. 5 ye - T !
. Jerx TR N _— % -
RS s ' TN %|ﬂ
\ N G SN S -
s A0 b ot

El 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)
Dept. of Computer Science & Engineering

Chentao Wu
wuct@cs.sjtu.edu.cn

IPLEEVS:

SHANGHAI JIAD TOMNG UNIVERSITY

Download \ectures

o ftp://public.sjtu.edu.cn

e User: wuct
e Password: wuct123456

* http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Chapter 3. Processes

b

=

L Chapter 3: Processes

Process Concept

Process Scheduling

Operations on Processes

Interprocess Communication

IPC in Shared-Memory Systems

IPC in Message-Passing Systems
Examples of IPC Systems
Communication in Client-Server Systems

3.4

V!,\

[~ -~
_

SRy Obj ectives

m |dentify the separate components of a process and illustrate
how they are represented and scheduled in an operating
system.

m Describe how processes are created and terminated in an
operating system, including developing programs using the
appropriate system calls that perform these operations.

m Describe and contrast interprocess communication using
shared memory and message passing.

B Design programs that uses pipes and POSIX shared memory
to perform interprocess communication.

m Describe client-server communication using sockets and
remote procedure calls.

® Design kernel modules that interact with the Linux operating

system. i\

~

3.5

=

.

5 Process Concept

® An operating system executes a variety of programs that run
as a process.

m Process — a program in execution; process execution must
progress in sequential fashion

® Multiple parts
e The program code, also called text section

e Current activity including program counter, processor
registers

e Stack containing temporary data

» Function parameters, return addresses, local variables
e Data section containing global variables

e Heap containing memory dynamically allocated during
run time A5

P
AR

-l

3.6

=

o

G Process Concept (Cont.)

!

B Program is passive entity stored on disk (executable
file); process is active

e Program becomes process when executable file
loaded into memory

®m Execution of program started via GUI mouse clicks,
command line entry of its name, etc.

® One program can be several processes
e Consider multiple users executing the same program

R
£o50
e

3.7

w5 Process in Memory

max
stack

heap

data

text

3.8

=

, :<7"“J,
“%7/ Memory Layout of a C Program

#include <stdio.h>

high #include <stdlib.h>
argc, agrv
memaory
stack int x;
s s e poe s o ga ((mty1
4 . [|
A J{.nt main(int argc, char *argv(])
b it e il e e L [:int *values;
heap = J int 1;
—
uninitialized [, I
data values = (int *)malloc(sizeof (int) *5);
initialized for(i = 0; i < 5; i++)
data values[i] = 1i;
low text return 0;
memory }

3.9

=

Vg
(.

" Process State

B As a process executes, it changes state
e New: The process is being created
e Running: Instructions are being executed

e Waiting: The process is waiting for some event to
occur

e Ready: The process is waiting to be assigned to a
processor

e Terminated: The process has finished execution

f(- "\\
. c

3.10

- -
w7 Diagram of Process State

admitted interrupt exit

terminated

scheduler dispatch

I/O or event completion I/O or event wait

3.11

!

p—.

'..t -) 4

=

Process Control Block (PCB)

Information associated with each process

(also called task control block)

Process state — running, waiting, etc

Program counter — location of instruction
to next execute

CPU registers — contents of all process-
centric registers

CPU scheduling information- priorities,
scheduling gueue pointers

Memory-management information —
memory allocated to the process

Accounting information — CPU used,
clock time elapsed since start, time limits

/O status information — 1/O devices
allocated to process, list of open files

3.12

process state

process number

program counter

registers

memory limits

list of open files

=

e

B So far, process has a single thread of execution

®m Consider having multiple program counters per
process

e Multiple locations can execute at once
» Multiple threads of control -> threads

B Must then have storage for thread details, multiple
program counters in PCB

®m Explore in detall in Chapter 4

S
£o50
e x

3.13

=
o

g5 Process Representation in Linux

Represented by the C structure task struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent;/* this process s parent */
struct list head children; /* this process s children */
struct files struct *files;/* list of open files */

struct mm struct *mm; /* address space of this process */

i

struct task_struct
process information

NN

struct task_struct
process information

Resid

current

struct task_struct
process information

(currently executing proccess)

3.14

=

P Process Scheduling

® Maximize CPU use, quickly switch processes onto CPU
core

B Process scheduler selects among available processes
for next execution on CPU core

