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ABSTRACT

While WiFi-based indoor localization is attractive, theedeor a
significant degree of pre-deployment effort is a key chaéenin
this paper, we ask the questiocan we perform indoor localiza-
tion with no pre-deployment eff@tOur setting is an indoor space,
such as an office building or a mall, with WiFi coverage but irehe
we donotassume knowledge of the physical layout, including the
placement of the APs. Users carrying WiFi-enabled devices s
as smartphones traverse this space in normal course. Thiéemob
devices record Received Signal Strength (RSS) measursmoant
responding to APs in their view at various (unknown) locasiand
report these to a localization server. Occasionally, a faal@vice
will also obtain and report a location fix, say by obtaining BSG
lock at the entrance or near a window. The centerpiece of ouk w
is the EZ Localizationalgorithm, which runs on the localization
server. The key intuition is that all of the observationsorggd to
the server, even the many from unknown locations, are cainstl
by the physics of wireless propagation. EZ models thesei@nts
and then uses a genetic algorithm to solve them. The resalts f
our deployment in two different buildings are promisirigespite
the absence of any explicit pre-deployment calibration,yiefds

a median localization error of 2m and 7m, respectively, imals
building and a large building, which is only somewhat worsant
the 0.7m and 4m yielded by the best-performing but calibrati
intensive Horus scheme [29] from prior work.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous

General Terms
Algorithms, Design, Experimentation, Theory

1. INTRODUCTION

The need for location information to enable pervasive caimgu
applications in indoor environments, coupled with the @ilabil-
ity of GPS in such environments, has motivated a large body of
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research on indoor localization. In particular, there hesnba fo-
cus on leveraging existing infrastructured. WiFi access points)
to enable indoor localization, the advantage being thattse of
deploying a specialized infrastructure for localizatisnavoided.
Existing solutions, however, require extensive pre-daplent ef-
fort, for instance, to build detailed RF maps [4] or RF progiamn
models based on surveys of the environmémthis work, we pro-
pose a novel indoor localization system, EZ, that leveragésting
infrastructure without requiring any explicit pre-deplognt effort.

EZ relies on three basic assumptions: (i) that there aregimou
WiFi APs to provide excellent coverage throughout the indas
vironment, (ii) that users carry mobile devices, such aggrhanes
and netbooks, equipped with WiFi, and (iii) that occasibnaimo-
bile device obtains an absolute location fix, say by obtgimiGPS
lock at the edges of the indoor environment, such as at the en-
trance or near a window. In EZ, users simply sit, stand, orenov
around in the indoor environment in normal course. Whilg tthe
so, each user’'s mobile device records the received sigreagth
(RSS) from the WiFi APs visible to it at various (unknown) dec
tions, and reports this information, along with the occasldoca-
tion fix when available, to a central localization servereBerver
uses this data to simultaneously learn the characteristitee RF
propagation environment and to localize the users. Loatdia is
performed in terms of absolute coordinates: latitude anditade,
since we focus on 2D locations in this paper.

A key advantage of EZ is that it does not require any prior Khow
edge of the RF environment, including the location and trahs
power of the APs, information that is often not readily azhbié in
settings such as malls and multi-tenant office buildingene\Ps
have been deployed by many different entities. This is a kky a
vance over prior work on reducing the calibration effortatese for
indoor localization [11, 17]. Another key advantage is thatdoes
not require any explicit user participation to aid the |@aion
process. In particular, users avet required to indicate their cur-
rent locations, even during the training phase. Finallycantrast
to work on collaborative (ad-hoc) localization [20, 7, 2B, only
requires measurements of the APs by the mobile node and does
notrequire any distance measurements between mobile nodes. So
even a single mobile node that traverses the space of intares
time could generate sufficient data for EZ localization rethe ex-
periments we report here. In contrast, prior work on coltabee
localization requires the simultaneous presence of a grifioum-
ber of participating nodes requirement that makes bootstrapping
non-trivial thereby impeding easy deployment.

We believe that by not requiring any pre-deployment effort o
explicit user participation, EZ has the potential of enadplpracti-
cal and viable indoor localization. For instance, an EZ senvthe
cloud could automatically construct an RF model for, andehg
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enable localization in, an indoor space in any part of theldyor
based just on the measurements reported by the EZ clientein t
space of interest. Such automated operation brings fortmear

of novel challenges, which we address here, including ifiitethe
very large number of measurement reports to identify a samall
useful subset, and efficiently computing the RF model degpi¢
very large space of possibilities.

The advantage of no pre-deployment effort provided by EZ in-
evitably comes at the cost of some loss of accuracy relative-t
calization approaches such as RADAR [4] and Horus [29] thigt r
on extensive measurement to map the RF environment. However
our experience from deploying EZ in two different office lolifigs
is promising. For instance, in one of the buildings, the rapdo-
calization error with EZ is 2m, which is somewhat worse thae t
error of 0.7m and 1.3m, respectively, with Horus and RADAR. O
the other hand, EZ's approach of inferring an RBdelis more ro-
bust than that of constructing an Riapas in Horus and RADAR.
For instance, in the above building when measurements ade ma
using a laptop but then are used to localize a different @evica

Model-Based Techniques :An RF propagation modele(g.the
log-distance path loss (LDPL) model) can be used to pred&$ R
at various locations in the indoor environment. The ad\getaf
using these models is that it reduces the number of RSS neeasur
ments dramatically compared to RF fingerprinting schemnlesita
at the cost of decreased localization accuracy. Since Rfagm
tion characteristics vary widely, the model parameterslivbave
to be estimated specifically for each indoor space in questio

TIX [11] assumes that the transmit power and locations of all
WiFi APs is known. The APs are modified to measure the RSS of
the beacons from neighboring APs. Linear interpolatiorhant
used to estimate the RSS at every location in the indoor space
which is then used for localization. To allow unmodified,-tfé-
shelf APs to be used, Lirt al.[17] employ WiFi sniffers at known
locations. These sniffers measure the RSS from the vari®ts A
and use the LDPL model to construct an RSS map. ARIADNE [13]
also deploys sniffers at known locations but makes use of i@ mo
sophisticated ray-tracing model based on detailed floorsnaayol
uses simulated annealing to estimate radio propagati@myeers.

smartphone — EZ'’s error remains unchanged at 2m whereas thatFinally, Madiganet al. [18] use a Bayesian hierarchical approach

for both Horus and RADAR degrades to 3m or worse.

2. RELATED WORK

Indoor localization has been an active area of researchhéor t
past two decades, initially in the context of robot navigatand
more recently in the context of pervasive and mobile conmgyiti
Here we provide a brief overview of some key research camtrib
tions to this area.

