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ABSTRACT

Highly accurate indoor localization of smartphones is critical to en-
able novel location based features for users and businesses. In this
paper, we first conduct an empirical investigation of the suitability
of WiFi localization for this purpose. We find that although rea-
sonable accuracy can be achieved, significant errors (e.g., 6 ~ 8m)
always exist. The root cause is the existence of distinct locations
with similar signatures, which is a fundamental limit of pure WiFi-
based methods. Inspired by high densities of smartphones in public
spaces, we propose a peer assisted localization approach to elimi-
nate such large errors. It obtains accurate acoustic ranging esti-
mates among peer phones, then maps their locations jointly against
WiFi signature map subjecting to ranging constraints. We devise
techniques for fast acoustic ranging among multiple phones and
build a prototype. Experiments show that it can reduce the maxi-
mum and 80-percentile errors to as small as 2m and 1m, in time
no longer than the original WiFi scanning, with negligible impact
on battery lifetime.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed Applications; C.3 [Special-Purpose and Ap-
plication based Systems]: Real-time and embedded systems; H.5
[Information Interfaces and Presentation(e.g., HCI)]: Sound and
Music Computing

General Terms

Design, Experimentation, Measurement, Algorithms, Performance

Keywords

Smartphone, Peer Assisted Localization, WiFi fingerprint localiza-
tion

1. INTRODUCTION

Indoor localization is a critical enabler for location based smart-
phone applications. In many environments (e.g., airport termi-
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nals, railway stations and shopping malls), the location helps users
access navigation, merchandise and promotion information; busi-
nesses need it to understand the patterns of customer visit and stay,
such as the popularity of different sections in the store, or the spatial-
temporal distribution of passenger flows.

Accurate indoor localization on smartphones, however, remains
elusive. Although there have been some recent commercial offer-
ings such as Google Maps 6.0 and Shopkick [1], they either have
errors up to 10 meters [9], or only locate at the granularity of stores.
There has been a plethora of academic work on indoor localization.
Those achieving high accuracy usually require special hardware not
readily available on smartphones [20,21], or infrastructure expen-
sive to deploy [6, 17]. WiFi-based localization leverages prevalent
wireless access points, thus avoiding such drawbacks. But most
studies [3,27] have been largely based on laptops with quite dif-
ferent antenna forms and possibly radio characteristics, whereas
recent work on smartphone indoor localization [2, 15,24] achieves
room or floor level accuracies. The feasibility of leveraging the
most prevalent WiFi infrastructure for high accuracy localization
on smartphones is still an open question.

In this paper, we first conduct a set of experiments to empiri-
cally study the impact of various factors on the accuracy of WiFi
localization on smartphones. We find that although reasonable ac-
curacy (e.g., 3 ~ 4m) can be achieved, there always exist large
errors (e.g., 6 ~ 8m) unacceptable for many scenarios. Similar
or much larger errors (e.g., >15m) have been reported in previ-
ous studies [3,27]. One work [7] found that high accuracy (e.g.,
sub-meter median and 2m maximum) is possible but only under
hundreds of APs, infeasible in practical settings. Such errors may
cause a passenger make a wrong turn leading to a different train
platform, or a store erroneously stock up for a section with much
less real customer interests. Our investigation on these large errors
reveals the insight that they are caused by possibly faraway loca-
tions with similar WiFi signatures, an intrinsic phenomenon of the
radio signal propagation and fundamental limit of WiFi methods.

On the other hand, we observe that smartphones are gradually
woven into our social life and usually a high density of them ex-
ist in public spaces. The relative positions of nearby peer devices
could be used as physical constraints on the possible location of a
smartphone. Inspired by this observation, we set out to study how
to exploit the unique physical constraints among smartphones to
reduce large errors and push the limit of WiFi based approaches.
We propose a peer-phone assisted localization approach that lever-
ages the acoustic ranging between peers, without requiring special
hardware yet producing highly accurate location estimates.

In particular, the peer-phone assisted localization can be carried
out concurrently with WiFi localization or when a smartphone has
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obtained a rough location from WiFi but needs further improve-
ments. The targeting smartphone exchanges sound signals with
nearby peer devices. A server collects such ranging estimates and
constructs a graph of the relative positions among peers. It applies
a localization algorithm that maps the vertices of the graph against
the WiFi signature database to locate all peers jointly. Experiments
using data from various environments, including the airport, train
station, and shopping mall, have shown that our approach can re-
duce 80 percentile error to about 1m, and limit the maximum error
to about 2m, demonstrating the feasibility of WiFi for high accu-
racy localization.
Specifically, we make the following contributions:

e We discover the root cause of large errors as the existence of
faraway locations sharing similar radio signatures, which is
due to the intrinsic dynamic propagation of the radio signal,
thus presenting a fundamental limit of WiFi methods.

e We propose a peer-phone assisted localization approach uti-
lizing minimum auxiliary COTS sound hardware for reduc-
ing large errors and push the limit of WiFi approaches. We
devise a peer-assisted localization algorithm that leverages
acoustic ranging and locates peer phones jointly for greatly
improved accuracy. We identify the frequencies, sound sig-
nal design, detection and emission scheduling methods ap-
propriate for fast ranging among multiple peers that are un-
obtrusive, robust to noise and have minimum impact on users’
regular activities.

e We prototype our system and carry out real world experi-
ments. The results demonstrate that our approach greatly re-
duces the maximum error from 6 — 8m to 2m, and limit 80
percentile error to 1m, which were shown empirically possi-
ble but only under hundreds of APs [7]. The assistance fin-
ishes in time no longer than a few seconds of WiFi scanning,
and poses negligible impact on battery lifetime.

The rest of this paper is organized as follows. In Section 2,
we perform a systematic evaluation on WiFi localization on smart-
phones and report our findings. Section 3 introduces our system
design and present the detailed peer assisted localization algorithm.
We study the frequencies, sound detection methods for fast concur-
rent ranging among multiple peer phones in Section 4. We de-
scribe the system implementation and report evaluation results in
Section 5. We discuss related issues and survey related work in
Section 6 and 7. Finally, Section 8 concludes the paper.

2. PERFORMANCE OF USING WIFIALONE

FOR SMARTPHONE LOCALIZATION

To understand the practical performance of smartphone localiza-
tion using WiFi, we first conduct a systematic study on the impact
of various factors (e.g., orientation, holding position, time of the
day and number of samples). We find that reasonable accuracy can
be achieved in many cases (e.g., ~4m). However, large errors (e.g.,
beyond 6 ~ 8m) always exist. Further investigation reveals two
root causes: static environmental effects, and dynamic obstacles
or interferences, both of which pose fundamental limits on WiFi
localization accuracy.

