
progressively and refine them until the complete, exact short-
est path is guaranteed. Both algorithms follow similar in-
tuitions: we start with the shortest path between s and e
and progressively add point p (one at a time) to an existing
(partial candidate) path ¢ whose string w(p) is similar to a
query keyword (o;,7) from ¢ (that has not been covered in
¢), while keeping in mind to minimize the impact to d(c) by
including p (to decide which point to include). Note that a
partial candidate path c is any path that connects s and e
and has passed through some points with strings similar to
a subset of query keywords from . Clearly, in this process a
lot of partial candidate paths will be generated and the chal-
lenge is to decide what partial candidate paths we generate
and the order in which we generate and expand them.

To reduce the cost of shortest path distance calculation
for any path, we try to cut down the number of times of exact
shortest path distance calculation during the query process-
ing. Hence, both algorithms use the lower bound distance
d™ (¢) to estimate d(c) for any path ¢ and only attempt to
find d(c) exactly after ¢ becomes a complete candidate path.

Pre-processing. We rely on the landmarks Vg to estimate
the lower bound distance of any two objects (and a path).
It also helps us in computing the shortest path between two
points. How Vg is selected greatly affects its effectiveness,

thus the efficiency of our solutions. We adopt the best selec-
tion strategy proposed in [8]. Essentially, landmarks should
be picked up on the boundary of the road network and as far
away from each other as possible. Once we have the land-
marks, we compute the distance between all network nodes
and all landmarks (the RDIST;’s) by using the Dijstra’s al-
gorithm |Vg| times. Each time, we start from one landmark
and expand until we meet all the network vertices. It is also
shown in [8] that a small constant number of landmarks
(e.g., 16) will be enough to achieve excellent performance
even for large road networks. This only introduces a small
space overhead, which is acceptable in most applications.

For exact methods, we build one FilterTree T for all
points of interest P on the road network.

4.1 The per-full algorithm

For a query keyword set ¢, we use P(¢) to denote the
set {P(o1,71),...,P(0k,Ts)}

We first present some utility methods that help design the
PER-full algorithm. The first method is NextMinLen, which
takes as input the path ¢ = {s,...,ps;,e} and P(oy,7:)
(assume p,; covers the query keyword (o, 7;) €). Clearly,
pz; € P(oi,7;). Suppose we sort any point p € P(oy,7:)
in the ascending order of d(ps;_,,p) + d(p,e) and obtain a
list L(P(o3i,7:)). NextMinLen simply returns the successor
of ps; from this list. For example, given ¢ = {s,p1,e} and
¥ = {(ab,1), (cd, 1), (ef,1)} in Figure Bl clearly pi covers
(ab,1). NextMinSum will find p4 as the answer in this case,
since L(P(ab,1)) = {p1,pa} (an ordered set).

q:s,e={(ab,1),(cd, 1), (ef, 1)}

Figure 4: Example for MinLen and NextMinLen.

The next method takes as input a path ¢ and P(¢—1(c)),
and returns one point p for every keyword (s, 73) € ¥ —(c)
(i.e., keywords that are not yet covered by c), subject to the
following constraint:

p= argmin d(pz;,p)+d(p,e), (2)
pEP(0,7;)

where py; is the last point in ¢ before e. Intuitively, given
¢ = {s,...,Dz;, ¢}, p minimizes the distance for the path
d = {s... ,pzj,p,e}, among all points whose strings are
similar to an uncovered keyword o;. We will find |y — ()|
number of such points (one per uncovered keyword by ¢) and
we denote these points as a set P(c). Note that |P(c)| could
be smaller than |¢) —(c)|, as one point could be the answer
for @) for more than one uncovered keywords. Nevertheless,
P(c) C P — P(c). We denote this method as MinLen.

For example, suppose ¥ = {(ab,1),(cd,1),(ef,1)} and
¢ = {s,e} in Figure @l Then, ¥(c) = 0, P(c) = {s,e,ps}.
MinLen will return P(c) = {p1,p2,p3}, where p1 matches
(ab,1), p2 matches (cd,1), and p3 matches (ef,1). Con-
sider the uncovered keyword (ab,1) , P(ab,1) = {p1,pa},
but among the two paths ¢1 = {s,p1,e} and c2 = {s,pa, e}
c1 is shorter than cz, hence p; is favored over pa.