Schemes that require specialized infrastructure : The earliest
schemes relied on deploying specialized infrastructurenable
indoor localization. For example, Active Badge [26], usdsared
(IR) beacons and receivers to perform localization. Crti¢Re]

and Bat [27] rely on ultrasound devices being deployed d@buar
locations within the indoor environment as well as on the ieob
devices. Recently, RFID based systems such as LANDMARC [19]
also have been proposedhe practical deployment of these sys-
tems is hindered by the significant cost and effort involved.
Schemes that build RF signal maps:The proliferation of static,
radio-frequency transmitters such as WiFi APs and GSM tewer
has enabled localization without the need for additionfbstruc-
ture. The basic approach is to fingerprint each locationérsfface

of interest with a vector of received signal strength (RS&asure-
ments of the various transmitters. A mobile device is thealiaed

by matching the observed RSS readings against this dataBase
early system that used this approach with pre-WiFi WLANs was
RADAR [4], which used a deterministic fingerprint for eaclede
tion. Since then several schemes have improved upon RADAR,
most notably Horus [29], which employs a stochastic detorip

of the RSS map and uses a maximum likelihood based approach.
Commercial localization products have also been builtgiiese
methods [8]. Otsasan al. [25] has demonstrated that GSM signal
strength from various towers can also be used for indoofizza
tion. SurroundSense [2] builds a map using several feaforesl

in typical indoor spaces such as ambient sound, light, celor,

in addition to WiFi RSSAIl these schemes, however, entail a con-
siderable amount manual effort to perform detailed meavers
across the entire indoor space and maintain the RF map owres. ti

Efforts have been made to reduce the mapping effort, for in-
stance, by performing measurement at a coarser, roomgeast
ularity [12]. However, the overall pre-deployment effoetmains
substantial. DAIR [3] eliminates the need for mapping, lbws-
sumes a very dense deployment of WiFi transmitters, muchketen
than typical WiFi deployments.

for indoor localization, which avoids the need to know theslions
of the training points. However, they still depend on knaige of
the AP locations, besides assuming that the path loss expone
the LDPL model is the same for all APgVhile these methods cut
down the measurement effort, they still require effort imi of
placing infrastructure such as sniffers, extending theatslgies
of off-the-shelf APs, and obtaining information on the flptans,
or at least knowledge of AP placement and power settings.
Localization in Indoor Robotics : For a robot to navigate through
an indoor environment, it must have the ability to deterniisieur-
rent location. Initial approaches provisioned the robdhvei map
of the indoor environment, allowing it to determine its ltoa by
comparing its observed environment (using ultra-soundDAR
sensors, etc.) to the map. A significant step in the area afticxb
was Simultaneous Localization and Mapping (SLAM) [16], @i
allowed a robot to build a map of the indoor environment (e
of walls and other obstructions) while simultaneously dateing
its location with respect to the constructed map. WiFi-SLAYI
extends this to building a WiFi RSS map using a mobile robbe T
robot uses its onboard odometer to determine the distarttasit
moved between measurement points. Knowing a few of these lo-
cations (using GPS or certain landmarks) allows estimdtiega-
rameters of the LDPL modeln contrast, EZ builds an RF model
without the benefit of sensors such as odometers and LADARS.
Ad-Hoc localization: Finally, there has been work on ad-hoc lo-
calization, wherein a set of nodes, some of which may know the
own locations (i.e., landmark or anchor nodes), collat®taten-
able all nodes to locate themselves. The earliest notallegbes
are DV-Hop and DV-Dist by Nicelescat al. [20], SPA by Cap-
kun et al[7] and N-Hop multilateration by Savvidest al. [23].
These scheme assume that the nodes can estimate the distance
tween each other, while other schemes use angle of arrigahia-
tion [21]. There also exist more approximate methods su¢h4s
which uses the connectivity graph among the nodes to pefimrm
calization in outdoor environments. The target environimeas
outdoors and it is unclear how well a simple connectivitydaas
approach would carry over to indoor environments. Likew&ex-
tant [10] uses a geometric approach that may not carry ovier to
door environmentsAll of these approaches assume node-to-node
communication, which requires the simultaneous presehoeut
tiple nodes in the space of interest. This requirement mbhkes
strapping in such localization procedure difficulvhile the pres-
ence of fixed nodes such as APs might alleviate this problem in
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Figure 1: Knowing enough distances between APs and mobile devices
allows unique determination of their relative locations

principle, the difficulty on practice is the need for the ABsbe
modified to participate in the ad-hoc localization protocol

EZ compared to prior work: EZ works with existing WiFi in-
frastructure, requiring neither modifications to the APsd&ploy-
ment of additional infrastructure. It does not require kiemlge of
the floorplan, AP placement or power settings. Again, it dosts
require explicit mapping of the indoor space, whether mbyoa
using a robot. Finally, EZ only relies on measurement of tRs’A
signal at the mobile node(s), not on any mobile-to-mobilesoee-

vironment. RSS from an AP that is located in an area surralinde
by walls, people and other obstacles might decay at a mutér fas
rate compared to the same from other APs in the indoor environ
ment that enjoy relatively freer signal propagatid®.in Eqn 1 is
a random variable that hopes to capture the variations ilR®®
due to multi-path effects, asymmetries in the physicalremment
(e.g.pbstructions) and other imperfections in the model itself.
Based on the LDPL model;; can be computed as,

dij = 10( Pilgfiii ) (3)

Eqn 3 assumes the priori knowledge ofP; and~;. EZ, takes
a novel approach to estimating these. Given a set of RSSwabser
tions between APs and mobile useps;}, EZ treatsP; and~; as
unknowns in addition to the unknown locations of APs and rieobi
users. It then solves the set of simultaneous equationsefbimg
the LDPL model for each RSS observation.

Assume that there arer APs andn unknown locations on a
floor. For simplicity assume that all the APs are visible from
each of then locations (this assumption will be relaxed later in this
section). The total number of RSS observations and hendettile
number of LDPL equations will bexn. Assuming 2D locations,

ment. Hence EZ could even work with measurements by a single each of then locations has two unknowns namely thendy co-

device which, over time, traverses the space of interest.

3. LOCALIZATION USING EZ

To provide a physical intuition to the working of EZ, we start
with the example depicted in Figure 1. In scenario I-A, twdileo
nodes (M1 and M2) have measured their distanéesdi2,d21,d22)
from two APs (AP1 and AP2) with the hope of determining their |
cations relative to the two APs. This is however not posskitece
the same set of distances allows for several different piisigis
for relative locations (an alternative is depicted in ScEn&B).
For a set of three APs and three mobile user locations (asteelpi
in Scenario-ll), it can be shown that knowing all nine paifslis-
tances between APs and mobile users allows for only onelgdessi
realization for their relative positions. Such a structisrdeemed
localizable (or globally rigid) i.e., the entire set of locations can
be translated, rotated and reflected (flipped) but not dexioin
any manner if all distances are to be preserved. Localinalsl
a well studied area and conditions for localizability haeet well
studied [28]. In generajiven “enough” distance constraints be-
tween APs and mobile devices, it is possible to establisthaif
locations in a relative sense. Knowing the absolute locetiof
any three non-collinear mobile devices then allows deteatidn
of the absolute locations of the rest.

In practice, however, the distances between mobile dewnds
APs can only be inferred from RSS values.

pij = P, — 10; log dij +R (1)

dij = \/(Xj —ci)" (x5 — i) (2

In Eqn 1, thej*" mobile user located at a distandg (measured
in meters) from the'" AP sees a signal strength pf; (measured
in dBm). The location of theé‘" AP and thej‘” mobile user mea-
surement are represented by 2D veciarandx; respectively in
Eqn 2. P; is the RSS from thé'” AP at a distance of one meter
(referred to asransmit powethenceforth). The path loss exponent
~; captures the rate of fall of RSS in the vicinity of tH& AP. The
higher the value ofy;, the steeper is the fall of RSS with distance.
The need for having a different for each AP arises from the fact
that rate at which RSS falls with distance depends on the &ca

ordinates (inx; in Eqn 2). Each of then APs has four unknowns
namelyP;, v; and its 2D location. The total number of unknowns
is thusdm + 2n.