2.1 Methodology

Fingerprint Based Localization. Fingerprint based method was
pioneered by Bahl et. al [4] and is the most popular WiFi localiza-
tion approach. It first measures the “fingerprint", the WiFi signal
strengths from various access points (APs) at a number of known
locations and stores them as training data. A device samples the
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Figure 1: Each dot in the floor map represents a location where
the RSS fingerprint is measured.

signal strengths from various APs to obtain festing data. Then an
algorithm finds the “closest fingerprints” in the training data to the
sample, using Euclidean distance in the signal space where each di-
mension is for a different AP. A location estimation is given based
on the locations of the closest fingerprints (e.g., the centroid of a
few “closest" fingerprint locations). Recent work [8,24] showed
that the training data could be constructed without extensive site
survey, making this approach even more attractive. In the test, we
build a fine-grained signature map as training data, using interpola-
tion between locations with actual measurements.

Experimental Setup We conduct the study in an office environ-
ment as shown in Figure 1 with a set of Android phones. The exper-
imental area is 12 m x 11 m with hallways, office wall dividers and
furnitures, such as desks, shelves and chairs. The phone takes 60
Received Signal Strength (RSS) samples at each of the 71 known
locations from 14 APs. Each location can observe signals from 8-
9 APs on average. We repeat the above process for each of the 4
factors, orientation, holding position, time of the day and number
of samples (shown in Table 1, to understand how they impact the
localization performance. For each test, the default parameters are
south for orientation, normal style for holding position, 60 samples
and morning time.

2.2 Impact of Various Factors

Figure 2 presents the cumulative distribution function (CDF) of
the localization error under various factors. We first examine how
the orientation affects the RSS readings due to the blocking and
reflection of radio signals by the human body. In outdoor cases,

[ Factors [ Description [ Value

Orientati The direction to which the user is | West, North,
rientation facing East, South
. . j ] ] Holding bottom,
Holding Position The way the user holds the phone Holding middle
Number‘ of The number of samples taken at 3.5.10,60
Samples each location
Time of the Day Different times that we conduct the | Morning, Noon,
measurements Night

Table 1: Factors under study
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Figure 2: WiFi localization error under various factors.

10dB RSS difference for certain APs was observed on smartphones
[29]. In our indoor environment, we recorded an average of 4dB
difference. We believe this reduced variation is due to stronger
multipath effects of indoor environments, thus the lack of direct
line of sight does not attenuate the signal as much. In particular, as
shown in Figure 2 (a), when a mismatched training data set is used
(e.g., south-facing training set for north-facing user), long tails of
CDF curves exhibit large errors ranging from 6m to 8m. Even when
the matching training set is applied, errors beyond Sm still exist.

Due to the small size, how the user’s hand holds the phone can
affect the received radio signal as well. We tried two holding po-
sitions: bottom and middle. Figure 2 (b) shows that using mis-
matched training and testing data (e.g., bottom-holding as training
to localize middle-holding phones) can lead to large error beyond
6m. In addition, the localization results are evaluated under three
different times of the day representing morning, noon and evening
in Figure 2 (c). We again observe long tails beyond 5 meters when
mismatched training and testing data are used.

Finally, more samples lead to more reliable measurements as the
input for localization, but at the cost of higher energy and latency
overhead. To understand the accuracy-overhead tradeoff, we depict
the localization error when varying the number of samples from 3
to 60 in Figure 2 (d) under a training set of 60 samples per loca-
tion. We find that using more than 5 samples does not significantly
improve 90-percentile accuracy. We thus choose 5 samples in our
WiFi localization study throughout the paper.

2.3 Root Cause of Large Errors

We make one critical observation from the above investigation:
although reasonable accuracy can be achieved in many cases, large
errors 6m or more always exist. In many applications these large
errors can cause problems, such as giving the user incorrect navi-
gation instructions, or wrong statistics about the visits of customers
to different sections inside a store.

After a close examination of those large errors, we find the root
cause. In essence, two physically distant locations happen to share
similar WiFi signal strength measurements, thus a testing sample
is erroneously localized to a physically faraway location with short
Euclidean distance in the signal space. This can be classified into

two cases: (1) permanent environmental settings such as walls, fur-
niture placement, which affect radio signal propagation and create
persistent similar signal reception; and (2) transient factors or mea-
surement mismatch between training and testing data. Such tran-
sient variation in RSS reception is due to dynamic changes in the
environment, such as a nearby moving object or wireless interfer-
ence from other electronic devices, while the mismatch can be in
orientation, holding style, time of the day or number of samples.

We illustrate case 1 by three locations in Figure 1: 18 and 13
are close to each other whereas 4 is farther at the other side of the
room (marked as red stars). However, during testing we find that
locations 18 and 4 share similar WiFi fingerprints. The distance
between their fingerprints in the signal space is only 1.98 dB/AP,
whereas the fingerprint at closeby location 13 has a distance of 2.44
dB/AP to that of location 18. In this case, the office wall dividers
cause the large localization error beyond 6m at location 18.

The example for case 2 are location 32, 34 and 48 (marked as
blue squares in Figure 1). Locations 32 and 34 are close to each
other. However, we find that the WiFi fingerprint at location 32
becomes similar to that at location 48 at night when less people are
around. Thus when testing at location 32 using the training data
collected at night, location 32 will be matched to 48, instead of 34,
resulting in large errors of over 6m. Through our study, we find that
the percentage of large errors resulted from Case 1 is 60% to 70%
while that from Case 2 accounts for the rest. Both cases are caused
by irregular multipath reflections, an intrinsic character of radio
signals. They present fundamental limits for WiFi localization to
achieve high accuracy.

3. PEER ASSISTED LOCALIZATION

From the previous investigation, WiFi as-is is not a suitable can-
didate for high accuracy localization due to large errors. However,
is it possible to address this fundamental limit without the need for
additional hardware or infrastructure? Our answer is yes: by ex-
ploiting acoustic ranging, a phone can use nearby peer phones as
reference points and obtain its relative positions to them. This im-
poses unique physical constraints on the possible location of the
phone, thus reducing the uncertainty and improving the accuracy.

