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Schedule

• lec1: Introduction on big data and cloud 
computing

• Iec2: Introduction on data storage

• lec3: Data reliability (Replication/Archive/EC) 

• lec4: Data consistency problem

• lec5: Block storage and file storage

• lec6: Object-based storage

• lec7: Distributed file system

• lec8: Metadata management 



Collaborators
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Metadata
• Metadata = structural information

 File/Objects: attributes in inode/onode

 Main problem for metadata in DFS: indexing



Metadata Server in DFS (Lustre)



Metadata Server in DFS (Ceph)



Metadata Server in DFS (GFS)



Metadata Server in DFS (HDFS)



NameNode Metadata in HDFS
• Metadata in Memory

 The entire metadata is in main memory

 No demand paging of meta-data

• Types of Metadata

 List of files

 List of Blocks for each file

 List of DataNodes for each block

 File attributes, e.g creation time, replication factor

• A Transaction Log

 Records file creations, file deletions. etc



Metadata level in DFS (Azure)
Partition Layer – Index Range Partitioning
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• Split index into 
RangePartitions based on 
load 

• Split at PartitionKey
boundaries

• PartitionMap tracks Index 
RangePartition assignment 
to partition servers

• Front-End caches the 
PartitionMap to route user 
requests

• Each part of the index is 
assigned to only one 
Partition Server at a time
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Metadata level in DFS (Pangu)
Partition layer

Access Layer
Restful Protocol

LB
LVS

Partition Layer
Key-Value Engine

Persistent Layer
Pangu FS

Load Balancing

Protocol Manager & 
Access Control

Partition & Index

Persistent, Redundancy 
& Fault-Tolerance
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Tree Structures Indexes

• Recall: 3 alternatives for data entries k*:

• Data record with key value k

• <k, rid of data record with search key value k>

• <k, list of rids of data records with search key k>

• Choice is orthogonal to the indexing technique used to locate 
data entries k*.

• Tree-structured indexing techniques support both range 
searches and equality searches.

 ISAM (Indexed Sequential Access Method):  static structure

 B+ tree:  dynamic, adjusts gracefully under inserts and 
deletes.



Range Searches

• Choose``Find all students with gpa > 3.0’’

 If data is in sorted file, do binary search to find first such student, 
then scan to find others.

 Cost of binary search can be quite high.

• Simple idea:  Create an `index’ file.

 Level of indirection again!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

Can do binary search on (smaller) index file!



ISAM

• Index file may still be quite large.  But we can apply 
the idea repeatedly!

Leaf pages contain data entries

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow 
page

Primary pages

Leaf



Comments on ISAM Data Pages

Index Pages

Overflow pages

• File creation:  Leaf (data) pages allocated                  
sequentially, sorted by search key.
Then index pages allocated.
Then space for overflow pages.

• Index entries:  <search key value, page id>;  they `direct’ 
search for data entries, which are in leaf pages.

• Search:  Start at root; use key comparisons to go to leaf.  
Cost     log F N ; F = # entries/index pg, N = # leaf pgs

• Insert:  Find leaf where data entry belongs,  put it there.
(Could be on an overflow page).

• Delete:  Find and remove from leaf; if empty overflow 
page, de-allocate. 

Static tree structure:  inserts/deletes affect only leaf pages.



Example ISAM Tree

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

• Each node can hold 2 entries; no need for `next-
leaf-page’ pointers.



After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary



... then Deleting 42*, 51*, 97*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Note that 51 appears in index levels , but 51* not in leaf! 



Pros, Cons & Usage

• Pros

 Simple and easy to implement

• Cons

 Unbalanced overflow pages

 Index redistribution

• Usage

 MS Access

 Berkeley DB

 MySQL (before 3.23) MyISAM (not real ISAM)



B+ Tree:  The Most Widely Used Index

• Insert/delete at log F N cost; keep tree height-balanced.   
(F = fanout, N = # leaf pages)

• Minimum 50% occupancy (except for root).  Each 
node contains d <=  m <= 2d entries.  The parameter d 
is called the order of the tree.

• Supports equality and range-searches efficiently.

