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Chapter 9:  Main Memory



9.4

Chapter 9:  Memory Management

 Background

 Contiguous Memory Allocation

 Paging

 Structure of the Page Table

 Swapping

 Example: The Intel 32 and 64-bit Architectures

 Example: ARMv8 Architecture
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Objectives

 To provide a detailed description of various ways of 

organizing memory hardware

 To discuss various memory-management techniques, 

 To provide a detailed description of the Intel Pentium, 

which supports both pure segmentation and segmentation 

with paging
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Background

 Program must be brought (from disk)  into memory and 

placed within a process for it to be run

 Main memory and registers are only storage CPU can 

access directly

 Memory unit only sees a stream of:

 addresses + read requests, or 

 address + data and write requests

 Register access is done in one CPU clock (or less)

 Main memory can take many cycles, causing a stall

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct 

operation
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Protection

 Need to censure that a process can access only access 

those addresses in it address space.

 We can provide this protection by using  a pair of base

and limit registers define the logical address space of a 

process
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Hardware Address Protection

 CPU must check every memory access generated in user mode to 

be sure it is between base and limit for that user

 the instructions to loading the base and limit registers are 

privileged 
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Address Binding

 Programs on disk, ready to be brought into memory to execute form an 

input queue

 Without support, must be loaded into address 0000

 Inconvenient to have first user process physical address always at 0000 

 How can it not be?

 Addresses represented in different ways at different stages of a 

program’s life

 Source code addresses usually symbolic

 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”

 Linker or loader will bind relocatable addresses to absolute addresses

 i.e. 74014

 Each binding maps one address space to another
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Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses 

can happen at three different stages

 Compile time:  If memory location known a priori, 

absolute code can be generated; must recompile code if 

starting location changes

 Load time:  Must generate relocatable code if memory 

location is not known at compile time

 Execution time:  Binding delayed until run time if the 

process can be moved during its execution from one 

memory segment to another

Need hardware support for address maps (e.g., base 

and limit registers)
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Multistep Processing of a User Program 
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Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a 

separate physical address space is central to proper 

memory management

 Logical address – generated by the CPU; also referred 

to as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time 

and load-time address-binding schemes; logical (virtual) and 

physical addresses differ in execution-time address-binding 

scheme

 Logical address space is the set of all logical addresses 

generated by a program

 Physical address space is the set of all physical addresses 

generated by a program
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Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical 

address

 Many methods possible, covered in the rest of this chapter
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Memory-Management Unit (Cont.)

 Consider simple scheme. which is  a generalization of 

the base-register scheme.

 The base register now called relocation register

 The value in the relocation register is added to every 

address generated by a user process at the time it is 

sent to memory

 The user program deals with logical addresses; it never 

sees the real physical addresses

 Execution-time binding occurs when reference is 

made to location in memory

 Logical address bound to physical addresses
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Memory-Management Unit (Cont.)

 Consider simple scheme. which is  a generalization of the 

base-register scheme.

 The base register now called relocation register

 The value in the relocation register is added to every address 

generated by a user process at the time it is sent to memory
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Dynamic Loading

 The entire program does need to be in memory to execute

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never 

loaded

 All routines kept on disk in relocatable load format

 Useful when large amounts of code are needed to handle 

infrequently occurring cases

 No special support from the operating system is required

 Implemented through program design

 OS can help by providing libraries to implement 

dynamic loading
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Dynamic Linking

 Static linking – system libraries and program code combined by the 

loader into the binary program image

 Dynamic linking –linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate memory-

resident library routine

 Stub replaces itself with the address of the routine, and executes the 

routine

 Operating system checks if routine is in processes’ memory address

 If not in address space, add to address space

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

 Consider applicability to patching system libraries

 Versioning may be needed
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Contiguous Allocation

 Main memory must support both OS and user processes

 Limited resource, must allocate efficiently

 Contiguous allocation is one early method

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory 

with interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of 

memory
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Contiguous Allocation (Cont.)

 Relocation registers used to protect user processes from 

each other, and from changing operating-system code and 

data

 Base register contains value of smallest physical 

address

 Limit register contains range of logical addresses – each 

logical address must be less than the limit register 

 MMU maps logical address dynamically

 Can then allow actions such as kernel code being 

transient and kernel changing size
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Hardware Support for Relocation and Limit Registers
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Variable Partition

 Multiple-partition allocation

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ 

needs)

 Hole – block of available memory; holes of various size are 

scattered throughout memory

 When a process arrives, it is allocated memory from a hole large 

enough to accommodate it

 Process exiting frees its partition, adjacent free partitions combined

 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)
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Dynamic Storage-Allocation Problem

 First-fit:  Allocate the first hole that is big 
enough

 Best-fit:  Allocate the smallest hole that is big 
enough; must search entire list, unless ordered 
by size  

 Produces the smallest leftover hole

 Worst-fit:  Allocate the largest hole; must also 
search entire list  

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of 

speed and storage utilization
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Fragmentation

 External Fragmentation – total memory space exists 

to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be 

slightly larger than requested memory; this size 

difference is memory internal to a partition, but not 

being used

 First fit analysis reveals that given N blocks allocated, 

0.5 N blocks lost to fragmentation

 1/3 may be unusable -> 50-percent rule
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Fragmentation (Cont.)

