
CS307&CS356: Operating Systems

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/os/

ftp://public.sjtu.edu.cn/

Chapter 3: Processes

3.4

Chapter 3: Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

 IPC in Shared-Memory Systems

 IPC in Message-Passing Systems

 Examples of IPC Systems

 Communication in Client-Server Systems

3.5

Objectives

 Identify the separate components of a process and illustrate

how they are represented and scheduled in an operating

system.

 Describe how processes are created and terminated in an

operating system, including developing programs using the

appropriate system calls that perform these operations.

 Describe and contrast interprocess communication using

shared memory and message passing.

 Design programs that uses pipes and POSIX shared memory

to perform interprocess communication.

 Describe client-server communication using sockets and

remote procedure calls.

 Design kernel modules that interact with the Linux operating

system.

3.6

Process Concept

 An operating system executes a variety of programs that run
as a process.

 Process – a program in execution; process execution must
progress in sequential fashion

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor

registers

 Stack containing temporary data

Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during

run time

3.7

Process Concept (Cont.)

 Program is passive entity stored on disk (executable

file); process is active

 Program becomes process when executable file

loaded into memory

 Execution of program started via GUI mouse clicks,

command line entry of its name, etc.

 One program can be several processes

 Consider multiple users executing the same program

3.8

Process in Memory

3.9

Memory Layout of a C Program

3.10

Process State

 As a process executes, it changes state

 New: The process is being created

 Running: Instructions are being executed

 Waiting: The process is waiting for some event to

occur

 Ready: The process is waiting to be assigned to a

processor

 Terminated: The process has finished execution

3.11

Diagram of Process State

3.12

Process Control Block (PCB)

Information associated with each process

(also called task control block)

 Process state – running, waiting, etc

 Program counter – location of instruction

to next execute

 CPU registers – contents of all process-

centric registers

 CPU scheduling information- priorities,

scheduling queue pointers

 Memory-management information –

memory allocated to the process

 Accounting information – CPU used,

clock time elapsed since start, time limits

 I/O status information – I/O devices

allocated to process, list of open files

3.13

Threads

 So far, process has a single thread of execution

 Consider having multiple program counters per

process

 Multiple locations can execute at once

Multiple threads of control -> threads

 Must then have storage for thread details, multiple

program counters in PCB

 Explore in detail in Chapter 4

3.14

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent;/* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files;/* list of open files */

struct mm_struct *mm; /* address space of this process */

3.15

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU

core

 Process scheduler selects among available processes

for next execution on CPU core

 Maintains scheduling queues of processes

 Ready queue – set of all processes residing in main

memory, ready and waiting to execute

 Wait queues – set of processes waiting for an event

(i.e. I/O)

 Processes migrate among the various queues

3.16

Ready and Wait Queues

3.17

Representation of Process Scheduling

3.18

CPU Switch From Process to Process

A context switch occurs when the CPU
switches from one process to another.

3.19

Context Switch

 When CPU switches to another process, the system must

save the state of the old process and load the saved state

for the new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful

work while switching

 The more complex the OS and the PCB the longer the

context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per

CPU multiple contexts loaded at once

3.20

Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS) allow only

one process to run, others suspended

 Due to screen real estate, user interface limits iOS provides for

a

 Single foreground process- controlled via user interface

 Multiple background processes– in memory, running, but

not on the display, and with limits

 Limits include single, short task, receiving notification of

events, specific long-running tasks like audio playback

 Android runs foreground and background, with fewer limits

 Background process uses a service to perform tasks

 Service can keep running even if background process is

suspended

 Service has no user interface, small memory use

3.21

Operations on Processes

 System must provide mechanisms for:

 process creation

 process termination

3.22

Process Creation

 Parent process create children processes, which, in

turn create other processes, forming a tree of

processes

 Generally, process identified and managed via a

process identifier (pid)

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate

3.23

A Tree of Processes in Linux

3.24

Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 exec() system call used after a fork() to replace

the process’ memory space with a new program

 Parent process calls wait() for the child to terminate

3.25

C Program Forking Separate Process

3.26

Creating a Separate Process via Windows API

3.27

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.

 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not allow

a child to continue if its parent terminates

3.28

Process Termination

 Some operating systems do not allow child to exists if its parent

has terminated. If a process terminates, then all its children must

also be terminated.

 cascading termination. All children, grandchildren, etc. are

terminated.

 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information

and the pid of the terminated process

pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie

 If parent terminated without invoking wait , process is an orphan

3.29

Android Process Importance Hierarchy

 Mobile operating systems often have to terminate processes

to reclaim system resources such as memory. From most to

least important:

o Foreground process

o Visible process

o Service process

o Background process

o Empty process

 Android will begin terminating processes that are least

important.

3.30

Multiprocess Architecture – Chrome Browser

 Many web browsers ran as single process (some still do)

 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multiprocess with 3 different types of

processes:

 Browser process manages user interface, disk and network I/O

 Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened

Runs in sandbox restricting disk and network I/O,

minimizing effect of security exploits

 Plug-in process for each type of plug-in

3.31

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

3.32

Communications Models

(a) Shared memory. (b) Message passing.

3.33

Cooperating Processes

 Independent process cannot affect or be affected by

the execution of another process

 Cooperating process can affect or be affected by the

execution of another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

3.34

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer

process

 unbounded-buffer places no practical limit on the

size of the buffer

 bounded-buffer assumes that there is a fixed

buffer size

3.35

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that
wish to communicate

 The communication is under the control of the users
processes not the operating system.