Such an idea is motivated by two observations. First, in many
public indoor environments (e.g., airport terminals, railway sta-
tions, shopping malls and museums), there are usually a high den-
sity of users, thus smartphones. Each neighboring peer has a unique
physical location for restraining the location uncertainty of a smart-
phone. Second, a number of research work [19,26] has shown that
highly accurate relative ranging can be achieved within a car (pas-
senger vs. driver side) or between a pair of mobile devices (at cen-
timeter accuracy) by using sound signals.

3.1 Design Goals and Challenges

The above concept may sound quite simple. However, building
such a peer-assisted localization system involves a number of great
challenges in both the design and implementation:

e Peer assisted localization algorithm. How to utilize the
physical constrains imposed by the neighborhood peers to re-
duce the large errors incurred from WiFi localization? Given
only the relative distances among peers and their location es-
timates are available in real scenarios, exactly what is the
algorithm?

e Concurrent acoustic ranging of multiple phones. Previ-
ous work on acoustic position estimation was for one or two
devices only. When there are multiple devices and they all do
acoustic ranging, how can we tell which distance measure is
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Figure 3: The workflow of our system.

for which pair? How to design and detect the sound signal, so
that the system is robust to noises in different environments?

e Ease of use. The peer assistance process should complete
in short time; otherwise users may have moved to different
locations. The sound emitted should not annoy or distract
users from their regular activities.

In the rest of this section, we will present an overview of the system,
then present the details of the peer assisted localization algorithm.
Section 4 addresses challenges in concurrent acoustic ranging and
ease of use.

3.2 System and Algorithm Overview

Our system works as follows (shown in Figure 3): when a tar-
get phone needs to further improve accuracy or desires high accu-
racy upfront, it broadcasts a special audio signal to “recruit" nearby
peers. Those receiving the recruiting signal send their identifiers to
a server. The server comes up with a schedule about which phone
should emit a beep signal at which time slot. The phones involved,
both the target and peers, emit the beeps accordingly. They also
record the beeps from others and send the files back to the server.
All peers also conduct WiFi sampling and send the measurements
to the server. The server determines the locations of peers from
WiFi samples, and distances among them from acoustic ranging
based on the recorded sound files. Finally the server computes the
new location estimate of the target using our peer assisted localiza-
tion algorithm, and sends back the result to the target.

The intuition underlying the peer assisted localization algorithm
is to construct a graph based on the relative distances among de-
vices, then “superimpose” the graph onto the signature map based
on the initial WiFi location estimates. The algorithm “rotates" and
translationally ' “moves" the graph against the signature map, such
that the vertices are placed “closest” to the true locations, as mea-
sured by certain metric. Where the vertices are placed become the
new location estimates.

In the algorithm, we use as the metric the sum of RSS Euclidean
distances between the WiFi samples of each device and the WiFi
signature of where its graph vertex is placed. Such a metric quan-

"“Translationally" means moving the graph without rotation.

® Truepeer O  Estimated peer

Kk  Truetarget Y Estimated target

Graph constructed with
estimated positions from WiFi
localization

Graph constructed of estimated
positions from peer assisted
localization

...... Graph constructed using true
locations

Figure 4: Illustration of using physical constraints to perform
peer assisted localization.

tifies the aggregate “closeness” between WiFi samples and new es-
timated locations of all devices. We use the example in Figure 4 to
illustrate the intuition. Initially, each phone has a location estimate
(vertices in the dashed-line graph), e.g., from WiFi localization.
Because the acoustic ranging is highly accurate to identify the rela-
tive distances between peers (in terms of centimeters), the shape of
the solid-line graph is quite close to that of the ground truth (the
dotted-line graph). Such additional relative distance constraints
“force" the new location estimate of the target to move closer to
its real location, thus reducing large localization errors and achiev-
ing higher accuracy.

3.3 Peer Assisted Localization Algorithm

Our peer assisted algorithm comprises of two main parts: (a)
graph orientation estimation: estimating the range of graph orien-
tation angle ¢ 2 by combining the acoustic ranging information and
initial WiFi localization results. This is important because we find
that its performance is sensitive to the orientation (shown in Sec-
tion 5.5). (b) new location estimation: search for the optimal com-
bination of graph orientation angle and translational position, such
that the RSS distance summation is minimized.

The algorithm takes two inputs: 1) {p;},i = 0,---, M: ini-
tial WiFi location estimations of the target phone (po) and its peers
(1, ypm); 2) {li; 4,5 = 0,--- , M: pairwise acoustic rang-
ing measurements between device ¢ and j. The algorithm produces
{¢:}. the new location estimate of each involved device i. In the
following, the first 3 steps estimate the orientation range, and the
last two find the new locations.

Step 1: Compute edge directions from acoustic ranging. The
server constructs a graph G’ with the pairwise ranging measure-
ments, l; 5, 4,7 € {0,--- , M}. Itrotates G’ such that the direction
of its longest edge is parallel to the X axis. Then it calculates the

’ ’
\zf%ziw (i < j) for the L (e.g., 3)° longest
edges, where p@p} are the locations of the two vertices of an edge.

Step 2: Compute edge directions from initial WiFi localiza-
tion. The server also computes the direction vectors for the same
L edges using initial WiFi locations: v; = ‘Z’:pj‘, (i< 7).

Step 3: Graph Orientation Estimation. The server rotates G’
to find the optimal graph orientation ® that maximizes the inner

direction vector v, =

>We define ¢ as the angle between the X axis and the direction of
the graph’s longest edge, from the vertex of the smaller ID to the
other.

3When choosing L longest edges, we experimented various values
(e.g., 2, 3 and 4) and found different values of L have little im-
pact on the final localization results. We used the value of 3 as an
example in our evaluation.
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product summation between {v; } and {v; }:

L
b= argmaval'vlT (1)

=1

The inner product is a monotonically decreasing function of the
angle difference between two vectors. Thus Equation 1 minimizes
the angle differences of L edges obtained from acoustic ranging
and initial WiFi localization.

Due to ranging errors, the real orientation may differ from .
To ensure that the true orientation is covered, the search of {g; } is
conducted in an orientation range of [® — A®, & + AP], where
A® = 20° from our empirical study in Section 5.5. We choose the
L longest edges because the longer an edge, the less the impact on
its direction caused by the same ranging error.

Step 4: Set the Search Scopes. Based on the initial WiFi po-
sition estimation p;, the server tries to superimpose G’ onto the
WiFi signature map, such that each vertex 4 except the target is re-
stricted inside a small circle A; centered at p; with radius r; during
the searching process in following step. We set r; at 2m based on
empirical study (see Section 5.1).