While mn grows in a quadratic fashiorim + 2n grows lin-
early. This suggests that given enough locations (suchnithat>
4m + 2n), there will be eventually enough constraints in the sys-
tem of equations to make the system uniquely solvable. €lose
examination however, reveals that the system of LDPL eqosti
is scale, translation, rotation and reflection invariane (i@ not in-
clude the proof due to space constraint#). other words, a so-
lution to LDPL equations will yield locations that are a sel|
translated, rotated and/or reflected version of the trueatams.
Knowing three true, non-collinear locations (either AP arhite
users) then, all the other true locations can be determitredur
implementation, these true locations are obtained oppisttaally,
when GPS enabled mobile devices gain access to GPS at the edge
of the indoor environment such as entrances and near windows

The above description of relative localization followed dy
choring in an absolute coordinate space, makes for a clean; c
ceptual separation between the two steps. However, in our im
plementation, we found it advantageous to combine the tesst
by directly using the absolute locations (obtained oppaigtically
through GPS) throughout the solution procedure, as we ektbo
in Section 4.2.

3.1 The Nature of LDPL Equations

LDPL equations (Eqgn 1) are a system of simultaneous nomline
equations. To the best of our knowledge there exists neéher
analytical solution nor any prior work that analyzes them tHis
section we attempt to provide the reader with some crucsigris
into the nature of solutions to these equations.

3.1.1 Solving for the Parameters of a Solitary AP

It is well known that distances from at least three known non-
collinear locations are necessary to uniquely determinenknown
location (using trilateration). A corresponding questiorEZ is,
what is the minimum number of known locations at which RSS mea
surements must be taken in order to uniquely determine thieAfl®
parameters namely?,y and the 2D location?

If P; and~; are known, then an RSS measuremgptcan be
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Figure 2: lllustrating non-localizability

converted into the distaneg; between the unknown locatiom )
and thei*” AP using the equation Eqn 3. A minimum of three

such RSS measurements at known locations are then required t

uniquely establish the location of the AP. In the absencehef t

knowledge ofP and~, then, two additional measurements (con-

straints) will be required to uniquely determine their \&du In

other wordgive RSS measurements are required to uniquely deter-
mine an APt also follows thagiven RSS measurements from only

four known locations, there will be two possible solutioms(, v
and location) that satisfy the set of four RSS measuremBuis to
the lack of space we do not present a formal proof.

3.1.2 The Notion of Co-Circular Dependency

It is well known that three or more collinear locations can®
used in trilateration to determine an unknown location. Wisi
lar yet slightly different situation arises in solving LDRuations
when all the locations where RSS observations were takeocare
circular with respect to the APe., lie on a circle centered around
the AP’s location. In this special case, while the locatibthe AP
can be ascertained as the center of the circle passing thtbege
locations, it is impossible to uniquely determine b@ttand~. In

EZ thus, one must avoid observations that have almost the sam

RSS values from the same AP.

3.2 Localizability

While a necessary criterion for the existence of a uniquetisui
to the system of simultaneous equations is that the numhesguat-
tions should greater than or equal to the number of variatiésis
by no means a sufficient condition. In Figure 2, for exampiere
are 6 APs A P, through A Ps) and 20 mobile user locations from

which RSS observations were made. An edge between an AP and
a mobile user location is drawn iff the AP can be seen from that

location. The number of LDPL equations in this system is &l a
the number of variables is 58. However, from the very stngciu
is clear that the system is not localizable since the groupR¥,
AP1 throughAP3 is free to rotate aboutt P4 through A P6.

The localizability question in EZ is as followgiven a set of RSS
measurements at some unknown and known locations, is ibfss
to determine a unique set of coordinates for all the unknavead
tions by solving the corresponding EZ equatior®te question is
extremely relevant because, in practice not all APs may &iblei
from all locations in the indoor environment. Unfortungfeleter-
mining the necessary and sufficient conditions under whisdt af
LDPL equations has a unique solution is still an open prokitgah
we hope to tackle in the future.

However, for most practical scenarios, it is possible tedeine
whether or not a system of LDPL equations can be uniquelyesolv
by making sure that following three conditions are satisfied

C1: Each unknown location must see at least 3 APs.
C2: Each AP must be seen from at least 5 locations (known or
unknown).
C3: The Jacobian of the system of LDPL equations must have a
full rank (equal to the number of variables) for a random ceaif
the AP parameters and unknown locations.

Conditions C1 and C2 follow from the discussion in Sectidh 3.
Condition C3 essentially linearizes the system of LDPL ¢igua
into the formJy = k, wherelJ is the Jacobiany is a vector con-
taining all unknown parameters akda constant vector. The lack
of full rank then exposes any insufficient coupling in the a&éuns
i.e.,situations similar to that depicted in Figure 2.

4. COMPUTATIONAL CHALLENGES

While there are several different approaches to solving afse
over-determined equations, in our implementation, wengiteto
find a solution that minimizes the least mean absolute error,

1
Iy = Nij:mj — P +10 % v; log i | @)

In Egn 4 ,N is the total number of EZ equations.

Jez is a non-linear objective function and to the best of our
knowledge, does not allow for an analytical closed form soiu
Optimization schemes such as the Newton Raphson Methodf24]
Gradient Descent [1] (GD) are iterative schemes that stam fan
initial guess and find the closest local minimum. In our aliti-
als we found that such schemes fail to find a solutiod#e since
the number of local minima ik z is immense. The other alter-
natives are search techniques such as simulated annehlingr|
genetic algorithms [6] (GAs). While genetic algorithms ca&arch
the solution space efficiently, they can miss local minina thight
provide a reasonably good solution. Consequently, to olite
benefits of both these approaches, in our implementationysed
a hybrid approach that used gradient descent to refine thesd
generated by a GA.

Solving LDPL equations using the GA can take a few minutes
to several hours depending on the size of the problem. Haweve
these equations need only be solved once (or periodically en-
ery a few days to refresh the model) to determine the AP looati
their transmit powers and the path loss exponents. Oncedag-
timated the model, new location queries can be answeredghro
standard techniques such as trilateration (by converti8g§ Riea-
surements to distances Eqn 3) in real-time.

4.1 The Genetic Algorithm

The GA starts by picking an initial set of solutionsifial gener-
ation) randomly and refining them using gradient descent. A solu-
tion consists of a vector of values of all the unknowns to Heesb
in the LDPL equations. The fitness of each solution is thet eva
uated by computing]El—Z for the solution. Thereafter, consecutive
generations of solutions are generated in the followingmean
1. 10% of the solutions with the highest fitness are retained.

2. 10% of the solutions are randomly generated.

3. 60% of the solutions are generated by picking two solutions
S¢'4,85 from the previous generation (parent solutions) and mix-
ing them using a random convex linear combination. In othads

S" = aeS 4 (1—a)ess (5)

Here,a is a random vector with each element independently ran-
domly drawn from(0, 1), 1 is vector with all its elements equal to

1 ande represents a vector dot product. The newly generated solu-
tion is then refined using GD.
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4. The remaining 20% solutions are generated by randomly mgcki
a solution from the previous generation and perturbingétrtr-
bation based mutatigrby adding (or subtracting) random values
(drawn from an exponential distribution to allow occasidiaage
perturbations) to all the location®; and~;. The solutions is then
refined using the GD.

As generations evolve, solutions with higher fitness arecdisred.
The GA terminates when solutions do not improve for ten conse
utive generations.