 Major issues is to provide mechanism that will allow
the user processes to synchronize their actions when
they access shared memory.

 Synchronization is discussed in great details in
Chapters 6 & 7.

3.36

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.37

Producer Process – Shared Memory

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

3.38

Consumer Process – Shared Memory

item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

3.39

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to
synchronize their actions

 Message system – processes communicate with each
other without resorting to shared variables

 IPC facility provides two operations:

 send(message)

 receive(message)

 The message size is either fixed or variable

3.40

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:

 Establish a communication link between them

 Exchange messages via send/receive

 Implementation issues:

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate

fixed or variable?

 Is a link unidirectional or bi-directional?

3.41

Message Passing (Cont.)

 Implementation of communication link

 Physical:

Shared memory

Hardware bus

Network

 Logical:

 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

3.42

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process

Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

3.43

Indirect Communication

 Messages are directed and received from mailboxes (also

referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication

links

 Link may be unidirectional or bi-directional

3.44

Indirect Communication

 Operations

 create a new mailbox (port)

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

3.45

Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver. Sender

is notified who the receiver was.

3.46

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

Blocking send -- the sender is blocked until the message is

received

Blocking receive -- the receiver is blocked until a message is

available

Non-blocking is considered asynchronous

Non-blocking send -- the sender sends the message and

continue

Non-blocking receive -- the receiver receives:

A valid message, or

Null message

Different combinations possible

If both send and receive are blocking, we have a rendezvous

3.47

Producer – Shared Memory

message next_produced;

while (true) {

/* produce an item in next_produced */

send(next_produced);

}

3.48

Consumer– Shared Memory

message next_consumed;

while (true) {

receive(next_consumed)

/* consume the item in next_consumed */

}

3.49

Buffering

 Queue of messages attached to the link.

 Implemented in one of three ways

1.Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2.Bounded capacity – finite length of n messages

Sender must wait if link full

3.Unbounded capacity – infinite length

Sender never waits

3.50

Examples of IPC Systems - POSIX

 POSIX Shared Memory

 Process first creates shared memory segment
shm_fd = shm_open(name, O CREAT | O RDWR,

0666);

 Also used to open an existing segment

 Set the size of the object

ftruncate(shm_fd, 4096);

 Use mmap() to memory-map a file pointer to the shared

memory object

 Reading and writing to shared memory is done by using
the pointer returned by mmap().

3.51

IPC POSIX Producer

3.52

IPC POSIX Consumer

3.53

Examples of IPC Systems - Mach

 Mach communication is message based

 Even system calls are messages

 Each task gets two ports at creation- Kernel and Notify

 Messages are sent and received using the mach_msg()

function

 Ports needed for communication, created via

mach_port_allocate()

 Send and receive are flexible, for example four options if

mailbox full:

Wait indefinitely

Wait at most n milliseconds

Return immediately

Temporarily cache a message

3.54

Mach Messages

#include<mach/mach.h>

struct message {

mach_msg_header_t header;

int data;

};

mach port t client;

mach port t server;

3.55

Mach Message Passing - Client

3.56

Mach Message Passing - Server

3.57

Examples of IPC Systems – Windows

 Message-passing centric via advanced local procedure call

(LPC) facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain

communication channels

 Communication works as follows:

The client opens a handle to the subsystem’s connection

port object.

The client sends a connection request.

The server creates two private communication ports and

returns the handle to one of them to the client.

The client and server use the corresponding port handle to

send messages or callbacks and to listen for replies.

3.58

Local Procedure Calls in Windows

3.59

Pipes

 Acts as a conduit allowing two processes to communicate

 Issues:

 Is communication unidirectional or bidirectional?

 In the case of two-way communication, is it half or full-

duplex?

 Must there exist a relationship (i.e., parent-child) between

the communicating processes?

 Can the pipes be used over a network?

 Ordinary pipes – cannot be accessed from outside the

process that created it. Typically, a parent process creates a

pipe and uses it to communicate with a child process that it

created.

 Named pipes – can be accessed without a parent-child

relationship.

3.60

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-

consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating

processes

 Windows calls these anonymous pipes

3.61

Named Pipes

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the

communicating processes

 Several processes can use the named pipe for

communication

 Provided on both UNIX and Windows systems

3.62

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

3.63

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number

included at start of message packet to differentiate

network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on

host 161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for

standard services

 Special IP address 127.0.0.1 (loopback) to refer to

system on which process is running

3.64

Socket Communication

3.65

Sockets in Java

 Three types of sockets

 Connection-oriented

(TCP)

 Connectionless

(UDP)

 MulticastSocket

class– data can be

sent to multiple

recipients

 Consider this “Date”

server in Java:

3.66

Sockets in Java

The equivalent Date client

3.67

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems

 Again uses ports for service differentiation

 Stubs – client-side proxy for the actual procedure on the

server

 The client-side stub locates the server and marshalls the

parameters

 The server-side stub receives this message, unpacks the

marshalled parameters, and performs the procedure on the

server

 On Windows, stub code compile from specification written in

Microsoft Interface Definition Language (MIDL)

3.68

Remote Procedure Calls (Cont.)

 Data representation handled via External Data

Representation (XDL) format to account for different

architectures

 Big-endian and little-endian

 Remote communication has more failure scenarios than

local

 Messages can be delivered exactly once rather than

at most once

 OS typically provides a rendezvous (or matchmaker)

service to connect client and server

3.69

Execution of RPC

3.70

Homework

 Exercises at the end of Chapter 3 (OS book)

 3.1, 3.2, 3.4, 3.8, 3.10

End of Chapter 3