B Maintains scheduling queues of processes

e Ready queue — set of all processes residing in main
memory, ready and waiting to execute

e Wait queues — set of processes waiting for an event
(i.e. 1/O)

e Processes migrate among the various queues

3.15

' ,.:ﬂ-w-,l .
W/ Ready and Wait Queues
queue header PCB , PCB ,
ready head > > =
queue tail ~ registers registers
PCB, PCB,, PCB,
/ —_— —— T—=
wait head 1
queue tail

N

3.16

h Representation of Process Scheduling

ready queue CPU

time slice
expired

child child create child

termination je— -—

terminates process

wait queue

interrupt interrupt wait for an
occurs wait queue interrupt

I/O wait queue <« |/O request - E—

3.17

=

5%/ CPU Switch From Process to Process

A context switch occurs when the CPU
switches from one process to another.
process P, operating system process P,

interrupt or system call

executing L /
Y \ 4 ~
3 save state into PCB,
i > idle
03
reload state from PCB; 1
-idle interrupt or system call executing
| \ l .
save state into PCB,
X > idle
i reload state from PCB,)
executing #\

3.18

!

=

o

SR Context Switch

® When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch

m Context of a process represented in the PCB

m Context-switch time is overhead; the system does no useful
work while switching

e The more complex the OS and the PCB =» the longer the
context switch

® Time dependent on hardware support

e Some hardware provides multiple sets of registers per
CPU = multiple contexts loaded at once

=T

3.19

i ~Ai£\'. NE

=

_arrrnd

ey Multitasking in Mobile Systems

B Some mobile systems (e.g., early version of iOS) allow only
one process to run, others suspended

® Due to screen real estate, user interface limits iOS provides for
a

e Single foreground process- controlled via user interface

e Multiple background processes— in memory, running, but
not on the display, and with limits

e Limits include single, short task, receiving notification of
events, specific long-running tasks like audio playback

® Android runs foreground and background, with fewer limits
e Background process uses a service to perform tasks

e Service can keep running even if background process is
suspended 25

L ."" A*;\'. AL

~—

e Service has no user interface, small memory use

3.20

o -
“§ 7 Operations on Processes

B System must provide mechanisms for:
® process creation
® process termination

3.21

!

=

o

7 Process Creation

B Parent process create children processes, which, in
turn create other processes, forming a tree of
processes

B Generally, process identified and managed via a
process identifier (pid)

B Resource sharing options
e Parent and children share all resources
e Children share subset of parent’ s resources
e Parent and child share no resources
B Execution options
e Parent and children execute concurrently

e Parent waits until children terminate

3.22

‘*«%ﬂ A Tree of Processes in Linux

systemd
pid=1

python
pid = 2808

logind
pid = 8415

3.23

=

P Process Creation (Cont.)

m Address space
e Child duplicate of parent
e Child has a program loaded into it
m UNIX examples
e fork () system call creates new process

e exec () system call used after a fork () to replace
the process’ memory space with a new program

e Parent process calls wait () for the child to terminate

parent (pid > 0)
(v D

parent

child (pid = 0)

3.24

parent resumes

=

: ,(ww-.J ol .
«4%7 C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid.t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL);

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return 0O;

3.25

w{:ﬁ Creating a Separate Process via Windows API

#include <stdio.h>
#include <windows.h>

int main(VOID)

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS)\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */

&si,
&pi))
{
fprintf(stderr, "Create Process Failed");
return -1;
}

/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

3.26

=

o

ey Process Termination

B Process executes last statement and then asks the operating
system to delete it using the exit () system call.

e Returns status data from child to parent (via wait ())
e Process’ resources are deallocated by operating system

® Parent may terminate the execution of children processes using
the abort () system call. Some reasons for doing so:

e Child has exceeded allocated resources

e Task assigned to child is no longer required

e The parent is exiting and the operating systems does not allow
a child to continue if its parent terminates

3.27

=

o

ey Process Termination

B Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

e cascading termination. All children, grandchildren, etc. are
terminated.

e The termination is initiated by the operating system.

® The parent process may wait for termination of a child process by
using the wait () system call. The call returns status information
and the pid of the terminated process

pid = wait (&status) ;
®m If no parent waiting (did not invoke wait ()) process is a zombie
m If parent terminated without invoking wait , process is an orphan

0
£50
N

3.28

=

o

*A’ndrmd Process Importance Hierarchy

® Mobile operating systems often have to terminate processes
to reclaim system resources such as memory. From most to
least important:

o Foreground process
o Visible process

o Service process

o Background process
o Empty process

® Android will begin terminating processes that are least
Important.