4.2 Reducing the Search Space

When the solution space is extremely large, a randomly gdicke
solution is likely to be far from the optimal solution. Consently
it may take a large amount of time before the GA stumbles upon i
Narrowing the search space can dramatically reduce rurtimeg.
The most obvious way to narrow search space is to limit theehea
space of the variables. For example, knowing the dimensibns
the floor one can limit the search of the locations to withiflbor
perimeter. For AP transmission powers we chose a generaushse
space namely—50,0)dBm. For~; we chose the search space
(1.5,6.0). We believe that these ranges will be accommodating for
most practical indoor deployments.

Another way to narrow the search space is to leverage camistra
inherent to the problem. Given APs andr locations, as discussed
in Section 3 there are a total ¢fn + 2n variables to be picked ran-
domly. However, having picked all theén AP parameters th2n
unknown locations can be determined through trilaterafiming

Eqgn 3 to convert RSS to distances). Thus, the GA needs to ran-23:

domly pick only4m unknowns rather tha#im + 2n. The search
space reduces exponentially with each eliminated variable

The search space can be further reduced by using the already26:

determined (or known) locations. For example, supposestiat-
ticular AP can be seen from three known locations. Then &dier
domly picking P and~, its location can be uniquely determined.
In general, the underlying constraints in the LDPL equatioan

be listed as follows:

R1 : If an AP can be seen from five or more fixed (or determined)
locations, then all four of its parameters can be uniquelyesb

R2: Ifan AP can be seen from four fixed locations, there exist only
two possible solutions for the four parameters of the AP.

R3: If an AP (sayi'" AP) can be seen from three fixed locations.
Then after pickingy; randomly from (1.5,6.0) there exist only two
possible solutions that satisfy the observations for thdokBtion
and its transmission power.

R4 : If an AP can be seen from two fixed locations, then, having
picked P; and~; randomly, there will be only two possible solu-
tions for its location.

R5 : If an AP can be seen from one location only, then, after pick-
ing P; and~; randomly, the AP can only lie on a circle of radius
given by Eqgn 3 centered about the known location.

R6 : If the parameters for three (or more) APs have been fixed,
then all unknown locations that see all these APs can be lgxact
determined using trilateration.

Constraints R1-R6 indicate that after selecting only a féwhe
variables randomly, the rest can be deterministically oateqh.

Based on these underlying constraints in EPL equationsewe d
vised theEZ Random Solution Generation AlgorithlBRSGA).
ERSGA attempts to minimize the number of variables that need
randomly picked among the entire set of variables in a gin s
of EZ equations in a greedy fashion. The essential idea dehin
ERSGA is to start by determining AP parameters with as many
known locations as possible. Upon determining AP pararaéter

mined using trilateration. These determined locationsuin tan

be used to determine the parameters of some other APs. The pro
cedure continues until all APs and locations have beenméated.

The pseudo code for ERSGA is provided below:

1: Function ERSGALdone, Cdone, O, I, base)
2: repeat
3. change =false

4 fori =1tomdo
5 if i ¢ C then
6: setO = p¢j|j € Lagone
7 if |O] > lthen
8: {ci, Pi,~vi} = APRandomInit{,O, Laone)
9: Odone - Odone U {74}
10: change = true
11: if | < base then
12: return true
13: end if
14: end if
15: end if
16: end for
17:  if change = fals¢hen
18: if I > 0then
19: change = ERSGA(ione, Caone, O, L — 1, base)
20: if | < base then
21: Return change
22: end if
else
24: Return change
25: end if
end if
27. for j =1tondo
28: if j ¢ Lthen
29: setO = pijli € Caone
30: if |O| > 3 then
31: x; = TrilaterateQ,C)
32: Lione = Laone U {J}
33: change = true
34: end if
35: end if
36: end for

37: until change = true
38: Return change

ERSGA is a recursive algorithm that takes five inputg, .. the
set indices of all locations where RSS observations weentéhat
have been determined so far,,.. the set of indices of APs with
their AP parameters determine@. is the set of RSS observations
Pp1..m,1.-.m- LIS the recursion level which searches for the constraint
Ri. base takes a value of 5 if there are 5 or more known locations,
otherwise it takes the value of the number of known locatidite
entire procedure begins by initializing,, . with indices of all the
known locations(C'yone as an empty set anid= base. The func-
tion APRandomInit{,O,L4.x.) (line 8) finds a set of random AP
parameters givehdetermined (or known) locations based on con-
straint ruleRi. For each value of in APRandomInit{,O, Laone),
a different strategy is used to determine the random AP param
ters based on constraints R2-R6. For example, in case of R3 or
(I = 4,5), the values of the AP parameters are determined through
an exhaustive search over several combinatior3 afid~ in com-
bination with trilateration. In case of R4 & 3), v is chosen ran-

three or more APs, locations that can see these APs can lre dete domly andP is searched exhaustively to determine local minima in



Mobile Device RSS (in dBm)
Laptop Xenovo X61 -41
HP IPAQ #1 -43
HP IPAQ #2 -31
Samsung SGHi780 #1 -51
Samsung SGHi780 # -49
HTC ADV7510 -49
HTC ADV7501 -37

Table 1: Difference in RSS Readings across Mobile Devices

the mean absolute error. A= 0, all AP parameters are generated
randomly.

5. ACCOMMODATING RECEIVER GAIN
DIFFERENCES

While ideally all mobile devices should measure the same RSS
at the same location, they often do not. Table 1 shows thegeer
RSS measured by different mobile devices simultaneouddyaan
the same location, with line-of-sight to an AP. Such differes can
arise from differences in the receiver gains of these matsieces
and from calibration offsets. Since several different neobéevices
can participate in EZ, such differences can potentiallygase lo-
calization errors unless these are compensated for. Heahstr
al. [12] have suggested maintaining a database of pre-measure
differences in receiver gains among various, widely-usedbila
devices. However, in our experiments we have found thaether
gain differences of 2-7dB even among devices of the same make
and model. To account for these gain differences we intredurc
additional unknown parameté€?, the receiver gainfor each user.

In other words, the LDPL model becomes:

(6)

Here, k indicates data specific to tHé" mobile device, sa3* is
the receiver gain of th&*" mobile device.G" is then estimated
using the genetic algorithm along with all the other pararset

As discussed in Section 4, narrowing the search space foathe
rameters of the LDPL model can provide significant gains énetk
ecution time and performance of the genetic algorithm basher.
A span of(—20,20) dB provides a generous range to search for
differences in receiver gains. However, searching for thiegof
several mobile devices even in this limited range is not.ddsypce,
in our implementation, we use a novel scheme — the Relative Ga
Estimation Algorithm (RGEA) — to provide a coarse-grainsti-e
mate of the gain differences among various mobile devicesther
words, RGEA estimates the difference in galvz¥/ = G* — &7,
between the!" and thej*" mobile devices. In addition to estimat-
ing AGY, RGEA also estimates the uncertaimf AG™), in the
estimate oAG™. This information helps the GA significantly nar-
row the search space for the receiver gains of the mobilecédsvi

pg:PL-—G’k—&—lO*fyilogdfj—&—R

5.1 Relative Gain Estimation Algorithm

The difference in RSS measurements obtained using two dif-
ferent devices at the same physical location (or locatibas are
"close") will be equal to the difference in the devices’ rigee
gains. Most RSS measurements in EZ are collected at unkrmwn |