In practice, realizing both NextMinLen and MinLen ex-
actly is expensive, which involves exact shortest path com-

Algorithm PER-full (s, e,)

MinHeap H = (), entries in H are (path, score) pairs and
sorted by the ascending order of their scores;

2. ¢ ={s,e}; add the entry (¢,d” (c)) into H;

3. set dt = +oo;

4. while (true)

5 remove the top entry t = (c,t(c)) (t(c) is ¢’s score)

—_

from H; suppose ¢ = {8, pzy, "+ ,Pz;,€};
6. if (#’s complete flag is set)
7. if (t’s exact flag is set) return c;
8 else
9. RefinePath(c);
10. if (d(c) < d™)
11. d" = d(c); add (c,d(c)) into H and set
its exact flag;
12. else
13. D = MinLen(c, P(¢p — ¥(c));
14. foreachpep
15. let ¢ = {s,pay, " ,Dz;, D, €};
16. if (d” () <dt)
17. add (¢/,d~(c)) into H; set its complete
flag if ¥(c') = v;
18. suppose py; covers (o;,7;) from v, let
p =NextMinLen(c, P(0i,T:));
19. let ¢ = {8, Py, D1, D€}
20. if (d7(c) < dt)
21. add (¢’,d (")) to H, it inherits ¢’s complete flag;

Figure 5: The PER-full Algorithm

putation, especially when these methods are executed fre-
quently. To improve efficiency, we use the lower bound dis-
tance between two points to approximate d(px,_, , p)+d(p, e)
in NextMinLen and @) in MinLen, respectively. Further-
more, to reduce space consumption, we do not materialize
the entire list of L(P (03, 7;)) at once in NextMinLen; rather,
we incrementally materialize k elements of this list each time
when needed, for some small constant k.

The last utility method is RefinePath, which takes c as
input and computes its exact distance d(c). Basically, it uses
the ALT algorithm to compute the shortest path and the
corresponding distance for each segment on c¢. The output
is simply the summation of these distances.

That said, the PER-full algorithm is presented in Figure
Bl The basic intuition is to progressively build partial can-
didate path and each time a partial candidate path c is ex-
panded to include one more uncovered query keyword from
1 — 1(c). This process stops when a complete candidate
path is identified and we are sure that it has the shortest
length among all possible partial and complete candidate
paths. The challenge lies in how to design an efficient and
effective terminating condition.

To do so, we maintain a min-heap H to store the partial
and complete candidate paths, and their scores, found so far.
The score of any path ¢, ¢(c), is defined as d™ (c¢) when d(c)
is not available for ¢; otherwise d(c) is the score. Entries in
H are sorted in the ascending order by their scores. We ini-
tialize H with (¢ = {s,e},d” (s,€e)). The PER-full algorithm
keeps popping out the top entry from H, which is a path ¢
with the minimum score. If ¢ is a complete candidate path
in A and its score is its exact distance d(c), the algorithm
terminates and outputs ¢ as the final answer (line 7). Oth-

erwise, if ¢ € A. but its score is not d(c), we use RefinePath
to get its exact distance d(c), and insert (¢, d(c)) back to H.
We set the ezact bit-flag of this entry, so that checking if the
score of an entry is a path’s exact distance in line 7 is easy.

We also maintain a global variable d* to track the min-
imum exact distance among complete paths with exact dis-
tances identified so far in H (lines 9-11). This helps prune
partial and complete paths whose scores (either d~(c¢) or
d(c)) are larger than d* (lines 10, 16, 20), and it is not nec-
essary to expand or examine them any more, which reduces
the number of entries to insert into H.

If a partial path ¢ = {s,pz,, -+ ,pz;, e} is popped out
from H, we first consider the possibility of expanding ¢ to
get a new path that covers one more query keyword that
is not yet covered by c¢ (lines 13-17). Recall that the set
of query keywords already covered by c is denoted by v (c).
So the set of uncovered keywords by ¢ is ¥ — 1(¢). For
each uncovered query keyword (oi,7:) € ¥ — 9(c), there
are multiple points P(o;,7;) matching o;. We can choose
any one point from P(o;,7;) and append it to ps; in ¢ to
get a new path ¢’ which now covers ¥(c’) = {¥(c), (64, 7:)}.
To make a good guess, we should first consider the point
p € P(0;,7;) that potentially leads to a new path ¢’ with the
shortest distance among all possibilities, which is precisely
the constraint in (@) in formulating the MinLen method.
Hence, MinLen precisely returns these points P (line 13), one
for each uncovered query keyword from ¢ — ¥(c) (possibly
with duplicate points, but only unique points are included
in P); PER-full just expands ¢ with each point in P by adding
it in between the last point p,; and e in c (lines 14-15). It
also sets its complete bit-flag when the new path to insert
into H now covers all query keywords (line 17).

But this is not enough. Given either a partial path or
a complete path without its exact flag set, ¢ = {s,paz,,
-+, Px;, e}, suppose that its last point p.; covers (oi,7;) €
1. With only the above expansions, when expanding the
path ¢’ = {s,pzy, ,Px;_y,€} into ¢ to cover (oi,7;), all
points in P(o;,7;) are possible candidates, but only p;
is used to expand ¢’. Note that Da; is the top/first point
from the list L(P(o0s,7;) (which is discussed and defined in
the NextMinLen method at the beginning of this section).
Clearly, to ensure correctness, we must explore the rest of
possibilities as well. The PER-full algorithm does this pro-
gressively. After expanding ¢’ with p. ; to get ¢ and insert ¢
into H, when c is eventually popped out, not only we expand
c just as what we did for ¢/, but also we consider expand-
ing ¢’ with the next point from the list L(P(o;,7;)). This
means that we need to replace the last point ps; in ¢ with
the next point from L(P(oy,7:)) (line 19), which is precisely
the point returned by NextMinLen in line 18.