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory 

together in one large block

 Compaction is possible only if relocation is 

dynamic, and is done at execution time

 I/O problem

Latch job in memory while it is involved in I/O

Do I/O only into OS buffers

 Now consider that backing store has same 

fragmentation problems
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Paging

 Physical  address space of a process can be noncontiguous; 

process is allocated physical memory whenever the latter is 

available

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and 

load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation
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Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n
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Paging Hardware
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Paging Model of Logical and  Physical Memory
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Paging Example 

 Logical address:  n = 2 and  m = 4. Using a page size of 4 

bytes and a physical memory of 32 bytes (8 pages)
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Paging -- Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?

 But each page table entry takes memory to track

 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB
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Free Frames

Before allocation After allocation
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Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the 

page table

 In this scheme every data/instruction access requires two 

memory accesses

 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of 

a special fast-lookup hardware cache called  translation 

look-aside buffers (TLBs) (also called associative 

memory).
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Translation Look-Aside Buffer 

 Some TLBs store address-space identifiers (ASIDs) in 

each TLB entry – uniquely identifies each process to provide 

address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access 

next time

 Replacement policies must be considered

 Some entries can be wired down for permanent fast 

access
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Hardware

 Associative memory – parallel search 

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

P age # F ram e #
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Paging Hardware With TLB
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Effective Access Time

 Hit ratio – percentage of times that a page number is found in 
the  TLB

 An 80% hit ratio means that we find the desired  page number  
in the TLB 80% of the time.

 Suppose that 10 nanoseconds to access memory.  

 If we find the desired page in TLB then a mapped-memory 
access take 10 ns

 Otherwise we need two memory access so it is 20 ns

 Effective Access Time (EAT)

EAT = 0.80 x 10 + 0.20 x 20 = 12 nanoseconds

implying 20% slowdown in access time

 Consider  amore realistic hit ratio of 99%, 

EAT = 0.99 x 10 + 0.01 x 20 = 10.1ns

implying  only 1% slowdown in access time.
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Memory Protection

 Memory protection implemented by associating protection bit 

with each frame to indicate if read-only or read-write access is 

allowed

 Can also add more bits to indicate page execute-only, and 

so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

 Any violations result in a trap to the kernel
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Valid (v) or Invalid (i) Bit In A Page Table



9.39

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems)

 Similar to multiple threads sharing the same process 

space

 Also useful for interprocess communication if sharing of 

read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and 

data

 The pages for the private code and data can appear 

anywhere in the logical address space
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Shared Pages Example
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Structure of the Page Table

 Memory structures for paging can get huge using straight-forward 

methods

 Consider a 32-bit logical address space as on modern 

computers

 Page size of 4 KB (212)

 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes  each process 4 MB of physical 

address space for the  page table alone

Don’t want to allocate that contiguously in main memory

 One simple solution is to divide the page table into smaller units

Hierarchical Paging

Hashed Page Tables

 Inverted Page Tables
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Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 We then page the page table
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Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 10-bit page number 

 a 12-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the 
displacement within the page of the inner page table

 Known as forward-mapped page table



9.44

Address-Translation Scheme
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64-bit Logical Address Space

 Even two-level paging scheme not sufficient

 If page size is 4 KB (212)

 Then page table has 252 entries

 If two level scheme, inner page tables could be 210 4-byte 

entries

 Address would look like

 Outer page table has 242 entries or 244 bytes

 One solution is to add a 2nd outer page table

 But in the following example the 2nd outer page table is still 

234 bytes in size

And possibly 4 memory access to get to one physical 

memory location
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Three-level Paging Scheme
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Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same 

location

 Each element contains (1) the virtual page number (2) the value of 

the mapped page frame (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a 

match

 If a match is found, the corresponding physical frame is extracted

 Variation for 64-bit addresses is clustered page tables

 Similar to hashed but each entry refers to several pages (such as 

16) rather than 1

 Especially useful for sparse address spaces (where memory 

references are non-contiguous and scattered) 
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Hashed Page Table
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Inverted Page Table

 Rather than each process having a page table and keeping track of 

all possible logical pages, track all physical pages

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real 

memory location, with information about the process that owns that 

page

 Decreases memory needed to store each page table, but increases 

time needed to search the table when a page reference occurs

 Use hash table to limit the search to one — or at most a few —

page-table entries

 TLB can accelerate access

 But how to implement shared memory?

 One mapping of a virtual address to the shared physical 

address
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Inverted Page Table Architecture
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Oracle SPARC Solaris

 Consider modern, 64-bit operating system example with tightly 

integrated HW

 Goals are efficiency, low overhead

 Based on hashing, but more complex

 Two hash tables

 One kernel and one for all user processes

 Each maps memory addresses from virtual to physical 

memory

 Each entry represents a contiguous area of mapped virtual 

memory,

More efficient than having a separate hash-table entry for 

each page

 Each entry has  base address and  span (indicating the 

number of pages the entry represents)
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Oracle SPARC Solaris (Cont.)