Suppose that two mobile dewca& and ko, took RSS mea-
surements fromn APs onk1 =< plwp%w" s Pmj, > and

pm ", > from two (unknown) locations,
J1 and j2. TO factor out the (unknown) receiver gain, we sub-
tract the devices’ respective RSS measurements correisgotad
the first AP from the RSS of each of the remaining APs. This
k k1 k1 k k

yleldskthe vectorsV ! —< 07p2J}€ — p1J1,~~~ 7p7,§j1k— P1j, k>
andV,? =<0, pQJ2 —pln, C Poa —p1J2 > If Vit andV 2

are "close" to each other, it means that the RSS measurerﬁ)ﬁ'rl‘lts

andej, are similar modulo an offset. Hence, it is very likely that
the locationsj; andjz2, where these measurements were made are
in proximity. In our implementation, if the average difface be-
tween the elements (E}I’J’i1 ande’;2 is less than 3dB, then locations
j1 andj2 are deemed as being proximate. RGEA uses this criterion

to create a set}/*1%2, of pairs of measurement@;”1 ,pm) such
thatjt* and;i" locations are proximate. Then,
1
ki1k
AGT™ = EE > (p1 — p2) ™
(p1,p2)EMF1F2
4 . 2
(AG J = |Mk1k2| (pl - - AG’kﬂCz)
(p1, p2)€Mk1k2
g g ®)
dIn this manner RGEA computeAG*’ ando(AG™) for all pairs

of mobile devices whenever possible. Note that in many cases
two mobile devices and k might not have even a single pair of
measurements from proximate locations. Neverthelessyikigo
AGY and AG’*, AG™ can be estimated transitively asG** =
AGY + AGI*. Hence, we can determin®G* even for devices
that have no measurement locations in common (or in proyjmit
using the additive property of the receiver gains.

To effect the transitive estimation noted above, RGEA coicts
a graph with a node assigned to each mobile device. An edge is
drawn between two nodes if and only if there was at least oite pa
of measurements that came from proximate locations. Each co
nected component in this graph, then, represents the setiufed
whose gain differences can be estimated relative to eaeh. dtbr
each such component, RGEA picks a node (device) randomiheas t
root node and assigns it a gain by sampling uniformly rangaml
the interval(—20, 20) dB. To estimate gains corresponding to the
other nodes (devices) in the connected component, RGE#s star
with equations of the form:

G -G =AGY 9)
RGEA then estimates all the gairs? (relative to the gain that was
randomly assigned to the root node), by solving the simatas
system of equations 9 in a weighted least mean square sehse. T
weight for each equation is set as the estimated standaratidey

a(AG™), of the gain difference. In our evaluation we found that
RGEA estimates receiver gain differences accurately with8dB.

5.2 Localizing New Device with Unknown Gain

After the locations, transmit powers and path loss expanfemt
the APs have been estimated, EZ uses these to localize neilemob
devices in real time. In the absence of receiver gain diffegs,

cations. How then do we determine that RSS measurements fromas discussed in Section 3, the measurement from each AP-is con

two devices were taken at the same or proximate locations? To
overcome this challenge, EZ uses the implication from Equoad
that the difference in RSS from two APs measured by a given de-

vice at a location,iff, ; — p¥, ;), is independent of its receiver gain.

verted into an estimate of the distance from that AP usingaEqu
tion 3. Knowing at least three such distances from APs, waisan
standard trilateration to estimate the location of the neotbévice.
However, this approach will fail when there are differentese-
ceiver gain. Hence, to localize a new mobile device, EZ ¢réat



gain also as an unknown. Then, EZ constructs the set of simaHt uses the EZ algorithm to construct and maintain the modehfor

ous, gain-independent equations as: indoor environment in question.
x x Since the data from a large number of mobile users can be very
Pisj = Pirj = Pin — Piy +7yinlog (diy) — vizlog (dinj) (10) large and in many cases not useful for training. Thus, EZoper$

pre-filtering and selects only a useful subset of the avigildata
to learn the model (see Section 7). The EZ algorithm (desdrib
Section 4.1) then uses this data to generate the model. TaBZ
rithm is computationally intensive and may require severialutes
to hours depending on the specifics of the indoor space arathe n
ture of data. The EZ server, may potentially reside in thedland
leverage its computing resource to construct the RF model.

The GA is inherently amenable to massively parallel computa
tion, since each of the operations such as crossover andiomuta
can be parallelized. To take advantage of the parallelisnour

In Equation 104;; is the distance of th&” AP from the unknown
location of the mobile device. The unknown location of thevne
mobile device is then estimated by solving these set of énsain

a least mean squared sense. To the best of our knowledgeano an
lytical solution exists to solve the above set of simultarseequa-
tions (since the distances noted in Equation 10 embed theownrk
coordinates of the mobile device in quadratic form). Herig,
finds the solutions by searching in a bounding box around & A

6. IMPLEMENTATION OF EZ SYSTEM implementation, we implemented each such operation asa sep
The EZ system has been built based on a client-server arehite rate thread. This allowed us to take advantage of multiptecat

ture. Mobile devices (laptops, cell phones, netbaetky act asEZ the EZ Server. The EZ GA was run on a HP PRoline 8-core server

Clientsand connect to &Z Server The EZ server is responsible  class machine. Further parallelism can be exploited if thei$

for providing the location information to the EZ clients. &bur- implemented using parallel programming paradigms suclsiag u

rent system can support multiple mobile devices to comnateic  an MPI interface. The current implementation of the EZ serve

with the server and obtain location information. All comrua comprises about 7000 lines of C# and Python code.

tion between the client and the server has been implementad o
TCP sockets. While the current implementation uses WiFidon-
munication, extensions to use a cellular interfaces arsilples

7. CHALLENGES IN REAL ENVIRONMENTS

6.1 EZClients In this section we describe in detail the novel practicallenges

The EZ client is a piece of software that can be installed on a that we had to address on the path to making a EZ based localiza
variety of mobile devices. We have implemented the EZ client ~ tion system work in real environments.
Windows Mobile 6 and tested it on a variety of smartphoneb sisc
HTC Advantage, Samsung SGH i780 and HP iPAQ. The EZ client 7,1  Selecting the Right Set of APs
has FWO |mport§nt task;._ First, it prowc_ies location qutmn to The sheer number of WiFi APs that could be seen on a given
mobile appllcatlons re§|d|ng on the device anq second ||§M1e floor in our deployments came to us as a rather unexpected sur-
EZ server in constructing an RSS map of the indoor environmen prise. For example, in one of our deployments we could setah to

; : of about 160 APs across a single office floor! A large fractibn o
6.1.1 . Logatlon Que”es, ) ) these actually belonged to neighboring office buildings.other
The client first checks to see it can obtain the location froR8G interesting observation was that often each AP was configuith

on the device. If no GPS signal is available, it scans itsrenvent multiple SSIDs and appears as different APs. Clearly, nmiz
for WiFi APs in its view. The scanner scans for a few seconds (3 o all observed APs would constitute an immense computtion
in our implementation) collecting beacons from each APéfssét hardship at the cost of incremental gains. Consequentlgugo:

then transmits.a list of the mean and standard deviationeoR®S mated AP filtering mechanism had to be designed that wouttsel
seen from various APs to the EZ server over the collected data the most suitable APs. Note that EZ has no information as to if
Using the mean reduces errors due to multi-p&eans thatyield these APs belonged to the indoor environment of interesbor n
RSS measurements with a standard deviation greater thaB10 d  geyeral naive approaches to AP selection can be designed bas

are deemed unreliable and are discarded. _on desirable properties such as coverage, low standardtibevin
The EZ server then uses the computed model of the RSS envi-rss, and high average signal strength. For EZ however, air go
ronment to determine the location of the mobile device ihtieee was to minimize the number of selected APs while presenisig i
and responds to the EZ client. The current implementatiothef performance. To this end, we developed &RSelecilgorithm.
EZ client comprises about 2000 lines of C# and C++ code. The essential idea behind APSelect is to select each AP tidero

