Okuli: Extending Mobile Interaction Through Near-Field Visible Light Sensing

Chi Zhang, Joshua Tabor, Jialiang Zhang and Xinyu Zhang

Department of Electrical and Computer Engineering University of Wisconsin-Madison

Touch is a dominant mode of mobile interaction

Screen multiplexed between display and input

Wastes precious display area

On-screen keyboard hard to use -

Input area depends on device size

Infeasible on wearable devices

Lack of physical interaction

Can be solved by separating display and input

With passive wireless sensing

Bridging VLC and touch sensing

Previous solutions

Array of LED/PD pairs: energy hungry, cumbersome

Computer vision: heavy computation, obtrusive camera

Machine-learning: excessive run-time training

Use PD/LED pairs in a different way

Visible light channel

No phase information

Amplitude is fine-grained and deterministic

Requires a fine-grained model to achieve localization

Use PD/LED pairs in a different way

Unlike simple "finger blocking beam" model,

fine-grained propagation model can enable lightweight localization

With such model and 2 channels, we can locate user's finger

- This is how Okuli works

Okuli: overview

2D localization \rightarrow want to limit to 2D surface \rightarrow light grooming

- Eliminates interferences from outside the surface

Can be done with tiny lenses attaches to PDs / LED

For prototyping we use a 3D-printed shroud

Received signal is affected by multiple factors

- Factory calibration measures invariant part

Received signal is affected multiple factors

- Model calculates variant part

Path loss is not simple: it is not actually only 2D

- Further away, more area visible
- Model needs to compensate

Finger reflectivity can be hard to characterize

- Abstract by interacting ratio of the beam
- Overall reflectivity corrected by calibration

Okuli: interference canceling

Surrounding light sources

- Can be much stronger than desired RSS
- Not "coherent" with our light emission

Modulate our own emission with OOK

- Also helps saving energy

Okuli: interference canceling

Background reflection

- Cannot be removed by modulation
- Usually slow-changing and not very strong

Spatial solution: narrow vertical FoV

Temporal solution: dynamic estimation & removal

- Identifies and tracks background
- Also detects clicks

Okuli: interference canceling

Okuli: localization

Prototyping **Okuli**

3D-printed shroud controls FoV

Arduino drives LED and samples PDs

Bluetooth connects Okuli to mobile devices

Mobile device runs the algorithm

Okuli is consistent across different surfaces and over time

Okuli is consistent across different users

Okuli's performance is comparable with capacitive touch screens

Most energy cost by light emission

- Can duty-cycle to reduce

Processing costs very little

- Smooth UI, good user experience

Conclusion

- Fine-grained light propagation model can enable accurate nearfield visible light localization
- Multiple types of interferences exists in the visible light channel, and can be effectively canceled
- Visible light channel allows us to achieve centimeter grade passive localization with a compact system

Thank you!