
CS307&CS356: Operating Systems

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/os/

ftp://public.sjtu.edu.cn/

Chapter 9: Main Memory

9.4

Chapter 9: Memory Management

 Background

 Contiguous Memory Allocation

 Paging

 Structure of the Page Table

 Swapping

 Example: The Intel 32 and 64-bit Architectures

 Example: ARMv8 Architecture

9.5

Objectives

 To provide a detailed description of various ways of

organizing memory hardware

 To discuss various memory-management techniques,

 To provide a detailed description of the Intel Pentium,

which supports both pure segmentation and segmentation

with paging

9.6

Background

 Program must be brought (from disk) into memory and

placed within a process for it to be run

 Main memory and registers are only storage CPU can

access directly

 Memory unit only sees a stream of:

 addresses + read requests, or

 address + data and write requests

 Register access is done in one CPU clock (or less)

 Main memory can take many cycles, causing a stall

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct

operation

9.7

Protection

 Need to censure that a process can access only access

those addresses in it address space.

 We can provide this protection by using a pair of base

and limit registers define the logical address space of a

process

9.8

Hardware Address Protection

 CPU must check every memory access generated in user mode to

be sure it is between base and limit for that user

 the instructions to loading the base and limit registers are

privileged

9.9

Address Binding

 Programs on disk, ready to be brought into memory to execute form an

input queue

 Without support, must be loaded into address 0000

 Inconvenient to have first user process physical address always at 0000

 How can it not be?

 Addresses represented in different ways at different stages of a

program’s life

 Source code addresses usually symbolic

 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”

 Linker or loader will bind relocatable addresses to absolute addresses

 i.e. 74014

 Each binding maps one address space to another

9.10

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses

can happen at three different stages

 Compile time: If memory location known a priori,

absolute code can be generated; must recompile code if

starting location changes

 Load time: Must generate relocatable code if memory

location is not known at compile time

 Execution time: Binding delayed until run time if the

process can be moved during its execution from one

memory segment to another

Need hardware support for address maps (e.g., base

and limit registers)

9.11

Multistep Processing of a User Program

9.12

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a

separate physical address space is central to proper

memory management

 Logical address – generated by the CPU; also referred

to as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time

and load-time address-binding schemes; logical (virtual) and

physical addresses differ in execution-time address-binding

scheme

 Logical address space is the set of all logical addresses

generated by a program

 Physical address space is the set of all physical addresses

generated by a program

9.13

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical

address

 Many methods possible, covered in the rest of this chapter

9.14

Memory-Management Unit (Cont.)

 Consider simple scheme. which is a generalization of

the base-register scheme.

 The base register now called relocation register

 The value in the relocation register is added to every

address generated by a user process at the time it is

sent to memory

 The user program deals with logical addresses; it never

sees the real physical addresses

 Execution-time binding occurs when reference is

made to location in memory

 Logical address bound to physical addresses

9.15

Memory-Management Unit (Cont.)

 Consider simple scheme. which is a generalization of the

base-register scheme.

 The base register now called relocation register

 The value in the relocation register is added to every address

generated by a user process at the time it is sent to memory

9.16

Dynamic Loading

 The entire program does need to be in memory to execute

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never

loaded

 All routines kept on disk in relocatable load format

 Useful when large amounts of code are needed to handle

infrequently occurring cases

 No special support from the operating system is required

 Implemented through program design

 OS can help by providing libraries to implement

dynamic loading

9.17

Dynamic Linking

 Static linking – system libraries and program code combined by the

loader into the binary program image

 Dynamic linking –linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate memory-

resident library routine

 Stub replaces itself with the address of the routine, and executes the

routine

 Operating system checks if routine is in processes’ memory address

 If not in address space, add to address space

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

 Consider applicability to patching system libraries

 Versioning may be needed

9.18

Contiguous Allocation

 Main memory must support both OS and user processes

 Limited resource, must allocate efficiently

 Contiguous allocation is one early method

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory

with interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of

memory

9.19

Contiguous Allocation (Cont.)

 Relocation registers used to protect user processes from

each other, and from changing operating-system code and

data

 Base register contains value of smallest physical

address

 Limit register contains range of logical addresses – each

logical address must be less than the limit register

 MMU maps logical address dynamically

 Can then allow actions such as kernel code being

transient and kernel changing size

9.20

Hardware Support for Relocation and Limit Registers

9.21

Variable Partition

 Multiple-partition allocation

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’

needs)

 Hole – block of available memory; holes of various size are

scattered throughout memory

 When a process arrives, it is allocated memory from a hole large

enough to accommodate it

 Process exiting frees its partition, adjacent free partitions combined

 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

9.22

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big
enough

 Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered
by size

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also
search entire list

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

9.23

Fragmentation

 External Fragmentation – total memory space exists

to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be

slightly larger than requested memory; this size

difference is memory internal to a partition, but not

being used

 First fit analysis reveals that given N blocks allocated,

0.5 N blocks lost to fragmentation

 1/3 may be unusable -> 50-percent rule

9.24

Fragmentation (Cont.)