Step 5: Joint location estimation. Finally, with a small move-
ment step of o meters and rotation step of 3 degrees (set to 0.1m
and 2° based on empirical study), the server searches for the opti-
mal location and orientation combination to superimpose the graph
against the fingerprint map using the following objective function,
where the moving and rotating operations are illustrated in Figure 5
(a) and (b) respectively:

M

argmin Y [f(¢:) = fP)] [f(@) = F(p)]" (@)
{:}, @s€S =0

where f(z) = [RSS. RSSZ... RSSk] is the WiFi fingerprint
or measurement at location x ( i.e., the RSS measurements of k
detected access points).

Equation 2 produces the final results by finding a set of locations
{¢:},i = 0,1,..., M from the WiFi fingerprint database .S, so as
to minimize the summation of RSS distances, each of which is be-
tween device i’s WiFi measurement f(p;) and the signature f(g;)
at its new location estimation g;.

One comment we want to make is that the distances between
some pairs of vertices may not determine the shape of a graph
uniquely. For example, a square is flexible since its vertices can
rotate against each other and form a family of rhombi while pre-
serving the edge lengths, whereas the shape of a triangle is “rigid"
(i.e., uniquely determined) given the lengths of the three edges. The

rigid graph theory [14] describes under what conditions a graph is
rigid: A complete graph with a distance between any two vertices
is rigid. The concurrent ranging among multiple devices and the
resulting pairwise distances give a complete, thus rigid graph. *

Extensive evaluation shows that our algorithm greatly improves
the localization accuracy of the target phone (details in Section 5).
The improvement is limited only under some rare cases (e.g., when
peers are aligned almost on a straight line, or clustered together
and located far away from the target), which we discuss in Sec-
tion 5.4.1.

4. ACOUSTIC RELATIVE RANGING

Our peer-assisted approach requires acoustic ranging among mul-
tiple phones. This raises two new issues: First, how to ensure that
the signals from different peer phones do not interfere. Sound sig-
nals do not carry a MAC address so there is no way to tell which
phone emitted which sound. Second, the whole process has to com-
plete in short time. Otherwise users may have moved, causing in-
accurate ranging results. In this section, we describe our signal de-
sign, detection, and scheduling techniques that satisfy the require-
ments of concurrent multi-peer ranging.

4.1 Beep Signal Design and Detection

4.1.1 Acoustic Ranging Principle

In principle, ranging can be done by Time-of-Arrival (TOA) method
that estimates the sound travel time from one device to another. The
difficulty is in uncertainties: both the emitting and detecting have
variable delays difficult to measure. The lack of clock synchro-
nization between devices further adds to the problem. To address
these issues, we have each involved peer device emit signals and
the uncertainties will cancel out each other in calculation, similar
to Beepbeep [19]. By doing so, only delay measurements from the
same device are needed, thus circumventing the above issues.

4.1.2 Beep Design

We need to design the acoustic ranging signal carefully. The
signal should be robust to various background noise (e.g., human
conversations, PA announcements and music) that make it hard to
detect. It should have minimal disturbance to people’s normal ac-
tivities. Based on several considerations, we choose the frequency
band between 16kHz and 20kHz for the signal.

The majority of the background noise are located at the lower
frequency band (e.g., conversation between 300Hz to 3400Hz, mu-
sic from 50Hz to 15kHz, which covers almost all naturally occur-
ring sounds). 16-20kHz is still audible to human ears [11], but
much less noticeable and thus present less disturbances. We also
found that the current cell phone microphones are more sensitive to
high frequency sounds than human ears [26]. A high frequency
beep at the edge of the microphone’s frequency response curve
make it both easier to filter out noise and renders the signal un-
noticeable to most people.

Our sound signal consists of several evenly paced beeps of equal
lengths. We study how to set the number, length and frequency of
the beeps, and the length of the intervals in Section 4.2.1. They all
impact ranging accuracy and time. For example, too short a beep
may not be picked up by the microphone, while too long a beep
will add more delay to the ranging.

“Due to outliers in acoustic ranging, we may miss some pairwise
distances with a small probability. The small search scopes set in
step 4 of the algorithm help ensure the rigidity.
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4.1.3 Beep Detection

Beep detection determines exactly when the beep signal arrives
and it is critical to the accuracy of relative ranging. We inves-
tigate the behaviors of two most common signal detection meth-
ods, change-point detection and correlation-based under high fre-
quency band.

Change-Point Detection Method: This method requires the
beep have distinct energy uniformly distributed over a short fre-
quency band (e.g., 16-18kHz). Given that band, this method first
filters out the background noise using a Short Time Fourier Trans-
form (SIFT). It then identifies the first strong signal that deviates
from the noise in the targeted frequency band. The observed en-
ergy distributions of the recorded signal differ significantly before
and after the arrival of the beep signal. Sequential change-point
detection technique is adopted to identify the arrival of the signal,
i.e., the exact time point of changed distribution [26].

Correlation-based Method: This method uses a chirp signal of
a much shorter length. It correlates the emitted chirp sound with
the recorded signal using L2-norm cross-correlation, and picks as
the signal detection time when the correlation value reaches the
maximum. To be robust to multipath, the earliest sharp peak in the
correlation values is used as the signal detection time [19].

4.2 Detailed Design

Through extensive experiments we find that change point has
much higher accuracy than correlation. We will present the signal
design for change point first, then compare the two methods under
different environments.

4.2.1 Sound Signal Parameters

Experimental Set Up: We used HTC EVO and Android De-
veloper Phone 2 (ADP2) phones and 44.1 kHz sampling rate in
recording. During each test, two smartphones of the same model
are used. One phone emits the sound first. Upon receiving the sig-
nal, the other phone emits the sound and both phones record. The
relative ranging is computed by obtaining the time difference based
on the signal detection in the recorded sounds by the two phones
as described in Section 4.1.1. We spaced the two phones apart at
100cm, 200cm, and 300cm respectively. Each curve in our results
is obtained with 30 runs.

Beep Length (BL) and Beep Interval (BI) analysis: Figure 6
(a) - (c) presents the cumulative distribution function (CDF) of the
ranging error when the beep length is set to 200, 400 and 1000
samples and the beep interval is set to 3000 and 5000 samples,
respectively. The frequency band is 18kHz to 19kHz. It is clear
that beep length of 400 samples achieves the best performance: the
ranging error is around 10cm even when the two phones are placed
300cm away, and the error is similar with beep interval of 3000

and 5000 samples. We thus choose beep length of 400 samples and
beep interval of 3000 samples in our system implementation.