Theorem 1 The PER-full algorithm finds the exact answer
for any MAKR query.

PrOOF. Our main task is to ensure that all possible par-
tial paths, whose distances are smaller than the first com-
plete path with an exact distance that shows up at the top
of H, should have been explored by PER-full (either they are
pruned away or inserted into H). Clearly, when this holds,
the terminating condition in line 7 correctly finds the exact
answer for an MAKR query and guarantees the correctness of
the PER-full algorithm.

This is exactly what is achieved by the way PER-full al-
gorithm expands or modifies a path when it is popped out
from H (lines 13-21). There are only two possibilities: 1)

expand a partial path to cover a new query keyword and do
this for all uncovered query keywords (lines 13-17); 2) for
the query keyword covered by the last expanded point in
a path, consider another matching point to cover the same
query keyword and ensure all such matching points have a
chance to be considered in some order (lines 18-21).

Finally, as we discussed, for efficiency purpose, in prac-
tice we use the lower bound distances in realizing MinLen
and NextMinLen methods. But clearly, this does not af-
fect the correctness of the PER-full algorithm. Since we used
lower bound distances, this still ensures that when a com-
plete candidate path with exact distance is popped out from
H, it will be the shortest path from A.. [

Lastly, d~(c¢') for a new path ¢’ obtained from a path c
in lines 16, 20 can be easily computed incrementally based
on d~(¢) and lower bound distances of affected segments.

4.2 The pER-partial algorithm

In the PER-full algorithm, when a complete candidate
path ¢ is popped out from H without exact distance, we
find d(c) and insert it back to H. Finding d(c) could be
very expensive and this effort will be a waste if ¢ turns out
not being the final exact answer. An alternative approach is
to refine d” (c) by finding the exact distance of one segment
of ¢ each time when c is popped out, and insert ¢ and refined,
tighter d~(c) back to H. The rest of the algorithm is the
same, with minor changes as when we set the exact bit-flag
and keeping additional bit-flags with each complete path ¢
to indicate which segment c has its exact distance calculated
already. That said, we can modify the RefinePath method to
refine only one segment and return the summation of exact
and lower bound distances of various segments. We denote
this approach as the PER-partial algorithm.

5. APPROXIMATE METHODS

We first present a negative result.
Theorem 2 The MAKR problem is NP-hard.

PROOF. The classical traveling salesman problem (TSP)
can be reduced to the MAKR problem. Given a TSP instance,
it requires starting at a point o, traveling through a set of
points {p1, ..., px} on a connected graph G, and returning to
o in the end. Finding the shortest trip that satisfies this con-
straint is NP-hard [5]. We can construct an MAKR instance
that the above TSP instance can reduce into. Let s =e =0
and set ¥ = {(01,0),...,(0k,0)} for any x string constants.
In the graph G, we associate o; with p; for i € [1, k] and
make sure any other points in G having strings different
from any o;. Clearly, this MAKR query solves the above TSP
instance. Thus, the MAKR problem is NP-hard. [

That said, our exact methods are still efficient heuristics
that work well when x and/or P() is not too large (as seen
in our experiment). However, when they keep increasing,
we need to design approximate methods that have good ap-
proximation quality and scalability in practice.

5.1 Thelocal minimum path algorithms

The first class of approximate methods is greedy algo-
rithms that greedily attempt to add a point p, to a partial
candidate path ¢, that is similar to one of the uncovered
query keywords and minimizes the distance (after being up-
dated) of the segment affected when adding p to it. We

denote this class of algorithms as the local minimum path
algorithm, or A, e, since they target at minimizing the local
change to one segment when deciding which qualified point
to include into a partial candidate path.

The first algorithm (Apue1) works as follows. It starts
with the path {s,e}. In a given step, assume we have a par-
tial candidate path ¢ = {s,pz,,...,ps;, e} with (j + 1) seg-
ments. Ajyp1 iterates through the segments in round robin
fashion. For the ith segment (i € [0,]]), {pw;,Px;+1} (let
Pzo = s and pg;, = e), we find a point p subject to:

p= argmin d(pe;,p) +d(p,Pe;py), ®3)
PEP(Y—1(c))
and we update ¢ by adding p to the ith segment, ie., ¢
becomes ¢ = {$,Pzy, .-, Py, Dy Payyrs- - - ,pxj7e}. Ainp1 ter-
minates whenever the current path ¢ turns into a complete
candidate path and outputs c as the answer.

Realizing (@) is easy. We maintain a priority-queue sorted
in the ascending order of an entry’s score where each entry
is a point p € P(yp—1(c)); let ¢; = {pa;, P, Pesyy }> an entry’s
score is initialized as d” (¢;). Whenever an entry is popped
out from the queue, we update its score to d(¢;) and insert
it back to the queue. The answer to () is identified as soon
as an entry with its score being d(c¢;) is popped.