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory

together in one large block

 Compaction is possible only if relocation is

dynamic, and is done at execution time

 I/O problem

Latch job in memory while it is involved in I/O

Do I/O only into OS buffers

 Now consider that backing store has same

fragmentation problems

9.25

Paging

 Physical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is

available

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and

load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation

9.26

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

9.27

Paging Hardware

9.28

Paging Model of Logical and Physical Memory

9.29

Paging Example

 Logical address: n = 2 and m = 4. Using a page size of 4

bytes and a physical memory of 32 bytes (8 pages)

9.30

Paging -- Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?

 But each page table entry takes memory to track

 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

9.31

Free Frames

Before allocation After allocation

9.32

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the

page table

 In this scheme every data/instruction access requires two

memory accesses

 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of

a special fast-lookup hardware cache called translation

look-aside buffers (TLBs) (also called associative

memory).

9.33

Translation Look-Aside Buffer

 Some TLBs store address-space identifiers (ASIDs) in

each TLB entry – uniquely identifies each process to provide

address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access

next time

 Replacement policies must be considered

 Some entries can be wired down for permanent fast

access

9.34

Hardware

 Associative memory – parallel search

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

P age # F ram e #

9.35

Paging Hardware With TLB

9.36

Effective Access Time

 Hit ratio – percentage of times that a page number is found in
the TLB

 An 80% hit ratio means that we find the desired page number
in the TLB 80% of the time.

 Suppose that 10 nanoseconds to access memory.

 If we find the desired page in TLB then a mapped-memory
access take 10 ns

 Otherwise we need two memory access so it is 20 ns

 Effective Access Time (EAT)

EAT = 0.80 x 10 + 0.20 x 20 = 12 nanoseconds

implying 20% slowdown in access time

 Consider amore realistic hit ratio of 99%,

EAT = 0.99 x 10 + 0.01 x 20 = 10.1ns

implying only 1% slowdown in access time.

9.37

Memory Protection

 Memory protection implemented by associating protection bit

with each frame to indicate if read-only or read-write access is

allowed

 Can also add more bits to indicate page execute-only, and

so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

 Any violations result in a trap to the kernel

9.38

Valid (v) or Invalid (i) Bit In A Page Table

9.39

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)

 Similar to multiple threads sharing the same process

space

 Also useful for interprocess communication if sharing of

read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and

data

 The pages for the private code and data can appear

anywhere in the logical address space

9.40

Shared Pages Example

9.41

Structure of the Page Table

 Memory structures for paging can get huge using straight-forward

methods

 Consider a 32-bit logical address space as on modern

computers

 Page size of 4 KB (212)

 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes  each process 4 MB of physical

address space for the page table alone

Don’t want to allocate that contiguously in main memory

 One simple solution is to divide the page table into smaller units

Hierarchical Paging

Hashed Page Tables

 Inverted Page Tables

9.42

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 We then page the page table

9.43

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 10-bit page number

 a 12-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

 Known as forward-mapped page table

9.44

Address-Translation Scheme

9.45

64-bit Logical Address Space

 Even two-level paging scheme not sufficient

 If page size is 4 KB (212)

 Then page table has 252 entries

 If two level scheme, inner page tables could be 210 4-byte

entries

 Address would look like

 Outer page table has 242 entries or 244 bytes

 One solution is to add a 2nd outer page table

 But in the following example the 2nd outer page table is still

234 bytes in size

And possibly 4 memory access to get to one physical

memory location

9.46

Three-level Paging Scheme

9.47

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same

location

 Each element contains (1) the virtual page number (2) the value of

the mapped page frame (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a

match

 If a match is found, the corresponding physical frame is extracted

 Variation for 64-bit addresses is clustered page tables

 Similar to hashed but each entry refers to several pages (such as

16) rather than 1

 Especially useful for sparse address spaces (where memory

references are non-contiguous and scattered)

9.48

Hashed Page Table

9.49

Inverted Page Table

 Rather than each process having a page table and keeping track of

all possible logical pages, track all physical pages

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real

memory location, with information about the process that owns that

page

 Decreases memory needed to store each page table, but increases

time needed to search the table when a page reference occurs

 Use hash table to limit the search to one — or at most a few —

page-table entries

 TLB can accelerate access

 But how to implement shared memory?

 One mapping of a virtual address to the shared physical

address

9.50

Inverted Page Table Architecture

9.51

Oracle SPARC Solaris

 Consider modern, 64-bit operating system example with tightly

integrated HW

 Goals are efficiency, low overhead

 Based on hashing, but more complex

 Two hash tables

 One kernel and one for all user processes

 Each maps memory addresses from virtual to physical

memory

 Each entry represents a contiguous area of mapped virtual

memory,

More efficient than having a separate hash-table entry for

each page

 Each entry has base address and span (indicating the

number of pages the entry represents)

9.52

Oracle SPARC Solaris (Cont.)