Beep Frequency Band: With the above settings, we examine the
performance of different frequency bands beyond 15kHz. Figure 6
(d) shows the results when varying the frequency band from 16kHz
to 20kHz with two HTC EVO phones 300cm apart (better results
are obtained in 100cm and 200cm cases). The ranging errors are
less than 10cm when the beep frequency is below 19kHz. Similar
experiments are conducted for ADP2 and we find that the highest
frequency band producing comparable ranging results is 16-17kHz.
‘We choose 16-17kHz range for ADP2 and 18-19kHz for HTC EVO
in our system.

Number of Beeps (NB): Outliers can occur in ranging results
due to dynamic factors in the environment. The sound signal should
contain multiple beeps, so as to obtain multiple ranging estimates
and filter out outliers. However, too many beep in the sound signal
may make it more susceptible to multi-path distortions. Figure 6
(e) shows the ranging error when different numbers of beeps are
employed under frequency band 18-19kHz with BL = 400 samples
and BI = 3000 samples. Basically, comparable performance (less
than 10cm) is observed across three to five beeps. In our implemen-
tation, we used three beeps, which is robust up to two outliers on
opposite side of the true distance. We observe that the probability
of getting reliable results is more than 95%.

4.2.2 Robustness to Various Noises

To evaluate the robustness of the design, we conduct a compre-
hensive study under various environments including lab, shopping
mall, train station, and airport. There are all kinds of noises during
our test such as human talking, radio broadcasting, dog barking,
and trolley rolling. In each scenario, two phones are placed 100cm,
200cm, and 300cm apart.

Figure 7 shows the median and 90th percentile ranging error us-
ing change-point detection method and correlation-based method
respectively under high frequency band. For change-point, we use
16-17kHz for ADP2 and 18-19kHz for HTC EVO. The sound sig-
nal follows the previous parameters in Section 4.2.1. For correla-
tion method, we use 16kHz-20kHz for both phone types and the
chirp signal length is 50ms [19]. We find that change-point detec-
tion significantly outperforms correlation in all cases: it has con-
sistent low median errors around 10cm, while that of correlation
ranges over 20cm to 40cm; its 90th percentile error is always be-
low 20cm, while that of correlation can go up to 65cm. We thus
choose change-point detection method for acoustic ranging in our
system.

4.3 Server Based Emission Schedule

Identify Nearby Peers. A target phone needs to find which
peers are nearby to get their help. Since large errors may exist
in the WiFi location estimates for the target and peers, using WiFi
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Figure 7: Ranging errors under different environments

localization alone is not reliable. We let the target phone emit a
customized sound signal containing a single beep to identify truly
nearby peers. Only phones really close enough can detect the sig-
nal. Those willing to help can send their IDs to the server. The
server will then instruct these peers when they should emit the rang-
ing signal.

Beep Emission Strategy: To speed up the ranging process, mul-
tiple phones need to emit sounds in a short time. Due to the lack
of synchronized clocks, this may lead to interference among beeps
from different phones, thus prohibiting accurate signal detection.
There are two options to avoid such interference: time-division
multiplexing or frequency-division multiplexing. We have tested
concurrent emission of signals of different frequency bands, but
find that interference still exists due to energy leakage among nearby
frequency bands.

We employ time-division multiplexing based on server schedul-
ing. > We divide the time into slots of length ¢, long enough for
the beep emission of one phone (e.g., 14000 samples or about 0.3s,
for the previous signal parameters and a beginning padding of 3000
samples). After receiving the IDs of all phones, the server comes
up with a back-to-back schedule for them. It sends the schedule to
them, with the ¢th phone starting beeping after a delay of T, 44X ts.
T, is some extra buffer to accommodate small variations in the
reception of the schedule at different phones. It ensures that all
phones have received the schedule before its execution.

Each phone records sound from others when its time slot has not
come and plays the sound during its time slot. After finishing the
whole schedule, all phones send their IDs and recorded files to the
server, which performs signal detection and estimates distances.

IMPLEMENTATION AND EVALUATION

In this section, we first describe how to detect the presence of
large errors in the initial WiFi localization results in Section 5.1.
We present the experimental methodology, testing scenarios and
evaluation metrics in Section 5.2. We implement a prototype of
our proposed system and report its performance in Section 5.3, in-
cluding the accuracy, localization latency, and incurred energy con-
sumption using Android phones. To capture the statistical perfor-
mance of our scheme, we apply a trace-driven approach to conduct
an extensive study of the impact of the quality and quantity of peers
in Section 5.4. Finally, we study the sensitivity of our algorithm
to orientation estimation in Section 5.5 and show the algorithm’s

S.

SWe investigate an alternative where each phone randomly choose
a timeslot to emit sound, but find that much more time slots are
needed and it is difficult to distinguish the signals from different
phones.

performance under different real-world environments, such as train
station, shopping mall and airport, in Section 5.6.

5.1 Detecting the Presence of Large Errors

The system needs to detect the presence of large errors in the ini-
tial WiFi position estimation for two purposes. First, target devices
need this to help decide whether they should trigger peer assistance.
Second, when selecting peers, we find that only those with small
initial errors can serve as reliable reference points. However, the
system does not know the true location, how can it tell whether
large errors exist in a position estimation? Based on the insights
on large errors described in Section 2, we use 3 simple rules for
reliable detection.

Rule I: Examine the probability of large errors at the initial esti-
mated location. ® If a location has a large probability (e.g. > 0.8)
for an error beyond a threshold (e.g., 4.5m), declare the presence.
This rule deals with consistent large errors at specific locations
caused by permanent environmental settings (i.e., Case 1 in Sec-
tion 2.3). For each location in the training data, we randomly pick
5 from the 60 samples to compute a location estimate, and repeat
400 times to compute the probability of large error occurrence.

Rule II and III: Examine the two sets of APs detected in the
samples and in the training data at the estimated location. If the
ratio of the number of common APs to the number of all detected
APs is below a certain threshold, declare the presence; Compare the
standard deviations of each AP in the samples and the training data
at the initial estimated position. Among all common APs, if the
fraction of APs having larger standard deviations in the samples
exceeds a threshold, declare the presence. These two rules deal
with dynamic changes caused by transient factors (i.e., Case 2 in
Section 2.3). They measure the statistical difference between the
samples and the training data at the estimated location.