The second variant (Apup2) processes the query keywords
in ¢ one by one. It also starts with the path {s,e}. The yth
step processes (oy,Ty). Suppose the current partial candi-
date path is ¢ = {s,pey, - .- s Daj s e}, Auwre2 finds a point p to
include into the ith segment of ¢, subject to:

argmin d(pe;,p) +d(p,pasyq);, (4)

PEP(oy,Ty), and i€[0,5]

(p,i) =

i.e., it finds a point p from P(oy,7y) to cover o, that
minimizes the change in distance to the current path c after
including p into one of the segments on ¢ (by considering all
segments for possible inclusion of p). Then, it updates ¢ to
¢ = {8Dys- s Pays Dy Priyrs- - - s Dajs e}. Apwz terminates
when ¢ becomes a complete candidate path and regards c
as the final answer. Note that (] can be implemented in a
similar way as we did for (Bl).

5.2 Theglobal minimum path algorithm

The next approximate algorithm generalizes the intuitions
behind the greedy algorithms from the last section using a
more global view. Doing so allows us to prove its approxi-
mation bound in the worst case. The global minimum path
algorithm, or Agwe, works as follows. For each (oi,7:) € ¢
for i € [1, k], it finds a point p subject to:

p= argmin d(s,p)+ d(p,e). (5)
pEP(0;,7;)

Note that (@) again can be easily realized in a similar way
as @) and (@). We denote these points as P’ (after removing
duplicates). Note that |P’| may be less than x as the same
point might be returned by ({) for different query keywords.
Suppose nn(g, P) finds the nearest neighbor of ¢ from a set
of points P (based on the network distance). Agwe first finds
p = nn(s, P’), constructs a path {s, p, e} and removes p from
P’. Next, in each step, given the current partial candidate
pa'th c = {'Svpzl: e 7p1j7e}7 AGMP ﬁnds p = nn(pzjypl)v
updates c to ¢ = {5,pzy,...,Pz;,p, e}, and removes p from
P’. Tt terminates when P’ is empty.

Theorem 3 The Acwe algorithm gives a k-approrimate path.
This bound is tight.

PRrROOF. In fact, we can show that once P’ is identified
as in Aawp, any order of visiting them starting from s and
ending at e gives a k-approximate path (the nearest neighbor
strategy adopted in Acwe is just a simple heuristic). Given a
query ¥ = {(01,71),...,(0k,7x)} on G and P, suppose the
optimal path for this MAKR query is c*.

Without loss of generality, we also assume that in our
proof, in any path each point covers only one query key-
word. Note that this does not affect the correctness of our
following analysis, as we can easily generalize a path to sat-
isfy this condition as follows. If a point p in a path covers
b number of query keywords, we can consider there are b
distinct points at p’s location, one for each query keyword
that p is responsible for.

That said, we can assume that |P'| = x and let ¢ =
{8,De1s"** yPan, e} denote a path formed by a random per-
mutation of the points in P’. Clearly, d(c*) < d(c), and:

d(c)

d(57 le) + d(leypzz) +---+ d(pr,l 7pzm) + d(p:mi) 8)

S d(87p501) + [d(picl) 6) + d(67p962)]
+[d(p7027 8) + d(57p963)] +-
+d(ps,_»,€) + d(e;pa, ;)]
Hd(Pay_y,8) + d(8,Pz,.)] + d(Pa,., €)
= [d(8,Pz1) + d(Pay,)] + [d(e,Pzs) + d(Pay, 8)] + -+
+ld(e, pe,. 1) + d(pa,_+,8)] + [d(s,pa,) + d(pa,, €)]
= Z[d(svpri) + d(pz, €)]- (6)
Suppose the optimal path is ¢* = {s,ps,, - ,pr., €}

Since any pg, from c is from P’, and by the construction
in @), we have:
Also, it is trivial to see that:

d(s,pz;) + d(pz;, e) < d(c”) for any i € [1,5]. (8)

Now, we can easily show that:
d(e) < Y [d(s,ps;) + d(pay,€)]
i=1
< D _ld(s,pi) +d(pi, el
i=1
< kd(c")

by (@)

by (@)
by ® (9)

We provide an instance to show that this bound is also
tight. We construct a road network G as in Figure [, where
the solid lines are the only edges in G. We place x points
{p1,...,px}, randomly on the edge of a circle centered at
a point s with a fixed radius 8. We then place another s
points {p7,...,pk} at one location that is (3+¢) away from
s for some small value . Now we find « distinct strings
{wi,...,w} and assign w; to both p; and p;. Let e = s,
and for the query ¢ = {(w1,0), ..., (wx, 0)}, clearly, the op-
timal path ¢* = {s, p1,...,ps, e} and d(c*) = 2(B8+¢). How-
ever, using (B) P’ = {p1,...,px}. In this case, the nearest
neighbor of s can be any point in P’ and we simply take
it as p1. Clearly, the Acwe algorithm will form and return
a path ¢ = {s,p1,p2,...,px,e}. Note that for any segment
{pi,pi+1} in ¢, the shortest path for it in G is {p;, s, pi+1}.
Hence, d(c) = 2k8. Observing that £ can be arbitrarily
small, this completes the proof. [

Figure 6: Tightness of Acyp.

