
EI 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Chapter 15: File System

Internals

15.4

Chapter 15: File System Internals

 File Systems

 File-System Mounting

 Partitions and Mounting

 File Sharing

 Virtual File Systems

 Remote File Systems

 Consistency Semantics

 NFS

15.5

Objectives

 Delve into the details of file systems and their

implementation

 Explore booting and file sharing

 Describe remote file systems, using NFS as

an example

15.6

File System
 General-purpose computers can have multiple storage devices

 Devices can be sliced into partitions, which hold volumes

 Volumes can span multiple partitions

 Each volume usually formatted into a file system

 # of file systems varies, typically dozens available to choose from

Typical storage device organization:

15.7

Example Mount Points and File Systems - Solaris

15.8

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or

raw – just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of blocks

that contain enough code to know how to load the kernel from the

file system

 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold other

Oses, other file systems, or be raw

 Mounted at boot time

 Other partitions can mount automatically or manually on mount

points – location at which they can be accessed

 At mount time, file system consistency checked

 Is all metadata correct?

 If not, fix it, try again

 If yes, add to mount table, allow access

15.9

File Systems and Mounting

(a)Unix-like file
system
directory tree

(b)Unmounted
file system

After mounting
(b) into the
existing directory
tree

15.10

File Sharing

 Allows multiple users / systems access to the same files

 Permissions / protection must be implement and accurate

 Most systems provide concepts of owner, group

member

 Must have a way to apply these between systems

15.11

Virtual File Systems

 Virtual File Systems (VFS) on Unix provide an object-

oriented way of implementing file systems

 VFS allows the same system call interface (the API) to be

used for different types of file systems

 Separates file-system generic operations from

implementation details

 Implementation can be one of many file systems types, or

network file system

Implements vnodes which hold inodes or network file

details

 Then dispatches operation to appropriate file system

implementation routines

15.12

Virtual File Systems (Cont.)

 The API is to the VFS interface, rather than any specific type

of file system

15.13

Virtual File System Implementation

 For example, Linux has four object types:

 inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be

implemented

 Every object has a pointer to a function table

Function table has addresses of routines to implement that

function on that object

For example:

 • int open(. . .)—Open a file

 • int close(. . .)—Close an already-open file

 • ssize t read(. . .)—Read from a file

 • ssize t write(. . .)—Write to a file

 • int mmap(. . .)—Memory-map a file

15.14

Remote File Systems

 Sharing of files across a network

 First method involved manually sharing each file – programs
like ftp

 Second method uses a distributed file system (DFS)

 Remote directories visible from local machine

 Third method – World Wide Web

 A bit of a revision to first method

 Use browser to locate file/files and download /upload

 Anonymous access doesn’t require authentication

15.15

Client-Server Model

 Sharing between a server (providing access to a file system

via a network protocol) and a client (using the protocol to

access the remote file system)

 Identifying each other via network ID can be spoofed,

encryption can be performance expensive

 NFS an example

 User auth info on clients and servers must match

(UserIDs for example)

 Remote file system mounted, file operations sent on

behalf of user across network to server

 Server checks permissions, file handle returned

 Handle used for reads and writes until file closed

15.16

Distributed Information Systems

 Aka distributed naming services, provide unified access to

info needed for remote computing

 Domain name system (DNS) provides host-name-to-

network-address translations for the Internet

 Others like network information service (NIS) provide

user-name, password, userID, group information

 Microsoft’s common Internet file system (CIFS) network

info used with user auth to create network logins that server

uses to allow to deny access

 Active directory distributed naming service

 Kerberos-derived network authentication protocol

 Industry moving toward lightweight directory-access

protocol (LDAP) as secure distributed naming mechanism

15.17

Consistency Semantics

 Important criteria for evaluating file sharing-file systems

 Specify how multiple users are to access shared file simultaneously

 When modifications of data will be observed by other users

 Directly related to process synchronization algorithms, but atomicity

across a network has high overhead (see Andrew File System)

 The series of accesses between file open and closed called file session

 UNIX semantics

 Writes to open file immediately visible to others with file open

 One mode of sharing allows users to share pointer to current I/O

location in file

 Single physical image, accessed exclusively, contention causes

process delays

 Session semantics (Andrew file system (OpenAFS))

 Writes to open file not visible during session, only at close

 Can be several copies, each changed independently

15.18

The Sun Network File System (NFS)

 An implementation and a specification of a software system for

accessing remote files across LANs (or WANs)

 The implementation originally part of SunOS operating system, now

industry standard / very common

 Can use unreliable datagram protocol (UDP/IP) or TCP/IP, over

Ethernet or other network

15.19

NFS (Cont.)

 Interconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing
among these file systems in a transparent manner

 A remote directory is mounted over a local file system directory

The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

 Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

Files in the remote directory can then be accessed in a
transparent manner

 Subject to access-rights accreditation, potentially any file system
(or directory within a file system), can be mounted remotely on
top of any local directory

15.20

NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment of

different machines, operating systems, and network architectures;

the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives

built on top of an External Data Representation (XDR) protocol used

between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided

by a mount mechanism and the actual remote-file-access services

15.21

Three Independent File Systems

15.22

Mounting in NFS

Mounts Cascading mounts

15.23

NFS Mount Protocol

 Establishes initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted

and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded

to mount server running on server machine

 Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to

mount them

 Following a mount request that conforms to its export list, the server

returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to identify

the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not

affect the server side

15.24

NFS Protocol

 Provides a set of remote procedure calls for remote file
operations. The procedures support the following operations:

 searching for a file within a directory

 reading a set of directory entries

 manipulating links and directories

 accessing file attributes

 reading and writing files

 NFS servers are stateless; each request has to provide a full
set of arguments (NFS V4 is newer, less used – very
different, stateful)

 Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

 The NFS protocol does not provide concurrency-control
mechanisms

15.25

Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read, write,

and close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from

remote ones, and local files are further distinguished

according to their file-system types

 The VFS activates file-system-specific operations to

handle local requests according to their file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

 Implements the NFS protocol

15.26

Schematic View of NFS Architecture

15.27

NFS Path-Name Translation

 Performed by breaking the path into component names

and performing a separate NFS lookup call for every pair

of component name and directory vnode

 To make lookup faster, a directory name lookup cache

on the client’s side holds the vnodes for remote

directory names

15.28

NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX system

calls and the NFS protocol RPCs (except opening and closing files)

 NFS adheres to the remote-service paradigm, but employs buffering

and caching techniques for the sake of performance

 File-blocks cache – when a file is opened, the kernel checks with

the remote server whether to fetch or revalidate the cached

attributes

 Cached file blocks are used only if the corresponding cached

attributes are up to date

 File-attribute cache – the attribute cache is updated whenever new

attributes arrive from the server

 Clients do not free delayed-write blocks until the server confirms

that the data have been written to disk

End of Chapter 15