Intuitively, the system should be aggressive in declaring the pres-
ence for large errors, i.e., upon the detection from any of the 3 rules.
Thus most targets having large errors are detected, and a peer with
slight suspicion of having large errors is excluded. The cost is a
few targets with smaller errors unnecessarily triggering peer assis-
tance (but further improving accuracy), or peers with small errors
excluded from assistance.

The threshold values for the three rules are set such that they
minimize false classification on the training data. For example, for
detecting bad targets, we can use 4.5m, 62%, 82%; for excluding
bad peers, 1.5m, 90% and 42%. We find that collectively, 87% of
bad targets are correctly identified, and among peers selected, 90%
indeed have errors less than 1.5m.

%The nearest location in the interpolated training data set is actually
used. Similar for the other two rules.
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Figure 8: Localization performance for peer assisted method
with and without peer selection rule

5.2 Evaluation Methodology

We conduct experiments using Android Developer Phone 2 and
HTC EVO. Both phones support 44.1kHz audio sampling. HTC
EVO uses 512 MB RAM and 1 GHz Qualcomm QSD8650 proces-
sor, while ADP2 192 MB RAM and slower 528MHz MSM7200A
processor.

We generate the sound file based on the design in Section 4.1.2,
which consists of three beeps, each created by uniformly distribut-
ing white noise and then bandpass filtered to 16-17kHz for ADP2
and 18-19kHz for HTC EVO.

We implement a system prototype including an Android smart-
phone app and a backend server, both written in Java. The server
runs on Lenovo Thinkpad X201 with Intel Core i5 2.53GHz pro-
cessor and 4GB DDR3 RAM. The app does WiFi RSS sampling,
acoustic emitting and recording. The measurements are sent to the
server for processing. The app has been tested for both ADP2 and
HTC EVO. Both the server and app are multi-threaded so that they
can perform multiple tasks in parallel to speed up the whole pro-
cess.

Experimental Scenarios. We use the prototype to validate our
algorithm design and measure practical performance. In particu-
lar, we select 10 target phone locations with large errors, each with
different combinations of peer locations from the office setup in
Figure 1. Then we repeat the peer assisted localization for each tar-
get/peer location combination 10 times to measure the localization
accuracy, total latency and energy consumption. In total we have
100 combinations of target/peer locations for the prototype experi-
ments.

Trace-driven Statistical Performance. To capture the overall
statistical performance under factors that we do not have enough
manpower/device (e.g., more numbers of peers) or control (e.g.,
noise in different environments), we conduct trace-driven experi-
ments. We use 200 combinations of target/peer locations in our
office setup, feed the training data as WiFi samples, and distances
perturbed with errors following the same distribution as results ob-
tained in real environments (e.g., train station, shopping mall, and
airport), as input to the peer-assisted algorithm. We study its the
effectiveness of peer selection rules (Section 5.1), and the impact
of various factors such as the number of peers, quality vs. quantity
of peers, orientation estimations.

Metrics: We use the localization error to quantify the accuracy.
We also measure the total time needed to complete the peer as-
sistance process, and decompose the total time to understand the
dominant factors. We measure the energy consumption using tools
in [28] that is shown to achieve accuracy within 5%.

"We encountered some problem doing concurrent sound playing
and recording on iPhone and are still investigating the issue.
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Figure 9: Peer-Assisted localization performance for target
phone under different number of peers for HTC EVO. The first
colomn is results when the target WiFi error is greater than
1.5m and the second column with target WiFi error greater
than 3m.

5.3 Prototype performance

Localization Accuracy We evaluate the accuracy in the lab for
3 and 4 phones (2 and 3 peers) due to limited manpower and device
availability. Peers have WiFi localization errors under 1.5m, and
the target over 3 meters. As shown in Table 2, we can observe that
the peer assisted method can reduce the maximum error from 6.7m
to 4.3m and 3 m with 2 peers and 3 peers respectively. For median
error, there is at least 1.5m accuracy improvement. Furthermore,
more peers benefit the localization performance: 3 peers further
reduces 1.3m on the maximum error compared with 2 peers.

Overall Latency and Decomposition We report the latency mea-
surements of major components in the peer assistance process. The
recruiting takes about 1s, which is independent of the number of
peers involved. Then the scanning of 5 WiFi samples takes about
4.8s on phones (HTC EVO), while in parallel the beep emitting
takes 1.5s (4 phones, 0.3s time slot, 1 extra buffer slot), the file up-
loading 1s, the TOA on server 1.2s. After WiFi and TOA results,
the algorithm takes another 2s on server. In total that is 7.8s (i.e.,
1 4+ max(4.8,3.7) + 2). We want to point out that we have not
optimized the system yet. E.g., the algorithm is mostly matrix op-
eration, which can speed up at least one order of magnitude using
proper libraries 8. That would reduce the algorithm time to 0.2s,
making the total time down to 6s. Since most other components

8http://stackoverflow.com/questions/529457/performance-of-java-
matrix-math-libraries shows almost 40 times speedup.
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can finish in parallel and faster than WiFi scan, our system does
not pose much more latency than required in the original WiFi lo-
calization.

Energy consumption We also estimate the energy overhead us-
ing tools and methodology in [28]. The WiFi scan, sound emit-
ting/recording and file uploading are the three major components.
WiFi scan of 4.8s takes about 0.12 Joule. The beeps occupy about
0.18s in the 0.3s timeslot while the recording during the 1.5s sched-
ule (4 phones) results in a file of 100KB. These audio parts take
about 0.35 Joule. File uploading is about 2.1 Joules. In total it is
2.57 Joules, with file uploading dominating at 80%. All these hap-
pen in about 8s, translating into about 320mW additional power
consumption. This is smaller than the average power of a phone
(e.g., HTC Evo lasts 12.7 hours with average power of 450mW).
We believe such overhead does not pose a burden for the battery
life.

5.4 Overall Statistical Performance

We next use trace-driven experiments by feeding the results of
initial WiFi estimates and error-perturbed acoustic ranging results
as inputs to capture the statistical behavior of our peer-assisted
method.

Effect of Peer Selection. We first study the effect of the 3 peer
selection rules (Section 5.1) on localization accuracy. Figure 8
shows the localization error CDFs of those testing points with ini-
tial WiFi localization errors exceeding 1.5m for both HTC EVO
and ADP2. We observe great performance improvements with and
without peer selection with CDF curves shifting to the left signif-
icantly for both phones. In particular, the median error exhibits
a 75% improvement under peer assistance with and without peer
selection. We find that peer selection is essential for improving lo-
calization accuracy of points with large errors: the long CDF tail
has been reduced 60% from 5.5m to 2.2m. This shows that peers
filtered by the rules are more reliable reference points and consti-
tute more accurate constraints on the target location. For the rest of
the paper, we only present results with peer selection.