. . . information that other selected AP do not. Information tie¢ie
6.1.2 Assisting the EZ Server in Model Creation cally speaking the mutual entropy between the data fromany t
For new indoor spaces, an RSS model must be first generated beAPs must be high.APSelecthowever, uses a more approximate
fore queries can be answered. For this, the EZ clients scafifa and simpler approach. It starts by computing a similarityriaéor
APs in their range and transmit the observed mean and sthndar each pair of APs based on observed RSS. APs with the mosasimil
deviation of RSS to the EZ server exactly in the same mannar as data are then clustered together. A representative APrissleeted
location query. While in our implementation devices peicatly from each cluster.
perform a scan and push the information to the EZ serverctiis To compute the similarity metric, all the RSS observatipns
be easily implemented as a pull, where the EZ server reqt@sts  from thei?" AP at thej*" location are first normalized to lie within
a scan. Pull is desirable since mobile devices then needostgn the range (0,1) by dividing them by 100 (since observed R$S ty
when necessary and this can lead to significant energy saving ically lie in the range 0 to -100 dBm) and then their mean is-sub
tracted from each reading to give a normalized RSS observati
6.2 The EZ Server ppermatized When RSS readings are not available at certain loca-
The EZ server has two important functions. First, it respond tions, these gaps are filled with a reading of -100 dBm assgimin
to location queries from the EZ clients in real time and selcion that the RSS is below the receive threshold of the receivéle T
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similarity metric is then computed as,

Aij =1— % Xk: |Bir — Djk| (11)
Ai; essentially measures how similar RSS readings were adioss a
locations (known and unknown) for the two APs.

For clustering similar APs, we used hierarchical clustgrimi-
tially each AP represents a single cluster and at each folpatep
two of the most similar clusters are merged. The similarigy b
tween two AP clusters is computed as the average similagty b
tween all inter-cluster pairs of APs. For selecting a repméstive
AP within a cluster all APs are first ranked in the order of thenn
ber of known locations that can be see the AP. An AP that caa see
larger number of known locations is given a higher priorynong
APs with same priority, an AP which has the highest average si
larity to rest of the APs in its cluster is selected as thetelusead.
We select the minimum number clusters while ensuring thavoo
clusters have a similarity greater than 90%. We demonsthate
efficacy of APSelectn Section 8.

7.2 Selecting a Subset of Locations

For training EZ, ideally RSS observations must come from sev
eral different locations across the indoor environment: &@m-
ple, data from a single mobile user who actively venturesdfterd
ent places across the indoor space while his mobile deaositmits
the RSS information to a EZ server. Alternatively, data fiolarge
number of mobile device users spread out across variousdosa
of the indoor space. Given the large amount of data, then, how
should we cull out the “useful” subset of data?

To tackle this problem we developed thecSelectlgorithm. It
works exactly the same as APSelect, except that we flip tHegro
by treating the selected APs as locations and vice-versathier
words each new location is selected such that the RSS infamma
it provides has minimum overlap with other selected locatioNe
demonstrate the efficacy bbcSelectn Section 8.

8. DEPLOYMENT AND RESULTS

In this section, we present a comprehensive overview ofvalr e
uation methodology and experimental results, which atterp
answer the following questions:

e What is the cost in terms of localization error paid by EZ to
achieve the ease and freedom from pre-deployment effort com
pared to fingerprinting based schemes?

How does EZ compare with a model based scheme that has
access to AP and measurement locations?

How does the performance of EZ improve as more and more
measurements become available?

How does the system fare in localizing new devices which are
not used in the training process?

How robust is performance to using multiple devices, with di
ferent receiver gains, to build the RF model?

e How effective are the APSelect and LocSelect algorithms?
e What is the computational cost of RF model estimation?

8.1 Deployment in Two Buildings

We have deployed EZ in two different office buildings. Thetfirs
henceforth referred to &8MALL, is a typical office floor housing
around 30 people (Fig 3a). The floor comprises several atigins
in the form of concrete walls, wooden patrtitions, and glassél
doors. The second, henceforth referred toLARGE is a very

large floor used as a call center (Fig 3b). This L-shaped flzar a
contains several obstructions, including pillars, woogartitions
and concrete walls; and houses a few hundred people.

8.2 Comparisons
We compare the performance of EZ against three schemes:

e RADAR: RADAR is an RSS fingerprinting scheme, which in-
volves considerable pre-deployment effort in constructimatabase
of RSS signatures collected from various known locatioriiwi
the floor. An incoming signature is then matched against this
database. The closest match (or the average of k-nearedtesat
is returned as the estimated location. We found that avegagi
with & = 5 performs the best and used it in our evaluations.

Horus: Horus improves on RADAR by maintaining a proba-
bility distribution of the observed RSS values at variousalo
tions instead of single values. Locations are then detedas

an average over a few most likely locations, weighed by their
likelihood. As in the original implementation [29], we retua
weighted average of the top 6 locations.

EZ+Loc: To evaluate the performance of a model-based scheme
when given the benefit of knowing all measurement as well as
AP locations, we experimented with an EZ+Loc scheme, which
operated as follows. We fed in the locations of all APs and-mea
surement points to EZ, and then estimated the transmit power
(P) and path loss exponent)for the APs.

8.3 Experiment Methodology

For our experiments, we used two different kinds of mobile de
vices: a Lenovo X61 laptop and an HP iPAQ hw6965 smartphone.
To build the databases for RADAR, Horus, and EZ+Loc, we col-
lected RSS signatures at grid locations throughout the #ibaughly
every 1.5mirSMALLand 3m inLARGE At every location, we col-
lected a total of 10,000 beacons, an exercise which took ostab
5 minutes per location. For EZ, a user held the mobile devick a
simply walked across the floor briefly stopping for about sels
at each location to establish ground truth for evaluationteNhat
the ground truth information is used only for the evaluatidto-
calization errors, and isot supplied to EZ for training. Since our
laptop was not equipped with a GPS unit, we used a commercial
GPS equipped with a SiRF Star Il chipset running Navigori-sof
ware for obtaining GPS locks. For evaluating the differehiesnes,
we gathered a test data set at a number of locations spreassacr
various sections of the floor. We chose the median ariti gér-
centile error on this test data set as our evaluation metrics

8.4 Performance insMALL

In the data collected for EZ, the Lenovo X61 laptop was used to
obtain RSS readings from 48 unknown locations (depictecbhs h
low triangles in Figure 3a), and also 3 known locations (clei
as filled triangles in Figure 3a), where a GPS lock was obthine
Our data showed that 48 different APs (MAC Addresses) wese vi
ible from this floor. Many of these APs did not belongSMALL
APSelect selected 4 APs from these 48, which coincidensdliyf
these belonged tSMALL