3.29

’Q

-
»w» Multiprocess Architecture — Chrome Browser

® Many web browsers ran as single process (some still do)
e If one web site causes trouble, entire browser can hang or crash

® Google Chrome Browser is multiprocess with 3 different types of

processes:
e Browser process manages user interface, disk and network 1/O

e Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

» Runs in sandbox restricting disk and network 1/0O,
minimizing effect of security exploits

e Plug-in process for each type of plug-in

x e BBC - Harmepage

e

0S-BOOK.COM % [wiey: Operating Systen

((((((((((((x b s
ogle.com/chrome/bro
‘ chrome DOWNLOAD ~ ETUP ~ cOMEBOOKS ~ HROMECAST ~

Each tab represents a separate process.
o~ ‘,\

3.30

=,

«4%7 Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
iIncluding sharing data

Reasons for cooperating processes:
e Information sharing
e Computation speedup
e Modularity
e Convenience
Cooperating processes need interprocess communication (IPC)

m Two models of IPC

e Shared memory
e Message passing

3.31

h Communications Models

(a) Shared memory. (b) Message passing.
process A process A
—> shared memory 4——| process B
process B
message queue
—> Mo | M| My (M3 ... |Mp e
kernel
kernel

(@) (b)

3.32

b

=

o

" Cooperating Processes

® [ndependent process cannot affect or be affected by
the execution of another process

B Cooperating process can affect or be affected by the
execution of another process

B Advantages of process cooperation
e Information sharing
e Computation speed-up
e Modularity
e Convenience

3.33

ors

’f /"-“;‘i .{\T

=

p—

“%77 Producer-Consumer Problem

m Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

e unbounded-buffer places no practical limit on the
size of the buffer

e bounded-buffer assumes that there is a fixed
buffer size

3.34

=

VA : :
Wi’ Interprocess Communication — Shared Memory

B An area of memory shared among the processes that
wish to communicate

B The communication is under the control of the users
processes not the operating system.

B Major issues is to provide mechanism that will allow
the user processes to synchronize their actions when
they access shared memory.

B Synchronization is discussed in great details in
Chapters 6 & 7.

0
£.590
i v‘_,." p—

3.35

}.\
—q-'-n.i

v x-f Bounded-Buffer — Shared-Memory Solution

®m Shared data
#define BUFFER SIZE 10

typedef struct {

} item;

item buffer[BUFFER SIZE];
int in = 0;

int out = 0;

® Solution is correct, but can only use BUFFER _SIZE-1 elements

}ﬂ‘ /

3.36

"

an
- Producer Process — Shared Memory

item next_produced;

while (true) {
/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

3.37

a,-:-:g,?éonsumer Process — Shared Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next consumed = buffer[out];

out = (out + 1) $ BUFFER SIZE;

/* consume the item in next consumed */

B
~ D
-.";-'f(ok

3.38

=

B o

wi w»/ Interprocess Communication — Message Passing

B Mechanism for processes to communicate and to
synchronize their actions

B Message system — processes communicate with each
other without resorting to shared variables

m |PC facility provides two operations:
e send(message)
® receive(message)

B The message size is either fixed or variable

3.39

=

_arrrnd

SRy Message Passing (Cont.)

m If processes P and Q wish to communicate, they need to:
e Establish a communication link between them
e Exchange messages via send/receive

B Implementation issues:

e How are links established?
e Can a link be associated with more than two processes?

e How many links can there be between every pair of
communicating processes?

e What is the capacity of a link?

e s the size of a message that the link can accommodate
fixed or variable?

e Is a link unidirectional or bi-directional? P

3.40

=,

haf s Message Passing (Cont.)

B Implementation of communication link
e Physical:
» Shared memory
» Hardware bus
» Network
e Logical:
» Direct or indirect
» Synchronous or asynchronous
» Automatic or explicit buffering

3.41

=

o

ey Direct Communication

B Processes must name each other explicitly:
e send (P, message) — send a message to process P

® receive(Q, message) — receive a message from process
Q

®m Properties of communication link
e Links are established automatically

e Alink is associated with exactly one pair of communicating
processes

e Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

0
.‘-(f’ % i ‘i

. Ai.'\, AL
A

-l

3.42

=

o

S Indirect Communication

® Messages are directed and received from mailboxes (also
referred to as ports)

e Each mailbox has a unigue id
e Processes can communicate only if they share a mailbox
®m Properties of communication link
e Link established only if processes share a common mailbox
e A link may be associated with many processes

e Each pair of processes may share several communication
links

e Link may be unidirectional or bi-directional

0
£.50
i "_/.’ p— |

3.43

=,

g

o Indirect Communication

® Operations
e create a new mailbox (port)
e send and receive messages through mailbox
e destroy a mailbox
B Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

3.44

=

o

5 Indirect Communication

® Mailbox sharing
e P,, P,, and P, share mailbox A
e P,, sends; P, and P, receive
e Who gets the message?
®m Solutions
e Allow a link to be associated with at most two processes

e Allow only one process at a time to execute a receive
operation

e Allow the system to select arbitrarily the receiver. Sender
IS notified who the receiver was.