Theorem Bl gives the tight worst-case bound for Agye, but
the worst case scenario rarely happens in practice, where
Acwr achieves much better approximation quality than what
the worse-case bound has suggested.

5.3 Improvement by network partitioning

To further improve the performance of our approximate
methods, we partition the road network into disjoint parti-
tions and utilize the lower bound distances from object(s)
of interest to partitions to prune. In a nutshell, in the pre-
processing step, we randomly select m points Ps from P
as seeds and construct the voronoi-diagram-like partition
of the network using these seeds. We denote this method
as the RP algorithm. Without loss of generality, assume
P; = {p1,...,pm}. RP first initializes m empty subgraphs
{G1,...,Gn}, and assigns p; as the “center” of G;. Next,
for each node v € V, RP finds p = nn(v, Ps), and com-
putes d(v,p). This can be done efficiently using Erwig and
Hagen’s algorithm [6], with G and P, as the input. Next,
for each edge e € E with e = (v;,v;), RP inserts e into G;
whose center p; minimizes min{d(p, v;), d(p,v;)} among all
subgraphs. When all edges are processed, RP returns the m
edge-disjoint subgraphs constructed. For each subgraph G,
let the points on G; be P;; we build a FilterTree T; for P;.

We use Acwp to illustrate how these partitions help im-
prove its efficiency. First, we define the lower bound distance
between a point p and a subgraph G;, denoted as d™ (p, G;),
as the minimum lower bound distance from s to any bound-
ary nodes of G;. Clearly, d™ (p,G;) also provides a lower
bound distance for distance between p and any point in P;
(points in G;). Note that the most expensive part of Ague is
to compute ({) for each query keyword. We next show how
to do this for query keyword (os,73).

Using the partitions, we can compute d™ (s, G;)+d™ (Gi, e)
for all subgraphs G;’s. We can easily show that:

d (s,Gi)+d (Gi,e) <d (s,p) +d (p,e) for any p € P;.

Let d™(s,Gi) + d”(Gi,e) be the score of G;, we initial-
ize a priority queue with entries of (subgraph, score) pairs
for each subgraph. Whenever a subgraph G; is popped
out from the queue, we retrieve P;(o;,7;) using the Fil-
terTree T;. For each p € P;(0s,7:), we insert an entry
(p,d™(s,p) + d~ (p,e)) into the queue. Whenever a point p
with the lower bound distance d™ (s,p) + d™ (p, e) is popped
out, we find d(s,p) + d(p,e) and insert (p,d(s,p) + d(p,e))
into the queue. The algorithm terminates when a point with
exact distance is popped out. The previous approach initial-
izes the queue with P(o;, 7;), resulting a much larger queue.
Using the subgraphs, we may prune some subgraphs com-
pletely without the need to explore P;.

Similar methods can be developed using the subgraphs
for improving the efficiency of A;yp1 and Apupe algorithms.
We omit the details. This idea can also help improve the

efficiency of MinLen and NextMinLen methods in the exact
algorithms, but the bottleneck there is the number of partial
complete paths examined. So the improvement in efficiency
for the exact methods is not significant.

6. EXTENSIONS

Top-k MAKR query. The exact methods can easily answer
the top-k MAKR queries after making two changes. First,
the algorithms terminate only when k£ complete candidate
paths with exact distances have been popped out from the
heap. Second, d in Figure @ should store the kth minimum
exact distance found so far. The rest of the algorithms re-
mains the same. All approximate methods can be modified
by taking the top-k points satisfying the constraint in (&),
@), and (@) respectively, and constructing k candidate paths
accordingly. Using a similar analysis, we can show that the
same approximation bound in Theorem Bl still holds for the
modified Ay algorithm w.r.t. top-k MAKR queries.

Multiple strings. In the general case, each point in P may
contain multiple keywords. This is easy to handle for all our
algorithms. Suppose a point p € P contains b keywords, we
simply consider p as b distinct points, each sharing the same
location as p but having one distinct keyword from the b
keywords that p originally has.

Updates. Our data structures support efficient updates, by
following the update algorithms for B+ trees and FilterTrees
respectively, with no changes to query algorithms.

7. EXPERIMENTAL EVALUATION

We implemented all methods in C++. For the FilterTree,
we use the FLAMINGO library [1]. All experiments were per-
formed on a Linux machine with an Intel Xeon 2.13GHz
CPU and 6GB memory.