For RADAR and Horus we used all the 48 visible APs since this
constituted the most information. Some studies [4] havented
that having a larger number of APs sometimes degrades perfor
mance. Consequently, we tested RADAR and Horus with smaller
subsets of APs obtained from APSelect and found that the best
performance (in terms of mean square error) was indeednautai
when all 48 APs were selected. For EZ+Loc, we had locatiaorinf
mation only for four APs, and we used these APs for localirati
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Figure 4: CDF of localization errors in SMALL Figure 5: CDF of localization errors in LARGE Figure 6: Dependence of EZ's performance on

using the Lenovo X61 Laptop. using the Lenovo X61 laptop. amount of training data

Figure 4 depicts the cumulative distribution of localipatier- EZ+Loc, we obtained locations for 12 of these APs. RADAR and
rors obtained for all the four localization schemes. Horeisgrms Horus database were created using all the 156 APs. EZ used APS
the best with 58* and 80" percentile error of 0.7m and 1.3m re- elect algorithm, which picked 10 out of the 156 APs found.
spectively, followed by RADAR with values of 1.3m and 2.1n fo For testing we collected RSS readings at a separate tesing s
the same. EZ provides a B0percentile error of 2m and an 80 of 40 locations and evaluated all the four schemes over tleese

percentile error of 3.3m. An office cube in this floor is roughl  cations. As in the case &MALL, Horus performed the best with
3m in size. Contrary to what we expected, EZ+Loc performed th 50 and 80 percentile errors of 4m and 7m, respectively. Hewev
worst, with error values of 3.1m and 4.4m respectively. Tdarn RADAR performed significantly worse (median error of 7m afd 8
stand the reason for this, we analyzed the RSS map genenated b percentile of 12m), indicating the need for careful setattf APs.
EZ and EZ+Loc and found that EZ's map was closer to reality al- In the absence of any specified scheme for the selection ofdkPs
though the locations and transmit powers of the APs it foudd d RADAR [4], we used APSelect to pick out a smaller subset of APs
not match exactly with the ground truth. While EZ had the flexi The best performance of RADAR was found with 10 APs, with the
bility to compensate for estimation errors in the path logsaent 50 and 80 percentile errors being 5m and 7m, respectivelyalgde
() by adjusting the estimated locations of the APs, EZ+Loc did ran Horus with different subsets of APs selected using A&S3el
not have this luxury. Consequently, it could not compensate but the best performance was achieved with all the 156 APs.

the errors in the model. Thus, fixing the AP locations reslite EZ yielded 50 and 80 percentile errors of 7m and 10m, respec-
degraded performance. tively. This implies that localization accuracy was within two to
. three cubicles in the call centelhe accuracy is still quite useful
8.5 Performance inLARGE since the office building is quite large and houses a few hachdr
In this experiment RSS data was collected for EZ at 101 differ cubicles. As in case of the small building, EZ+Loc perfornsegt
locations within this floor, as depicted by the trianglesiigure 3b. nificantly worse than EZ.

The entire floor is not well ventilated and has few very smaii-w ..

dows. As a result we could not obtain a GPS lock at any location 8-6  Dependence on Amount of Training Data

within this floor. However, this was an excellent opportyrtid As users cover more ground within the indoor environment and

test the performance of EZ on a large floor, so we selectedgpoin hence more RSS measurements become available for traméng,

that were closest to the boundaries of the floor and deemaeé the would expect EZ's performance to improve. To evaluate this,

as known locations. There were 15 such known locations in the started with measurement data from the full set of 50 looatia

training data, depicted as filled triangles in Figure 3b. SMALL We then selected random subsets comprising 20%, 40%,
We processed the collected data, and found 156 different AP 60%, 80%, and 100% of the full measurement data, such thht eac

MAC addresses, only a few of which belonged to the office. For successive subset included the previous subsets. We thiaadr
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number of different devices

EZ using these subsets and evaluated localization accusinyg

a separate test data set gathered at 30 locations v@MkLL We
repeated the above procedure of evaluating EZ with randtisessi
10 times. Figure 6 depicts the median, mean, afid pércentile of
the localization errors over the 10 runs. Even with only 2(%he
training data (i.e., 10 measurement points) being ava|abr is
able to achieve a median error of about 3m. As more trainitgida
made available, the median and8percentile errors progressively
decrease to under 2m and 4m, respectively.

8.7 Performance for a New Mobile Device

How well does EZ localize a new mobile device that has never
been used to generate the model? In particular, how doe®the r
ceiver gain difference among receivers, as discussed itioBeg
affect performance? To answer these questions, we call&sS
signatures at 40 different locations$MALLusing the iPAQ smart-
phone. We then localized these positions using the modekrgesd
with measurements made using the laptop. In EZ, in additon t
the location of the mobile device, we also estimate its (omkr)
receiver gain,G, as discussed in Section 7. We experimentally
determined the gain difference to be roughly 11dB, althotgh
information wasotsupplied to EZ. Note that none of the schemes
other than EZ provide mechanisms to estimate or correctrfore
due to differences in receiver gain.

to collect ground truth information) to train EZ using thé&@®. The
curve labeled “EZ iPAQ-iIPAQ” shows the result from this esipe
ment. Indeed it can be seen that the performance is almoBasim
for the curves “EZ iPAQ-IPAQ” and “EZ Laptop-iPAQ".

The relatively poor performance of (unmodified) RADAR and
Horus, as shown in Figure 7, highlights the importance afrest
ing and compensating for differences in receiver gain, avean
multiple devices of the same type are used for measurenigist. |
likely that Horus and RADAR would perform better if also give
the benefit of gain compensation. However, unlike EZ, it islear
how either Horus or RADAR could automatically estimate thang
for a new device that has not been used to create the RSS map.

8.8 Training with Data from Multiple Devices

All our results with EZ so far have utilized data collectedhgs
a single device for training. However, in practical sceosrimulti-
ple users would provide training data. How does EZ perforrenwh
multiple devices are used for data collection? To analyeebi
havior of EZ under such a setting, we used a mixture of data fro
the laptop and iPAQ (iPAQ #1) for training. As shown in Fig&e
the laptop user limited themselves to the south side of thie-bu
ing while the iPAQ #1 user restricted themselves to the nsidhb.
The two users had a common area of coverage (about 6 locations
indicated by the dotted ellipse) in the region between thehkin

Figure 7 shows the CDF of errors over these 40 points. The first and the entrance to the floor. EZ was able to used these lnsatio

key observation is that EZ outperforms all the other scheimease
“EZ Laptop-iPAQ” in the figure). This clearly demonstratée t
benefit of EZ's estimation and compensation of receiver gain
the new device. EZ yields 50 and 80 percentile errors of 1.8th a
2.8m, respectively. To determine how the performance wbaia

to compute the receiver gain offsets between the two dewses
discussed in Section 7.

For testing purpose, we collected observations at appiateiy
30 different locations on three different mobile devicesvoTof
these were the ones used for training, i.e., the laptop ak@ L.

been if the model was built using the same device, we had a userThe third was another iPAQ, which we label as iPAQ #2. Experi-

walk around the floor (with intermittent stops lasting a feeands

mentally we determined that iPAQ #1 and iPAQ #2 had a receiver
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Figure 13: Spatial distribution of errors at various locations from EZ.

gain difference of about 7dB while iPAQ-1 and the laptop hae-a all the locations for each AP and selects the strongest Afhe T
ceiver gain difference of 11dBNote that this information was not  second schemé&laxRSSAPSeleéinds the maximum RSS across
supplied to EZAs seen from Figure 9, the performance of all three all locations for each AP and then selects the top APs. Toibe fa
devices is almost the same, yielding median ant §&rcentile and consistent with APSelect, we selected the same numdtof
errors of about 2m and 4m, respectively. using the two alternate schemes.