Impact of the number of peers. Figure 9 shows the localization
accuracy for the target phone when varying the number of peers at
3, 4 and 5. In our experiments, the median error of initial WiFi
localization is 1.5m, which indicates that about 50% of the testing

[ Localization Error (meter) [ Mean [ Median | 90% [ Maximum |
[ Peer assisted (3 peers) [ 16 [ 15 T 28 ] 3

| Peer assisted (2 peers) [ 19 [ 18 [ 31 ] 4.3 |
[ Wik [ 37 [ 33 [ 56 [ 61 |

Table 2: Localization accuracy of the prototype: 2 and 3 peers
for a target phone with large initial errors (> 3 m)

® Truepeer O  Estimated peer % Truetarget Y Estimated target

__ Graph constructed with estimated
positions from WiFi localization

Graph constructed of estimated positions
from peer assisted localization

------- Graph constructed using true locations

(a) Mirroring outliers (b) Rotation outliers

Figure 11: Illustration of larger errors for peer assisted local-
ization method.

target points have small errors below 1.5m which are acceptable in
most applications, while the other 50% of the target phones experi-
ences errors beyond 1.5m. Based on this observation, we perform
two sets of tests to evaluate the effectiveness of our peer-assisted
approach: the first test applies to the 50% of the target phones with
errors beyond 1.5m as shown in the first column of Figure 9, and the
second test applies to those suffering from large errors exceeding
3m (about 30% of target phones) as shown in the second column of
Figure 9.

The most encouraging result is that our approach show consis-
tently great performance improvement for both test cases, suggest-
ing that our algorithm is highly effective to reduce large errors. In
general, more peers lead to more improvements in accuracy: When
the number increases from 3 to 5 in Figure 9, the maximum er-
ror in the peer-assisted curve reduces from about 3.8m to 2.4m for
both test cases, while the median error stays more or less the same
around 0.7m. This is because more peers pose more constraints
and less uncertainty on the location of the target. We also show the
ideal performance where the true graph orientation and distances
between phones are known for the algorithm. The maximum and
median error are 1.5m and 0.5m. For about 80% of the case, the
accuracy is very close (within 0.4m) to the ideal performance. This
indicates that our orientation angle estimation is quite accurate.

Quality vs. Quantity of Peers One interesting question is how
important is the quality versus the quantity of peers. Figure 10
presents the localization error CDF when using peer assisted local-
ization with 10 peers without selection and 5 peers with selection
(based on the rules designed in Section 5.1) respectively. We find
that the performance of using 5 peers with selection is comparable
to that of using 10 peers without selection when applying to sce-
narios of target phones with WiFi error greater than 1.5m, and only
slightly worse (only for the bottom 40% cases and differ by about
0.2m) when the target WiFi error is greater than 3m. Thus, by uti-
lizing peer selection only half of the peers is needed to achieve a
similar performance as when adopting peers blindly. This observa-
tion strongly suggests that peer quality is more important than peer
quantity and peer selection is critical.

5.4.1 Insights on Remaining Errors

During our initial experiments we analyzed what happened for
the points towards the tail of the CDF curve under peer assistance.
We found two reasons limiting the accuracy improvement. The first
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is called “mirroring" (shown in Figure 11 (a)). When the peers are
almost aligned on a straight line, the constructed rigid graph could
be a flipped “mirror" of the ground truth. If the mirrored graph hap-
pens to have a smaller RSS distance summation, the target would
be located to the opposite side of the line. By comparing the rang-
ing measurements, we can tell whether such alignment happens and
avoid using such peer combinations. We have addressed this prob-
lem in all previous results.

The second is due to errors in orientation when the target is rela-
tively faraway from peers (shown in Figure 11 (b)). When the peers
are close to each other, a small orientation deviation can move the
target far away from its true location while the peers are still es-
timated close to their true locations. We tried some heuristics by
comparing the relative distances among peers and to the target and
found encouraging preliminary improvements (maximum error re-
duction from 3.6m to within 2m). We are still investigating for a
complete solution to this problem.

5.5 Orientation Estimation and Sensitivity

The peer-assisted localization accuracy is affected by the orien-
tation estimation. we take a rigid graph of 4 phones constructed
using their true distances to showcase the sensitivity of localization
results to orientation errors. We rotate the graph so it deviates from
its true orientation at a fixed degree, then we move the graph trans-
lationally to find the optimal locations. The results are shown in
Figure 12 (a). We find that when the orientation deviation is larger
than 24°, the average localization error becomes larger than that of
initial WiFi localizations (1.3m in this case); it increases sharply
to 8 meters when the orientation deviation approaches 180°. We
examine cases with other numbers of peers, and find that gener-
ally the orientation deviation shall not exceed 20°, otherwise the
improvement will be very limited. Figure 12 (b) shows the accu-
racy of orientation estimation under different number of peers. We
find that our orientation estimation method is indeed very effective,
which can restrict the error within £20° and £10° around the true
angle for over 98% and 90% of the testing scenarios.

5.6 Impact of Various Environments

We further study the peer-assisted localization performance for
the bottom 50% target points (i.e., those with > 1.5m initial er-
rors) with 5 peers, using ranging results perturbed with errors under
various environments. In Figure 13, we find that our localization
performance only varies slightly when comparing real-world envi-
ronmens (e.g., train station, shopping mall and airport) to the lab
environment. The median errors are all around 0.7m whereas the
90% errors are about 1.4m; even without peer selection, the median
and 90% errors are around 0.8m and 1.7m respectively. Compared
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Figure 13: Localization performance under different environ-
ments with 5 peers.

to the target’s WiFi results of median error 2.5m and 90% error
4.5m, our proposed method is quite robust to noises in different
environments.

6. DISCUSSION

Peer Involvement. Since peers need to spend energy and band-
width for helping the target, we envision that whichever application
that leverages our localization solution may have certain rewards
(e.g., points, virtual currency) exchanged to compensate peers that
help out. Such incentives are already present in many mobile ap-
plications. In our system, peers need to run a recruiting signal de-
tection thread to know whether they are needed. To avoid running
this thread continuously, the server may send push notifications to
peers in a large area around a target upon its request for help. The
notification triggers the thread; if no recruiting signal is detected
after a timeout threshold, a peer will stop the thread. We note that
the improvement in accuracy depends on the number and quality of
peers. In general, more high quality peers lead to greater improve-
ments. But even with just a few (e.g., 3) quality peers, there is still
significant reduction in error.