Datasets. We used three real road networks, City of Olden-
burg (OL), California (CA), and North America (NA), from
the Digital Chart of the World Server. OL contains 6105
vertices and 7029 edges, CA contains 21,048 vertices and
21, 693 edges, and NA contains 175, 813 vertices and 179, 179
edges. For CA and NA networks, we obtained the points of
interest associated with strings, from the OpenStreetMap
project from California and North America respectively. In
each network, we then randomly select 2 million points to
create the largest dataset Pmax and form smaller datasets P
based on Pmax. For each P, we assign points into the road
network w.r.t. their normalized coordinates and edges’ nor-
malized coordinates. For the OL network, we simply reuse
the dataset P from either CA or NA and assign them into
OL using the normalized coordinates. For all datasets the
average length of the strings is approximately 14.

Setup. When we vary P on a network G to test different
algorithms, we make sure smaller datasets are always subsets
of larger datasets, in order to isolate the impact of |P|. To
make sure that A. # () for any query, we randomly select
1 from strings in the dataset P to be used for this query.
For simplicity, we use the same edit distance threshold for
all keywords in any query, and denote it as 7. The default
values of some parameters are as follows: kK = 6, 7 = 2,
|Vr| = 8 and m = 10 (recall m is the number of subgraphs,
as discussed in Section B3 in the approximation methods).
The default dataset is CA. Suppose an approximate method

A PER-partial £ PER-full

10| BAoup ¥ Aiwpr OAvez

1!
BAcup ¥ AL QALMPZ

PN
)

o

w

Running Time (secs)
Eu
<>
4
Running Time (secs)
©

)

Figure 7: Effect of |VR| Figure 8: Effect of m

A returns a path ¢ for an MAKR query instance with the
optimal path ¢*, A’s approximation ratio in this instance is
r = d(c)/d(c*). In all experiments we report the averages
over 50 randomly generated queries.

7.1 Impactsof Landmarksand Partitions

The impact of the landmarks comes in two folds: the se-
lection strategy and the number of landmarks. Our experi-
ments and observations confirmed the conclusion and results
in [8] that the optimized planar algorithm in [8] is always
the best strategy (essentially, select nodes on the boundary
of the road network and as far away from each other as possi-
ble), given the same |Vg|. Clearly, with more landmarks, the
lower bounds tend to be tighter which leads to better prun-
ing. However, using more landmarks also leads to higher
computation costs in calculating the lower bounds. There-
fore, we expect to see a sweet point of the overall running
time w.r.t. different |Vg| values. Figure [reflects exactly
this trend, where |P| = 10,000 points were used in the CA
network. The same trend holds for all algorithms on differ-
ent datasets and on OL and NA as well. They consistently
show that |Vr| = 8 tends to provide the best running time
in all cases. Thus, we use |Vg| = 8 across the board.

Next, we study the effect of m, number of subgraphs, on
approximation algorithms (as explained in Section B3 par-
titioning has no significant effect on the overall running time
of exact methods). Using 1 million points on CA, Figure
shows that when m < 10, the running time reduces with
more subgraphs, as more subgraphs lead to better prun-
ing (which avoid searching FilterTrees). However, having
more and more subgraphs also means more access to smaller
FilterTrees, which introduces query overhead compared to
searching over fewer, larger FilterTrees. Eventually, such
overheads dominate over the benefit of the pruning by more
and smaller subgraphs. Hence, the query costs start to in-
crease after m > 10 in Figure B Other datasets and other
networks show similar results and m = 10 tends to achieve
a good balance, which will be used by default.

Lastly, selecting Vg, computing RDI1ST;’s, building Fil-
terTrees, and running RP (the partitioning algorithm) are
all very efficient (in terms of both time and space). We omit
these results due to the space constraint.

7.2 Query Performance

We first investigate the performance of all methods using
relatively smaller datasets, to ensure that exact methods can
complete in reasonable amount of time. In the default case,
|P| = 10, 000. Figure @ shows the running time in log scale.
Clearly, in all cases, PER-partial improves the performance
of PER-full, and all approximate methods outperform the
exact methods by orders of magnitude.

Figure shows the effect of different 7 values. It indi-
cates the running time for all methods increases with larger
7 values, simply due to more points becoming candidates