3.45

=

o

g Synchronization

Message passing may be either blocking or non-blocking
Blocking is considered synchronous

Blocking send -- the sender is blocked until the message is
received

Blocking receive -- the receiver is blocked until a message is
available

Non-blocking is considered asynchronous

Non-blocking send -- the sender sends the message and
continue

Non-blocking receive -- the receiver receives:
A valid message, or
Null message
Different combinations possible

If both send and receive are blocking, we have a rendezvo\gksf_-f;.,;;;,
-

-l

3.46

=

‘w" Producer — Shared Memory

message next produced;

while (true) ({
/* produce an item in next produced */

send (next produced) ;

3.47

=

“#77 Consumer— Shared Memory

message next consumed;

while (true) {
receive (next consumed)

/* consume the item in next consumed */

3.48

=

(g Buffering

B Queue of messages attached to the link.
® |[mplemented in one of three ways

1.Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2.Bounded capacity — finite length of n messages
Sender must walit if link full

3.Unbounded capacity — infinite length
Sender never waits

0
£
i "_/.’ p—

3.49

=

«4%7 Examples of IPC Systems - POSIX

m POSIX Shared Memory

e Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR,
0666) ;

e Also used to open an existing segment
e Set the size of the object
ftruncate (shm fd, 4096);

e Use mmap () to memory-map a file pointer to the shared
memory object

e Reading and writing to shared memory is done by using
the pointer returned by mmap () .

0
.‘-(f’ % i ‘i

-
& A

-l

3.50

g IPC POSIX Producer

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4086;

/* name of the shared memory object */

const char *name = "0DS";

/* strings written to shared memory */

const char *message O = "Hello";

const char *message_1 = "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O _RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT WRITE, MAP SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"%s" ,message 0);

ptr += strlen(message 0);
sprintf(ptr,“%s",message_l);

ptr += strlen(message_1);

return O;

3.51

]

W s IPC POSIX Consumer

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;
/* name of the shared memory object */

const char *name = "QOS";

/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O RDONLY, 0666) ;

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf ("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink (name) ;

return O;

3.52

=

o

4%’ Examples of IPC Systems - Mach

B Mach communication is message based
e Even system calls are messages
e Each task gets two ports at creation- Kernel and Notify

e Messages are sent and received using the mach msg ()
function

e Ports needed for communication, created via
mach port allocate()

e Send and receive are flexible, for example four options if
mailbox full:

» Walit indefinitely
» Walit at most n milliseconds
» Return immediately

£
» Temporarily cache a message sl o |

.. 'ﬂ

3.53

=

p—

#include<mach/mach.h>

struct message {
mach msg header t header;
int data;

} s

mach port t client;
mach port t server;

3.54

=

“%7/ Mach Message Passing - Client

/* Client Code */
struct message message;

// construct the header
message.header.msgh size = sizeof (message) ;
message.header.msgh remote port = server;
message.header.msgh local port = client;

// send the message

mach msg(&message.header, // message header
MACH_SEND_MSG, // sending a message
sizeof (message), // size of message sent
0, // maximum size of received message - unnecessary
MACH PORT NULL, // name of receive port - unnecessary
MACH_MSG_TIMEOUT_NONE, // no time outs
MACH_PORT NULL // no notify port

3.55

- |
“%7/ Mach Message Passing - Server

/* Server Code */
struct message message;

// receive the message

mach msg(&message .header, // message header
MACH RCV_MSG, // sending a message
0, // size of message sent
sizeof (message), // maximum size of received message
server, // name of receive port
MACH_MSG_TIMEQUT_NONE, // no time outs
MACH_PORT NULL // no notify port

3.56

!

=

o

SN Examples of IPC Systems — Windows

B Message-passing centric via advanced local procedure call
(LPC) facility

e Only works between processes on the same system

e Uses ports (like mailboxes) to establish and maintain
communication channels

e Communication works as follows:

» The client opens a handle to the subsystem’s connection
port object.

» The client sends a connection request.

» The server creates two private communication ports and
returns the handle to one of them to the client.