Index Entries

Data Entries

("Sequence set")

(Direct search)



Example B+ Tree

• Search begins at root, and key comparisons direct 
it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13



B+ Tree in Practice

• Typical order: 100.  Typical fill-factor: 67%.
• average fanout = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records

• Height 3: 1333 =     2,352,637 records

• Can often hold top levels in buffer pool:
• Level 1 =           1 page  =     8 Kbytes

• Level 2 =      133 pages =     1 Mbyte

• Level 3 = 17,689 pages = 133 MBytes



Inserting a Data Entry into a B+ Tree

• Find correct leaf L.

• Put data entry onto L.
• If L has enough space, done!

• Else, must split L (into L and a new node L2)
• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
• To split index node, redistribute entries evenly, but push up

middle key.  (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.  
• Tree growth: gets wider or one level taller at top.



Example B+ Tree - Inserting 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13



Example B+ Tree - Inserting 8*

 Notice that root was split, leading to increase in height.

 In this example, we can avoid split by re-distributing             
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19*20* 22* 24* 27*29* 33* 34* 38* 39*

135

7*5* 8*



Inserting 8* into Example B+ Tree

• Observe how 
minimum occupancy 
is guaranteed in both 
leaf and index pg 
splits.

• Note difference 
between copy-up and 
push-up; be sure you 
understand the 
reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

…

…



Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.
• If L is at least half-full, done! 

• If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent 
node with same parent as L).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L or 
sibling) from parent of L.

• Merge could propagate to root, decreasing height.



Example Tree (including 8*) 
Delete 19* and 20* ...

2* 3*

Root

17

24 30

14* 16* 19*20* 22* 24* 27*29* 33* 34* 38* 39*

135

7*5* 8*

• Deleting 19* is easy.



Example Tree (including 8*) 
Delete 19* and 20* ...

• Deleting 19* is easy.

• Deleting 20* is done with re-distribution. Notice 
how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22*24*

27

27* 29*



... And Then Deleting 24*

• Must merge.

• Observe `toss’ of index 
entry (on right), and `pull 
down’ of index entry 
(below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17



Example of Non-leaf Re-distribution

• Tree is shown below during deletion of 24*. (What 
could be a possible initial tree?)

• In contrast to previous example, can re-distribute entry 
from left child of root to right child.  

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*



After Re-distribution

• Intuitively, entries are re-distributed by `pushing
through’ the splitting entry in the parent node.

• It suffices to re-distribute index entry with key 20; 
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22



Prefix Key Compression

• Important to increase fan-out.  (Why?)

• Key values in index entries only `direct traffic’; can 
often compress them.
• E.g., If we have adjacent index entries with search key 

values Dannon Yogurt, David Smith and Devarakonda
Murthy, we can abbreviate David Smith to Dav.  (The other 
keys can be compressed too ...)
• Is this correct?  Not quite!  What if there is a data entry Davey 

Jones?  (Can only compress David Smith to Davi)

• In general, while compressing, must leave each index entry 
greater than every key value (in any subtree) to its left.

• Insert/delete must be suitably modified.



Bulk Loading of a B+ Tree

• If we have a large collection of records, and we want 
to create a B+ tree on some field, doing so by 
repeatedly inserting records is very slow.
• Also leads to minimal leaf utilization --- why?

• Bulk Loading can be done much more efficiently.

• Initialization:  Sort all data entries, insert pointer to 
first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root



Bulk Loading (Contd.)

• Index entries for leaf pages 
always entered into right-
most index page just above 
leaf level.  When this fills up, 
it splits.  (Split may go up 
right-most path to the root.)

• Much faster than repeated 
inserts, especially when one 
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages 

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages 



Summary of Bulk Loading

• Option 1: multiple inserts.
• Slow.

• Does not give sequential storage of leaves.

• Option 2: Bulk Loading
• Has advantages for concurrency control.

• Fewer I/Os during build.

• Leaves will be stored sequentially (and linked, of 
course).

• Can control “fill factor” on pages.
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Structure of LSM Tree

• Two trees
• C0 tree: memory resident (smaller part)

• C1 tree: disk resident (whole part)



Rolling Merge (1)

• Merge new leaf nodes in C0 tree and C1 tree



Rolling Merge (2)
• Step 1: read the new leaf nodes from C1 tree, and store them as 

emptying block in memory

• Step 2: read the new leaf nodes from C0 tree, and make merge 
sort with the emptying block



Rolling Merge (3)
• Step 3: write the merge results into filling block, and delete the new leaf nodes in C0.

• Step 4: repeat step 2 and 3. When the filling block is full, write the filling block into 
C1 tree, and delete the corresponding leaf nodes.