10° | A PER-partial 5 PER-full . | APER-partial £ PER-full

. | APER-partial & PER-full 10

—_ ~10 ~10 [CJPER-partial
[+>AGMP*ALMP19ALMP2 [%AGMP*ALMPIQALMPZ v § %AGMP*ALMPIQALMPZ D2 [CIPER-full
b10° &1 2., g1
° o @ 10 2
E £ 10* £ 10’
F 10t = F oo £
=] 2 o 2 g
< £ 10 £ 210
< < € . £
S 10° S 5 10 E
& M @ N & M g0’
- Y — 2| = 10"
10 T] 3 10 2 4 6 8 10 10° g3 10° 10° 107
T K |P| oL cA NA
(a) vary T (b) vary & (c) vary |P| (d) vary datasets
Figure 9: Query time
2.5 25
Agye A A Ao KA A Agyp FA A 2.2
_% BAcwe LMPle LMP2 _% 2.5 BAcwe LMPle LMP2 _% BAcwe LMPlQ LmP2 . Acwe A e BB e
o o4 x K
c 2 c c 2 @ 1.9
k) S 2 2 c
g = 3 =
E £ E g, 4
5 15 X 3 815 E g
5 s 1.5] o o
Q Q o s
< % < < 213
T T 1 o
1 2 3 2 4 6 8 10 10° 10 10° 10° 1
T K P oL CcA NA
(a) vary T (b) vary & (c) vary |P| (d) vary datasets
Figure 10: Approximation quality
15 15 8 >
A A A 10
. BAcup K ALps O ALz . BAcwp HArvps OAle @ BAcue K Auer OAwez Acue A e A e
812 812 o @
Q @ $ § @
b b @ 210t
Q9 Q9 [
g E Es E
F F - £
2 6 2 6 c =2}
£ £ £ 2 .
c c £, £ 10
S 4 S 4 S c
4 4 x D—M &
o q 4‘?/39 0 0 05 1 15 2 107
T K |P]: X10 oL CA NA
(a) vary T (b) vary & (c) vary |P| (d) vary datasets

Figure 11: Scalability of approximate methods

to consider. It also reveals that the exact methods are rea-
sonably efficient in this case; when 7 = 2, both methods
complete in less than 10 seconds. The fastest approximate
method Acwe completes in around 0.1 second in all cases.

Figure m shows the query time when we vary k, the
number of the query keywords. Clearly, the query time of
exact solutions increases very quickly w.r.t. k as expected
(since more combinations are possible to form candidate
paths). The PER-partial algorithm does improve the run-
ning time compared to the PER-full algorithm in all cases.
Nevertheless, when & is not too large, say « < 6, the run-
ning time of our exact methods are reasonably efficient. For
example, when k = 4, they take less than a second to com-
plete. However, for larger x, approximate methods are clear
winners. Not only they outperform exact methods by as far
as 4 orders of magnitude in x = 10, but also they achieve
very small running time overall. When s < 4, all of them
take less than 0.1 second. Even when x = 10, all approxi-
mate methods take less than a second to complete; and the
fastest one Aqyp still just takes around 0.1 second!

The next experiment in Figure investigates the scal-
ability of all methods w.r.t. |P|, when it changes from 5000
to 500,000. Not surprisingly, approximate methods have
achieved much better scalability than exact methods. They
outperform exact methods by 3-4 orders of magnitude when
|P| is half million, and only take about or less than a sec-
ond. The fastest method Aqwr just needs about 0.3 second
in this case. Nevertheless, by carefully introducing various
pruning and heuristics, our exact methods achieve accept-
able performance (given that the problem is NP-hard). For
example, with 10,000 points, PER-partial only needs a few

seconds; with 100, 000 points, it just uses about 80 seconds;
with 500, 000 points, it takes about 900 seconds.

Figure m shows the running time using different road
networks. The trends are clearly consistent across differ-
ent networks: 1) larger networks are costly; 2) approximate
methods are significantly faster; 3) PER-partial (Aque) is the
fastest exact (approximate) method respectively. We would
like to point out that even on NA (with hundreds of thou-
sands of nodes and edges), Acwe only takes a few seconds
and PER-partial uses less than 100 seconds.

In terms of approximation quality, Figure [[0] shows the
approximation ratios of all approximate methods for the
same set of experiments as in Figure @l In this case, we
plotted both the average and the 5 — 95% interval (to illus-
trate the variance of the approximation quality). In all cases,
clearly, A..p1 has the worst ratio, averaging around 1.6 and
exceeding 2 in the worst case. Ayp2 and Acwe have achieved
similar ratios, while Ayp2’s ratio being consistently, slightly
better. In fact, both of them achieve average ratios that are
close to 1 in all cases! They also enjoy very small variance,
with the worst ratio close to 1.3 in all cases. Clearly, Acue’s
approximation quality in practice is significantly better than
what its worst case theoretical bound suggests (which is).

We further investigate the scalability of our approximate
methods on very large datasets. Specifically, in the follow-
ing experiments, the default | P| is 1 million points. We omit
the exact methods from the results in Figure [[Il since they
take more than 2000 seconds to complete in this case. These
results clearly show that Acwe is extremely efficient and scal-
able w.r.t. all factors. For example, Figure indicates
that Acwe takes only 1 second for 1 million points with 10

query keywords; Figure shows that Aqur completes in
1.5 seconds for 2 million points with 6 query keywords; and
Figure reveals that Acwe still just needs a few seconds
for 1 million points, 6 query keywords on NA network which
has hundreds of thousands of nodes and edges.

The approximation ratios of all approximate methods in
this study are almost identical to what reported in previous
set of experiments (as shown in Figure [[), indicating that
larger datasets do not degrade their approximation qualities.
For brevity we omit these figures.