» The client and server use the corresponding port handle to
send messages or callbacks and to listen for replies.

3.57

- o\
«4»/ Local Procedure Calls in Windows

Client Server
Connection
request < Connection Handle
Port
Handle Client

Communication Port

Server Handle
Communication Port

Shared
< »{ Section Object |« »
(> 256 bytes)

3.58

.‘;\

<
e

g Pipes

®m Acts as a conduit allowing two processes to communicate
B [ssues:
e |s communication unidirectional or bidirectional?

e In the case of two-way communication, is it half or full-
duplex?

e Must there exist a relationship (i.e., parent-child) between
the communicating processes?
e Can the pipes be used over a network?

® Ordinary pipes — cannot be accessed from outside the
process that created it. Typically, a parent process creates a
pipe and uses it to communicate with a child process that it
created.

B Named pipes — can be accessed without a parent-child Py
relationship. A,%

3.59

!

=

<P Ordinary Pipes

Ordinary Pipes allow communication in standard producer-
consumer style

Producer writes to one end (the write-end of the pipe)
Consumer reads from the other end (the read-end of the pipe)
Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating
processes

Parent Child
fd [0] fd [0]
fd [1]2 fd [1]
i pipe)
_________ 4‘
Windows calls these anonymous pipes A5

3.60

y

=

G Named Pipes

Named Pipes are more powerful than ordinary pipes
Communication is bidirectional

No parent-child relationship is necessary between the
communicating processes

Several processes can use the named pipe for
communication

Provided on both UNIX and Windows systems

R
£o50
e

3.61

=

v:,‘;?} Communications in Client-Server Systems

B Sockets
® Remote Procedure Calls

3.62

=
ae—

Py Sockets

B A socket is defined as an endpoint for communication

m Concatenation of IP address and port — a number
Included at start of message packet to differentiate
network services on a host

B The socket 161.25.19.8:1625 refers to port 1625 on
host 161.25.19.8

B Communication consists between a pair of sockets

m All ports below 1024 are well known, used for
standard services

m Special IP address 127.0.0.1 (loopback) to referto "
system on which process is running alla

3.63

w5 Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
(161.25.19.8:80)

3.64

=

W Sockets in Java

import java.net.x*;

m Three types of sockets Jwport java.io.*;
e Connection-oriented public class DateServer
(TCP) { public static void main(String[] args) {

try {
ServerSocket sock = new ServerSocket(6013);

e Connectionless
/* now listen for connections */

(UDP) while (true) {
Socket client = sock.accept();

® MulticastSocket

PrintWriter pout = new
class— data can be PrintWriter(client.getOutputStream(), true);
sentto mUItlple /* write the Date to the socket */
I’eCIpIen'[S pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

m Consider this “Date” ; }
server in Java: catch (IOException ioe) {
System.err.println(ioe);
}
}
}

O
{ :c“’ ‘[:-
el _}

o

3.65

4

r 4 Sockets in Java
The equivalent Date client

import java.net.*;
import java.io.*;

public class DateClient

{

public static void main(String[] args) {
try {
/* make connection to server socket */
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new
BufferedReader (new InputStreamReader(in));

/* read the date from the socket */

String line;

while ((line = bin.readLine()) != null)
System.out.println(line);

/* close the socket connection*/
sock.close();

catch (IOException ioe) ({
System.err.println(ioe);

}
}
}

3.66

=

o

ey Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

e Again uses ports for service differentiation

Stubs - client-side proxy for the actual procedure on the
server

The client-side stub locates the server and marshalls the
parameters

The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)

0
f" = i ‘i

. A‘;\' A

«

3.67

N

e

v' Remote Procedure Calls (Cont.)

!

B Data representation handled via External Data
Representation (XDL) format to account for different
architectures

e Big-endian and little-endian

B Remote communication has more failure scenarios than
local

e Messages can be delivered exactly once rather than
at most once

B OS typically provides a rendezvous (or matchmaker)
service to connect client and server

/l"’ "'\‘

3.68

¥

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to

matchmaker to |

find port number

kernel places
port P in user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

messages

From: client

To: client

Port: kernel

Re: RPC X
Port: P

From: client

To: server

Port: port P
<contents>

From: RPC
Port: P
To: client

Port: kernel

<output>

3.69

server

matchmaker

message, looks
up answer

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

daemon
processes
request and
processes send

=

4'-”,"'""‘“\,
> & Homework

B Exercises at the end of Chapter 3 (OS book)
e 3.1,3.2,3.4, 3.8, 3.10

3.70

End of Chapter 3