Movements of users. Peers might be moving during the acous-
tic ranging. Movements affect the accuracy only when they oc-
cur during the sound-emitting period, which happens concurrently
with and takes less time than WiFi scanning (1.5s vs 4.8s in our
prototype). Thus we do not pose more constraints on movements
than existing WiFi methods. If the peers are static or do not move
too much in this 4.8s interval, both the ranging and WiFi measure-
ments are still accurate. In many public spaces it is common for
many users to remain still for a short while (e.g., resting in airports,
window-shopping in stores). Movements before and after the WiFi
scanning (and beeping) do not affect the accuracy. We recognize
that less peers may be suitable due to movements and plan to ex-
amine additional input such as acceleration to filter out those that
have moved too much. The main latency bottleneck is the WiFi
scanning time, which depends on both hardware and OS that we do
not have control. Our experiments show that the acoustic ranging
design is robust to noises under different environments. One issue
we plan to further investigate is the effects of clothes and human
body. When phones are placed in pockets, the clothes or human
body may attenuate the sound signal.

Triggering peer assistance. Our work provides the technology
for peer assistance. However, it is eventually up to the users to
decide when they desire such help. The rules provide some hints
to users about the likelihood of large errors to help them make the
decision. Users may also set up certain policies about under what
kinds of conditions assistance is needed. One that always requires
help gets high accuracy, at the cost of paying more points or vir-



tual currency to others. In our system, more than one target phone
may request assistance at the same time and the acoustic signals
may collide if these targets are close to each other. Since users
do not need assistance continuously, they request help only once
in a while, e.g., when wondering which hallway to take to a train
platform. So the likelihood of two nearby users requesting help
simultaneously is small. When this happens, the server can distin-
guish them and provide assistance one at a time. This may delay
the localization to some targets, but it still provides accurate results.

7. RELATED WORK

Smartphone indoor localization has attracted tremendous inter-
ests recently. Methods in prior work mainly focus on employing
more sensing modalities, less infrastructure support, and reducing
the efforts of building signal maps [2, 8, 15,24]. SurroundSense [2]
utilizes multiple sensing modalities (e.g., cameras, microphones
and accelerometers) available on smartphones to perform logical
localization (e.g., different stores) via ambiance fingerprinting by
combining optical, acoustic, and motion attributes. WiGEM [13]
proposes a learning based approach that uses the Gaussian Mixture
Model (GMM) and employs Expectation Maximization (EM) to
estimate the model parameters without relying on labor-intensive
“training.” It is robust to multiple factors (including device and
power level variability, mobility, and changes of indoor spaces) that
many training-based systems are susceptible to. WILL [24] aims
to perform indoor logical localization without the need of build-
ing radio signature maps ahead of time. It exploits abrupt signal
changes through walls and accelerometers to infer user movements
and achieve room level accuracy. EZ [8] is another work that targets
configuration-free indoor localization by utilizing genetic-based al-
gorithms. Large errors still exist with 50 and 80 percentile errors
at 7m and 10m, respectively. WiGEM, WILL and EZ are comple-
mentary to our system for reducing the efforts of building the radio
signal map during training.

Few studies have leveraged the unique peer constraints to assist
smartphone localization. Virtual Compass [5] utilizes both WiFi
and Bluetooth and results in a median error of 3-4m. Other studies
require special hardware or infrastructure not readily available on
smartphones [17,18]. Our work leverages abundant peers in public
spaces to reduce large errors. It aims at the most prevalent WiFi
infrastructure and do not require any special hardware, which is
essential for easy deployment.

There have been quite some work for acoustic positioning tech-
niques such as Cricket [20], Bat system [16], ENSBox [12], and
WALRUS [6]. Recently, several proposals have studied ranging
between cell phones using low frequency bands (e.g., 2-6kHz).
Beepbeep [19] proposes a ToA based acoustic-ranging method be-
tween two phones. It can achieve 1 or 2cm accuracy in a range of
10m. Whistle [25] leverages multiple receivers with well-known
locations to receive two sounds signals from the target. It avoids
tight synchronization usually required in Time Difference of Ar-
rival (TDoA) methods. Qiu ez al. [22] utilizes the acoustic signal to
estimate the relative position between two phones to support phone-
to-phone games and apps.

Compared to the above work, we face a different challenge of
fast and accurate ranging among multiple peer phones. We use
server scheduling to coordinate multiple peer phones to avoid sig-
nal interference and collision for almost concurrent pairwise rang-
ing. We propose signal design and detection methods that are light-
weight in computation, robust to noisy environments, and much
less perceptible to the human ear due to the adoption of high fre-
quency band (e.g., 16-19kHz). Our system utilizes minimum aux-

iliary COTS sound hardware to reduce large errors incurred from
general WiFi-based approaches.

For smartphone based localization using acoustic signals, Tarzia
et al. [23] introduces a technique based on ambient sound finger-
print called Acoustic Background Spectrum. They exploit acoustic
signals as fingerprints instead of measuring the ranging informa-
tion between phones, and their localization granularity is at room
level. Constandache ef al. [10] deploys inaudible sound beacons
randomly placed in the building, as a reference frame for correcting
users’ movement traces captured by the accelerometer and com-
pass. However, this system requires an extra acoustic infrastructure
and has localization errors around 8m on average. We exploit the
constraints from nearby peer phones to achieve much higher local-
ization accuracy, without the need for extra acoustic infrastructure.

8. CONCLUSION

Indoor localization on smartphones is critical to enable novel
features for location based applications. However, existing ap-
proaches have yet to prove that they can satisfy what is desired
in many business scenarios. Due to the prevalence of WiFi infras-
tructure, we set out to study the accuracy that WiFi localization
can practically achieve on smartphones. We find that despite rea-
sonable accuracies in many cases, the dynamic radio propagation
poses fundamental limits and causes large errors. Inspired by the
idea of relative positions of nearby peer devices as unique physical
constraints on the possible location of a smartphone, we propose a
peer assisted localization approach that leverages much more accu-
rate distance estimate through acoustic ranging. Extensive experi-
ments have demonstrated our approach successfully pushes further
the limit of WiFi localization accuracy to what is empirically pos-
sible only under hundreds of APs, making WiFi a candidate for
high accuracy localization. Our system does not pose much more
latency than required in the original WiFi localization and has neg-
ligible impact on the battery lifetime.
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