 TLB holds translation table entries (TTEs) for fast hardware lookups

 A cache of TTEs reside in a translation storage buffer (TSB)

 Includes an entry per recently accessed page

 Virtual address reference causes TLB search

 If miss, hardware walks the in-memory TSB looking for the TTE

corresponding to the address

 If match found, the CPU copies the TSB entry into the TLB and

translation completes

 If no match found, kernel interrupted to search the hash table

– The kernel then creates a TTE from the appropriate hash

table and stores it in the TSB, Interrupt handler returns

control to the MMU, which completes the address

translation.

9.53

Swapping

 A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution

 Total physical memory space of processes can exceed
physical memory

 Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out
so higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

9.54

Swapping (Cont.)

 Does the swapped out process need to swap back in to
same physical addresses?

 Depends on address binding method

 Plus consider pending I/O to / from process memory
space

 Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory

allocated

 Disabled again once memory demand reduced below

threshold

9.55

Schematic View of Swapping

9.56

Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need

to swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of

50MB/sec

 Swap out time of 2000 ms

 Plus swap in of same sized process

 Total context switch swapping component time of

4000ms (4 seconds)

 Can reduce if reduce size of memory swapped – by

knowing how much memory really being used

 System calls to inform OS of memory use via
request_memory() and release_memory()

9.57

Context Switch Time and Swapping (Cont.)

 Other constraints as well on swapping

 Pending I/O – can’t swap out as I/O would occur to wrong

process

 Or always transfer I/O to kernel space, then to I/O device

Known as double buffering, adds overhead

 Standard swapping not used in modern operating systems

 But modified version common

Swap only when free memory extremely low

9.58

Swapping on Mobile Systems

 Not typically supported

 Flash memory based

Small amount of space

Limited number of write cycles

Poor throughput between flash memory and CPU on mobile

platform

 Instead use other methods to free memory if low

 iOS asks apps to voluntarily relinquish allocated memory

Read-only data thrown out and reloaded from flash if needed

Failure to free can result in termination

 Android terminates apps if low free memory, but first writes

application state to flash for fast restart

 Both OSes support paging as discussed below

9.59

Swapping with Paging

9.60

Example: The Intel 32 and 64-bit Architectures

 Dominant industry chips

 Pentium CPUs are 32-bit and called IA-32 architecture

 Current Intel CPUs are 64-bit and called IA-64

architecture

 Many variations in the chips, cover the main ideas

here

9.61

Example: The Intel IA-32 Architecture

 Supports both segmentation and segmentation with

paging

 Each segment can be 4 GB

 Up to 16 K segments per process

 Divided into two partitions

First partition of up to 8 K segments are private to

process (kept in local descriptor table (LDT))

Second partition of up to 8K segments shared

among all processes (kept in global descriptor

table (GDT))

9.62

Example: The Intel IA-32 Architecture (Cont.)

 CPU generates logical address

 Selector given to segmentation unit

Which produces linear addresses

 Linear address given to paging unit

Which generates physical address in main

memory

Paging units form equivalent of MMU

Pages sizes can be 4 KB or 4 MB

9.63

Logical to Physical Address Translation in IA-32

9.64

Intel IA-32 Segmentation

9.65

Intel IA-32 Paging Architecture

9.66

Intel IA-32 Page Address Extensions

 32-bit address limits led Intel to create page address extension

(PAE), allowing 32-bit apps access to more than 4GB of memory

space

 Paging went to a 3-level scheme

 Top two bits refer to a page directory pointer table

 Page-directory and page-table entries moved to 64-bits in size

 Net effect is increasing address space to 36 bits – 64GB of

physical memory

9.67

Intel x86-64

 Current generation Intel x86 architecture

 64 bits is ginormous (> 16 exabytes)

 In practice only implement 48 bit addressing

 Page sizes of 4 KB, 2 MB, 1 GB

 Four levels of paging hierarchy

 Can also use PAE so virtual addresses are 48 bits and

physical addresses are 52 bits

9.68

Example: ARM Architecture

 Dominant mobile platform chip

(Apple iOS and Google Android

devices for example)

 Modern, energy efficient, 32-bit CPU

 4 KB and 16 KB pages

 1 MB and 16 MB pages (termed

sections)

 One-level paging for sections, two-

level for smaller pages

 Two levels of TLBs

 Outer level has two micro

TLBs (one data, one

instruction)

 Inner is single main TLB

 First inner is checked, on miss

outers are checked, and on

miss page table walk

performed by CPU

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB

section

32 bits

9.69

Homework

 Exercises at the end of Chapter 9 (OS book)

 9.6, 9.7, 9.9, 9.10

End of Chapter 9