 TLB holds translation table entries (TTEs) for fast hardware lookups

 A cache of TTEs reside in a translation storage buffer (TSB)

 Includes an entry per recently accessed page

 Virtual address reference causes TLB search 

 If miss, hardware walks the in-memory TSB looking for the TTE 

corresponding to the address

 If match found, the CPU copies the TSB entry into the TLB and 

translation completes

 If no match found, kernel interrupted to search the hash table

– The kernel then creates a TTE from the appropriate hash 

table and stores it in the TSB, Interrupt handler returns 

control to the MMU, which completes the address 

translation. 
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Swapping

 A process can be swapped temporarily out of memory to a 
backing store, and then brought back into memory for 
continued execution

 Total physical memory space of processes can exceed 
physical memory

 Backing store – fast disk large enough to accommodate 
copies of all memory images for all users; must provide 
direct access to these memory images

 Roll out, roll in – swapping variant used for priority-based 
scheduling algorithms; lower-priority process is swapped out 
so higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is 
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes 
which have memory images on disk
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Swapping (Cont.)

 Does the swapped out process need to swap back in to 
same physical addresses?

 Depends on address binding method

 Plus consider pending I/O to / from process memory 
space

 Modified versions of swapping are found on many systems 
(i.e., UNIX, Linux, and Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory 

allocated

 Disabled again once memory demand reduced below 

threshold
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Schematic View of Swapping
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Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need 

to swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of 

50MB/sec

 Swap out time of 2000 ms

 Plus swap in of same sized process

 Total context switch swapping component time of 

4000ms (4 seconds)

 Can reduce if reduce size of memory swapped – by 

knowing how much memory really being used

 System calls to inform OS of memory use via 
request_memory() and release_memory()
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Context Switch Time and Swapping (Cont.)

 Other constraints as well on swapping

 Pending I/O – can’t swap out as I/O would occur to wrong 

process

 Or always transfer I/O to kernel space, then to I/O device

Known as double buffering, adds overhead

 Standard swapping not used in modern operating systems

 But modified version common

Swap only when free memory extremely low
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Swapping on Mobile Systems

 Not typically supported

 Flash memory based

Small amount of space

Limited number of write cycles

Poor throughput between flash memory and CPU on mobile 

platform

 Instead use other methods to free memory if low

 iOS asks apps to voluntarily relinquish allocated memory

Read-only data thrown out and reloaded from flash if needed

Failure to free can result in termination

 Android terminates apps if low free memory, but first writes 

application state to flash for fast restart

 Both OSes support paging as discussed below
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Swapping with Paging
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Example: The Intel 32 and 64-bit Architectures

 Dominant industry chips

 Pentium CPUs are 32-bit and called IA-32 architecture

 Current Intel CPUs are 64-bit and called IA-64 

architecture

 Many variations in the chips, cover the main ideas 

here
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Example: The Intel IA-32 Architecture

 Supports both segmentation and segmentation with 

paging

 Each segment can be 4 GB

 Up to 16 K segments per process

 Divided into two partitions

First partition of up to 8 K segments are private to 

process (kept in local descriptor table (LDT))

Second partition of up to 8K segments shared 

among all processes (kept in global descriptor 

table (GDT))
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Example: The Intel IA-32 Architecture (Cont.)

 CPU generates logical address

 Selector given to segmentation unit

Which produces linear addresses 

 Linear address given to paging unit

Which generates physical address in main 

memory

Paging units form equivalent of MMU

Pages sizes can be 4 KB or 4 MB
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Logical to Physical Address Translation in IA-32
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Intel IA-32 Segmentation
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Intel IA-32 Paging Architecture
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Intel IA-32 Page Address Extensions

 32-bit address limits led Intel to create page address extension 

(PAE), allowing 32-bit apps access to more than 4GB of memory 

space

 Paging went to a 3-level scheme

 Top two bits refer to a page directory pointer table

 Page-directory and page-table entries moved to 64-bits in size

 Net effect is increasing address space to 36 bits – 64GB of 

physical memory
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Intel x86-64

 Current generation Intel x86 architecture

 64 bits is ginormous (> 16 exabytes)

 In practice only implement 48 bit addressing

 Page sizes of 4 KB, 2 MB, 1 GB

 Four levels of paging hierarchy

 Can also use PAE so virtual addresses are 48 bits and 

physical addresses are 52 bits
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Example: ARM Architecture

 Dominant mobile platform chip 

(Apple iOS and Google Android 

devices for example)

 Modern, energy efficient, 32-bit CPU

 4 KB and 16 KB pages

 1 MB and 16 MB pages (termed 

sections)

 One-level paging for sections, two-

level for smaller pages

 Two levels of TLBs

 Outer level has two micro 

TLBs (one data, one 

instruction)

 Inner is single main TLB

 First inner is checked, on miss 

outers are checked, and on 

miss page table walk 

performed by CPU

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB 

section

32 bits
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Homework

 Exercises at the end of Chapter 9 (OS book)

 9.6, 9.7, 9.9, 9.10



End of Chapter 9