How does EZ's performance scale as the number and divefsity o Figure 11 depicts the CDF obtained by training EZ on each of
the mobile devices grows? To answer this question, we builisa selected set of APs on tH&MALL data set. We see that the set
tom simulator. We assumed two floor sizes: 25M5m and 100m of APs selected by APSelect significantly outperforms thnsthe
x 100m. AP locations were generated randomly in the floor and other two schemes. Upon inspecting the distribution of R&® sit
each AP was assigned random value®dfn -20dBm to -50dBm) various locations for APs given by AvgRSSAPSelect and Ma3RS
and~ (in 2 to 5). 5 APs were used for the 25m 25m floor and APSelect, we noticed a curious occurrence. Two differeirspt
9 for the 100mx 100m floor. These choices were based on our APs selected in both schemes showed almost the same RSS value
experience from actual deployments. Ten batches eachiwinga at all locations. In other words they were co-located APsitiare
and testing locations (100 points each) were generatecbnaigd ent channels. APSelect wisely avoided picking both of tharoes
for each floor. From each batch of training locations, fivéedént they were providing the same information.
training data sets were derived, corresponding to themghki 5,

10, 15, or 20 devices. A training data set witldevices was de-  8.10 The Efficacy of LocSelect
rived by creatingt partitions in the batch of training locations and LocSelect carefully picks a subset of the RSS data collected

ahSS'P”'”g eacdrl %asrtétlonl to a different |m0b'|e dﬁv'ﬁe'LEDF?aate go| 2€r0ss locations with the goal of reducing model trainimgivhile
the “measure values, our simu'ator used the MOGe! incurring a minimum loss in localization performance. Talexate

with a randomly picked gain{ in Equation 6) in the range (0,20) e efficacy of LocSelect, we selected 25% of the locatiofsgus

dB assigned to each device. Tempp ral variations in RSS. wer M | ocSelect and trained EZ. The estimated AP parameters Wwene t
eled using a Gaussian random variable with a standard deviait used to estimate error over a separate testing set of 30dpsat
3dB. Finally, all training locations within 3m from the baary To investigate how a randomly picked subset would perform, w

were assumed to acquire GPS and hence deemed as known l0cgp e picked 25% of the locations randomly and trained EZ esdh
tlons_. Thus, the above procedure t_ansured that for _each bjatCh randomly picked locations. Localization error was thenusizd
locations, we had runs of the experiment that only differethie over the testing set

number of mobile devices. Figure 12 depicts the CDF of the errors obtained from the two

To evaluate localization accuracy for a new mobile deyice, w strategies. The CDF obtained by running EZ with all the loret
generated RSS measurements at the locations in the testings 5 ovided as reference. As seen in Figure 12, both the 5@and

ing another random gain value drawn from (0,20)dB corredpon o centile errors obtained by using just 25% of the unknavead

ing.to the new device. For each training data set, we usgd EZ 10 i5ns match those obtained by picking all the unknown ot
estimate the AP parameters. We then used these to estineate thp_ 4 selection, however, did not perform as well, with&de

:ocalt_lon§ of the new device '3 th_e tesﬁ set ‘?_d then con;;tgte th percentile error being almost 7m. Figures 13a and 13b dépect
ocalization error. Figure 10 depicts the median, mean 8  spatial distribution of locations errors across the erfter. The

percentile errors across the 15 batches of training anthgeistca- locations that were picked for training EZ are indicated bfids
tions for each of the two floors. We see that the accuracy of EZ qjrjeq  As seen from Figure 13a and 13b, the distributiothef
does not change significantly with an increasing number djileo selected locations appears to be random. However, thestidos

devices. This indicates that the RGEA algorithm (Sectiois &ple are, in fact, picked carefully using LocSelect and these It
to effectively estimate and compensate for gain differera@oss learn the RF model accurately.

mobile devices.
8.11 Running Time of EZ

8.9 The Efflcacy of APSelect The time taken by EZ to estimate the RF model depends on
We showcase the efficacy of our APSelect algorithm by compar- several factors including the number of unknowns (locatiand
ing it with two (naive) versions of AP selection schemes. st AP parameters), the nature of data (data that fits the modél we

scheme AvgRSSAPSelecomputes the average RSS seen across is solved faster), the number and placement of known loestio



the distribution of the unknown locations and finally the icleoof
initial solutions that were randomly picked for the GA aneith
number. In Table 14 we provide the typical running times theat
observed while training EZ. These measurements were ctealuc
by training EZ on two different machines. The first, a Lenoéip
laptop and the other HP PRoline which was a server class machi
with 8 cores. Note that model estimation is an offline task @mel
that is likely to be repeated infrequently for a given indspece,
so a relatively long running time is not a hindrance.

9.

(1]
(2]

(31

(4

DISCUSSION Bl

There are several challenging extensions to the curretd sfa
EZ. In this section we briefly describe a few of these. All of ou
evaluation has been based on measurements made from vaihin t
indoor space of interest. How would we ensure this in pra€tic
The EZ framework from Section 3 does not explicitly assuna th
the measurements are made within the indoor space of ihteres [
However, measurements taken from outside the space caititdi
the solution due to signal attenuation from significant nizstons
such as the exterior walls. Such RSS measurements would how-
ever stand out as outliers, due to their poor fit in Eqn 1, andidco
be identified and discarded accordingly. We hope to addnés#nt
our future work.

Energy is an important consideration for mobile devicesaanSc
ning for WiFi devices or obtaining a GPS lock, and transmitthis
information to the EZ server, could consume a significantarho
of energy. The energy cost could be reduced by having the EZ 13]
server pull in RSS information from mobile devices only when
needed. Furthermore, such crowd-sourcing of informatam lee
effected in a manner that balances the burden across mebilees
while also being cognizant of their battery levels. Thus,ehergy
cost for any individual mobile device would be minimal.

Finally, the parameters of the RF model are likely to be sttbje
to diurnal variations. For instance, RF propagation mightitore
severely attenuated when an airport or a mall is crowdedtigm
it is sparsely populated. To address this issue, we couldtrgmt
separate models for different times of the day and borrownfro
prior work on RF environment profiling [5].

(6]

[10]
[11]

[12]

[14]

[15]

[16]
[17]

10. CONCLUSION (el
EZ is a novel, configuration-free indoor localization scleeimat
uses existing WiFi infrastructure to localize mobile degclt does
not require any pre-deployment effort, infrastructureprp prior
knowledge about WiFi APs, or active user participation. EZrhs
by collecting data from mobile devices carried by users ay th
traverse the indoor space of interest in normal course.
We have implemented EZ and compared it against RADAR and 22]
Horus, localization schemes that use RF fingerprinting, &ad
a scheme that leverages knowledge of AP and measurement lo{23]
cations. Based on deployment in two different office buidgin
EZ's performance is only somewhat worse than that of schemes[24]
that depend on extensive mapping effort (median error of 2ifm w
EZ compared to 0.7m and 1.3m with Horus and RADAR, respec-
tively), while more being robust to device diversity. Indu work,
we plan to extend EZ to 3 dimensions and, separately, igagsti
energy efficiency issues.

[19]
[20]

[21]
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[26]
[27]
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