Summary. These results show that our exact method PER-
partial is efficient when the number of keywords and the
dataset size are small to moderate. To deal with more key-
words and very large datasets, approximate methods should
be employed, and Acye has the fastest query time and almost
as good approximation quality as the best approximation
achieved (by Auwe2). In particular, Acue completes a query,
with up to 10 keywords, in less than a second to only a few
seconds even with millions of points on a network with hun-
dreds of thousands of nodes and edges; and almost always
finds a path that is nearly as good as the optimal path.

8. RELATED WORK

Spatial keyword queries in GIS data have been gaining at-
tentions lately. The most relevant work to our study appears
in [3], where Cao et al. studied the spatial group keyword
query in Euclidean space. Given a query point ¢ and a group
of keywords, the goal is to find a group of points from the
database that 1) covers all query keywords; 2) minimizes the
sum of their distances to q. There is also a variant on the sec-
ond condition to minimize the sum of the maximum distance
to ¢ and the maximum inter-distance for the group of points
returned. The mCK query in Euclidean space was studied
in [16,17], which takes a set of m keywords as input and re-
turns m objects from the database so that they cover these
keywords and minimize the maximum distance between any
two returned objects. The IR?-tree [7] was proposed to an-
swer range and nearest neighbor queries combined with key-
word matching. Then, the IR-tree [4] was designed to find
top-k most-relevant (weighted-sum of spatial and keyword
distances) spatial objects. All these studies integrated spa-
tial indexes in the Euclidean space (mainly the R-tree) with
keyword-processing structures (e.g., inverted lists, bitmaps).
They also focused on exact keyword matching.

The optimal sequenced route (OSR) query [13] is also
relevant where each point in P is assigned a fixed category.
Then, given s and e, and an ordered set D of categories,
an OSR query asks for the shortest path ¢ between s and e
that visits at least one point from each category. An addi-
tional constraint is that ¢ must visit categories in the same
sequence as they appear in the query set D. One may adapt
the solution to OSR queries to our setting: each query key-
word in an MAKR query defines a category of points from P
(those that are similar to it). Then, we execute ! number of
OSR queries, one for each possible permutation of ¥, to find
the shortest path. This is clearly prohibitive. Similarly, in
trip planning queries categories were predefined [11]. It re-
veals that in the MAKR problem: 1) there are no pre-defined
“categories” associated with points in P; rather, their “cate-
gories” change dynamically w.r.t. different queries; 2) there
is no user-defined fixed order/sequence to visit keywords.

Approximate string search has been extensively studied
in the literature (please refer to an excellent tutorial [9] and

references therein). To the best of our knowledge, integrat-
ing approximate string search with spatial queries has only
been examined recently in [2,15]. However, both work fo-
cused on integrating approximate string search with range
and nearest neighbor queries in the Euclidean space.

9. CONCLUSION

This paper studies the Multi-Approximate-Keyword Rout-
ing (MAKR) problem that clearly has a lot of applications in
practice. We proposed both exact and approximate meth-
ods. Our approximate methods are especially appealing.
Not only one (Aaur) comes with guaranteed approximation
bound (for the worst case), but also all approximate methods
demonstrate excellent query performance, scalability, and
approximation quality on real large datasets. Experiments
also reveal that Acye achieves much better approximations
in practice than what suggests by its theoretical worse-case
bound. Future work include the study of MAKR queries in
the Euclidean space, and the continuous monitoring version
of the MAKR queries when s and/or e move on G.

10. ACKNOWLEDGMENT

Bin Yao, Mingwang Tang, and Feifei Li were supported in
part by NSF Grant [1S-0916488. Feifei Li was also supported
in part by the HP IRP award for the Year 2011 round.

11. REFERENCES

(1] Flamingo web site. http://flamingo.ics.uci.edu/|

[2] S. Alsubaiee, A. Behm, and C. Li. Supporting
location-based approximate-keyword queries. In GIS, 2010.

[3] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
spatial keyword querying. In SIGMOD, 2011.

[4] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB,
2(1):337-348, 2009.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 1997.

(6] M. Erwig and F. Hagen. The graph voronoi diagram with
applications. Networks, 36:156—-163, 2000.

(7] 1. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on
spatial databases. In ICDE, 2008.

(8] A. V. Goldberg and C. Harrelson. Computing the shortest
path: A* search meets graph theory. In SODA, 2005.

[9] M. Hadjieleftheriou and C. Li. Efficient approximate search
on string collections. PVLDB, 2(2):1660-1661, 2009.

[10] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, 2008.

[11] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H.
Teng. On trip planning queries in spatial databases. In
SSTD, 2005.

[12] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query
processing in spatial network databases. In VLDB, 2003.

[13] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The
optimal sequenced route query. VLDBJ, 17(4):765-787,
2008.

[14] S. Shekhar and D. ren Liu. Ccam: A connectivity-clustered
access method for networks and network computations.
IEEE TKDE, 9:410-419, 1997.

[15] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou.
Approximate string search in spatial databases. In ICDE,
2010.

[16] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases:
Towards searching by document. In ICDE, 2009.

[17] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped
resources in web 2.0. In ICDE, 2010.

http://flamingo.ics.uci.edu/