• Step 5: after all new leaf nodes in C0 and C1  are merged, finish the rolling merge 
process.



Data temperature

• Data Type
• Hot/Warm/Cold Data  different trees



A LSM tree with multiple components

• Data Type
• Hottest data  C0 tree

• Hotter data  C1 tree

• ……

• Coldest data  CK tree



Rolling Merge among Disks

• Two emptying blocks and filling blocks

• New leaf nodes should be locked (write lock)



Search and deletion (based on temporal locality)

• Lastest Τ (0- Τ) 
accesses are in C0
tree

• Τ - 2Τ accesses 
are in C1 tree

• ……



Checkpointing
• Log Sequence Number (LSN0) of last insertion at Time T0

• Root addresses

• Merge cursor for each component

• Allocation information
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Definition of a DHT

• Hash table  supports two operations
• insert(key, value)

• value = lookup(key)

• Distributed
• Map hash-buckets to nodes

• Requirements
• Uniform distribution of buckets

• Cost of insert and lookup should scale well

• Amount of local state (routing table size) should scale well



Fundamental Design Idea - I

• Consistent Hashing
• Map keys and nodes to an identifier space; implicit 

assignment of responsibility

Identifiers
A C DB

Key

 Mapping performed using hash functions (e.g., 

SHA-1)

 Spread nodes and keys uniformly throughout

11111111110000000000



Fundamental Design Idea - II

• Prefix / Hypercube routing

Source

Destination



But, there are so many of them!

• Scalability trade-offs
• Routing table size at each node  vs.

• Cost of lookup and insert operations

• Simplicity 
• Routing operations

• Join-leave mechanisms

• Robustness

• DHT Designs
• Plaxton Trees, Pastry/Tapestry

• Chord

• Overview: CAN, Symphony, Koorde, Viceroy, etc.

• SkipNet



Plaxton Trees Algorithm (1)

9 A E 4 2 4 7 B

1. Assign labels to objects and nodes 

Each label is of log2
b n digits

Object Node

- using randomizing hash functions



Plaxton Trees Algorithm (2)

2 4 7 B

2. Each node knows about other nodes with varying 
prefix matches

Node

2 4 7 B

2 4 7 B

2 4 7 B2 4 7 B

3

1

5

3

6

8

A

C

2

2

2 4

2 42 4 7

2 4 7

Prefix match of length 0

Prefix match of length 1

Prefix match of length 2

Prefix match of length 3



Plaxton Trees Algorithm (3)
Object Insertion and Lookup

Given an object, route successively towards nodes 
with greater prefix matches

2 4 7 B

Node

9 A E 2

9 A 7 6

9 F 1 0

9 A E 4

Object

Store the object at each of these locations



Plaxton Trees Algorithm (4)
Object Insertion and Lookup

Given an object, route successively towards nodes 
with greater prefix matches

2 4 7 B

Node

9 A E 2

9 A 7 6

9 F 1 0

9 A E 4

Object

Store the object at each of these locations

log(n) steps to insert or locate object



Plaxton Trees Algorithm (5)
Why is it a tree?

2 4 7 B

9 F 1 0

9 A 7 6

9 A E 2

Object

Object

Object

Object



Plaxton Trees Algorithm (6)
Network Proximity

• Overlay tree hops could be totally unrelated to the 
underlying network hops

USA

Europe

East Asia

• Plaxton trees guarantee constant factor 
approximation!

• Only when the topology is uniform in some sense



Pastry (1)

• Based directly upon Plaxton Trees

• Exports a DHT interface 

• Stores an object only at a node whose ID is closest to 
the object ID

• In addition to main routing table
• Maintains leaf set of nodes

• Closest L nodes (in ID space)
• L = 2(b + 1) ,typically   -- one digit to left and right



Pastry (2)

2 4 7 B

9 F 1 0

9 A 7 6

9 A E 2
Object

Only at the root!

Key Insertion and Lookup = Routing to Root
 Takes O(log n) steps



Pastry (3)
Self Organization

• Node join
• Start with a node “close” to the joining node

• Route a message to nodeID of new node

• Take union of routing tables of the nodes on the path

• Joining cost: O(log n)

• Node leave
• Update routing table 

• Query nearby members in the routing table

• Update leaf set



Chord [Karger, et al] (1)

• Map nodes and keys to identifiers
• Using randomizing hash functions

• Arrange them on a circle

Identifier
Circle

x

succ(x)

010110110

010111110

pred(x)

010110000



Chord (2)
Efficient routing

• Routing table 
• ith entry = succ(n + 2i)

• log(n) finger pointers

Identifier
Circle

Exponentially spaced
pointers!



Chord (3)
Key Insertion and Lookup

To insert or lookup a key ‘x’, 
route to succ(x)

x

succ(x)

source

O(log n) hops for routing



Chord (4)
Self Organization

• Node join
• Set up finger i: route to succ(n + 2i)

• log(n) fingers ) O(log2 n) cost

• Node leave
• Maintain successor list for ring connectivity

• Update successor list and finger pointers



CAN [Ratnasamy, et al]

• Map nodes and keys to coordinates in a multi-dimensional 
cartesian space

source

key

Routing through shortest Euclidean path

For d dimensions, routing takes O(dn1/d) hops

Zone



Symphony [Manku, et al]

• Similar to Chord – mapping of nodes, keys
• ‘k’ links are constructed probabilistically!

x

This link chosen with probability P(x) = 1/(x ln n)

Expected routing guarantee: O(1/k (log2 n)) hops



SkipNet [Harvey, et al] (1)

• Previous designs distribute data uniformly throughout 
the system
• Good for load balancing

• But, my data can be stored in Timbuktu!

• Many organizations want stricter control over data 
placement

• What about the routing path? 

• Should a Microsoft Microsoft end-to-end path pass 
through Sun?



SkipNet (2)
Content and Path Locality

Basic Idea: Probabilistic skip lists

H
ei

gh
t

Nodes

• Each node choose a height at random
• Choose height ‘h’ with probability 1/2h  



SkipNet (3)
Content and Path Locality

H
ei

gh
t

Nodes

Nodes are lexicographically sorted
Still O(log n) routing guarantee!



Summary

# Links per node Routing hops

Pastry/Tapestry O(2b log2
b n) O(log2

b n)

Chord log n O(log n)

CAN d dn1/d

SkipNet O(log n) O(log n)

Symphony k O((1/k) log2 n)

Koorde d logd n

Viceroy 7 O(log n)
Optimal (= lower bound)



Ceph Controlled Replication Under Scalable 
Hashing (CRUSH) (1)
• CRUSH algorithm: pgid OSD ID?

• Devices: leaf nodes (weighted)

• Buckets: non-leaf nodes (weighted, contain any number of devices/buckets)



CRUSH (2)

• A partial view of a four-
level cluster map 
hierarchy consisting of 
rows, cabinets, and 
shelves of disks. 



CRUSH (3)
• Reselection behavior of select(6,disk) when device r = 2 (b) is rejected, where 

the boxes contain the CRUSH output R of n = 6 devices numbered by rank. The 
left shows the “first n” approach in which device ranks of existing devices 
(c,d,e,f) may shift. On the right, each rank has a probabilistically independent 
sequence of potential targets; here fr = 1 , and r′ =r+ frn=8 (device h).



CRUSH (4)

• Data movement in a binary hierarchy due to a node addition 
and the subsequent weight changes.



CRUSH (5)

• Four types of Buckets

 Uniform buckets

 List buckets

 Tree buckets

 Straw buckets

• Summary of mapping speed and data reorganization efficiency of 
different bucket types when items are added to or removed from 
a bucket.



CRUSH (6)

• Node labeling strategy used for the binary tree comprising 
each tree bucket
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Metadata Management in DFS (1)
• Design a simple metadata management module for a distributed 

file system. Establish a distributed metadata cluster and a POSIX 
API based client.



Metadata Management in DFS (2)
• The metadata management has the following functions,

 Basic command set: support metadata operations via POSIX-
based API 

 i.e., mkdir, create file, readdir, rm file, stat, etc.

 file handle can be ignored

 Distribution of metadata

 Metadata are distributed among various metadata 
servers



Metadata Management in DFS (3)
• Tests on the metadata management functions,

 Input: Input the specified files & directories by client

 Output: 

 Traverse the files via readdir command

 List the status of a file via stat command

 Etc.

 Write the metadata of these file operations into the 
metadata server

 Give the data distribution information of the whole 
cluster

 Consistent with other metadata servers



Metadata Management in DFS (4)
• Additional scores

 Support metadata server failover (process level)

 Support metadata server failure

 No metadata lost in the failure

 Implementation on the read/write operations of a file



Thank you!


