
Big Data Processing Technologies

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

Schedule

• lec1: Introduction on big data and cloud
computing

• Iec2: Introduction on data storage

• lec3: Data reliability (Replication/Archive/EC)

• lec4: Data consistency problem

• lec5: Block storage and file storage

• lec6: Object-based storage

• lec7: Distributed file system

• lec8: Metadata management

Collaborators

Contents

Metadata in DFS1

Metadata
• Metadata = structural information

 File/Objects: attributes in inode/onode

 Main problem for metadata in DFS: indexing

Metadata Server in DFS (Lustre)

Metadata Server in DFS (Ceph)

Metadata Server in DFS (GFS)

Metadata Server in DFS (HDFS)

NameNode Metadata in HDFS
• Metadata in Memory

 The entire metadata is in main memory

 No demand paging of meta-data

• Types of Metadata

 List of files

 List of Blocks for each file

 List of DataNodes for each block

 File attributes, e.g creation time, replication factor

• A Transaction Log

 Records file creations, file deletions. etc

Metadata level in DFS (Azure)
Partition Layer – Index Range Partitioning

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

zzzz zzzz zzzzz

• Split index into
RangePartitions based on
load

• Split at PartitionKey
boundaries

• PartitionMap tracks Index
RangePartition assignment
to partition servers

• Front-End caches the
PartitionMap to route user
requests

• Each part of the index is
assigned to only one
Partition Server at a time

Storage Stamp

Partition

Server
Partition

Server
Account

Name
Container

Name
Blob

Name

richard videos tennis

……… ……… ………

……… ……… ………

zzzz zzzz zzzzz

Account
Name

Container
Name

Blob
Name

harry pictures sunset

……… ……… ………

……… ……… ………

richard videos soccer

Partition

Server

Partition

Master

Front-End
Server

PS 2 PS 3

PS 1

A-H: PS1
H’-R: PS2
R’-Z: PS3

A-H: PS1
H’-R: PS2
R’-Z: PS3

Partition
Map

Blob Index

Partition

Map

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

……… ……… ………

……… ……… ………

harry pictures sunrise
A-H

R’-ZH’-R

Metadata level in DFS (Pangu)
Partition layer

Access Layer
Restful Protocol

LB
LVS

Partition Layer
Key-Value Engine

Persistent Layer
Pangu FS

Load Balancing

Protocol Manager &
Access Control

Partition & Index

Persistent, Redundancy
& Fault-Tolerance

Contents

ISAM & B+ Tree2

Tree Structures Indexes

• Recall: 3 alternatives for data entries k*:

• Data record with key value k

• <k, rid of data record with search key value k>

• <k, list of rids of data records with search key k>

• Choice is orthogonal to the indexing technique used to locate
data entries k*.

• Tree-structured indexing techniques support both range
searches and equality searches.

 ISAM (Indexed Sequential Access Method): static structure

 B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

Range Searches

• Choose``Find all students with gpa > 3.0’’

 If data is in sorted file, do binary search to find first such student,
then scan to find others.

 Cost of binary search can be quite high.

• Simple idea: Create an `index’ file.

 Level of indirection again!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

Can do binary search on (smaller) index file!

ISAM

• Index file may still be quite large. But we can apply
the idea repeatedly!

Leaf pages contain data entries

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

Comments on ISAM Data Pages

Index Pages

Overflow pages

• File creation: Leaf (data) pages allocated
sequentially, sorted by search key.
Then index pages allocated.
Then space for overflow pages.

• Index entries: <search key value, page id>; they `direct’
search for data entries, which are in leaf pages.

• Search: Start at root; use key comparisons to go to leaf.
Cost log F N ; F = # entries/index pg, N = # leaf pgs

• Insert: Find leaf where data entry belongs, put it there.
(Could be on an overflow page).

• Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

Static tree structure: inserts/deletes affect only leaf pages.

Example ISAM Tree

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

• Each node can hold 2 entries; no need for `next-
leaf-page’ pointers.

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

... then Deleting 42*, 51*, 97*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Note that 51 appears in index levels , but 51* not in leaf!

Pros, Cons & Usage

• Pros

 Simple and easy to implement

• Cons

 Unbalanced overflow pages

 Index redistribution

• Usage

 MS Access

 Berkeley DB

 MySQL (before 3.23) MyISAM (not real ISAM)

B+ Tree: The Most Widely Used Index

• Insert/delete at log F N cost; keep tree height-balanced.
(F = fanout, N = # leaf pages)

• Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The parameter d
is called the order of the tree.

• Supports equality and range-searches efficiently.

Index Entries

Data Entries

("Sequence set")

(Direct search)

Example B+ Tree

• Search begins at root, and key comparisons direct
it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+ Tree in Practice

• Typical order: 100. Typical fill-factor: 67%.
• average fanout = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records

• Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
• Level 1 = 1 page = 8 Kbytes

• Level 2 = 133 pages = 1 Mbyte

• Level 3 = 17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

• Find correct leaf L.

• Put data entry onto L.
• If L has enough space, done!

• Else, must split L (into L and a new node L2)
• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
• To split index node, redistribute entries evenly, but push up

middle key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
• Tree growth: gets wider or one level taller at top.

Example B+ Tree - Inserting 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Example B+ Tree - Inserting 8*

 Notice that root was split, leading to increase in height.

 In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19*20* 22* 24* 27*29* 33* 34* 38* 39*

135

7*5* 8*

Inserting 8* into Example B+ Tree

• Observe how
minimum occupancy
is guaranteed in both
leaf and index pg
splits.

• Note difference
between copy-up and
push-up; be sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

…

…

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.
• If L is at least half-full, done!

• If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

• Merge could propagate to root, decreasing height.

Example Tree (including 8*)
Delete 19* and 20* ...

2* 3*

Root

17

24 30

14* 16* 19*20* 22* 24* 27*29* 33* 34* 38* 39*

135

7*5* 8*

• Deleting 19* is easy.

Example Tree (including 8*)
Delete 19* and 20* ...

• Deleting 19* is easy.

• Deleting 20* is done with re-distribution. Notice
how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22*24*

27

27* 29*

... And Then Deleting 24*

• Must merge.

• Observe `toss’ of index
entry (on right), and `pull
down’ of index entry
(below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17

Example of Non-leaf Re-distribution

• Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

• In contrast to previous example, can re-distribute entry
from left child of root to right child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

After Re-distribution

• Intuitively, entries are re-distributed by `pushing
through’ the splitting entry in the parent node.

• It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Prefix Key Compression

• Important to increase fan-out. (Why?)

• Key values in index entries only `direct traffic’; can
often compress them.
• E.g., If we have adjacent index entries with search key

values Dannon Yogurt, David Smith and Devarakonda
Murthy, we can abbreviate David Smith to Dav. (The other
keys can be compressed too ...)
• Is this correct? Not quite! What if there is a data entry Davey

Jones? (Can only compress David Smith to Davi)

• In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

• Insert/delete must be suitably modified.

Bulk Loading of a B+ Tree

• If we have a large collection of records, and we want
to create a B+ tree on some field, doing so by
repeatedly inserting records is very slow.
• Also leads to minimal leaf utilization --- why?

• Bulk Loading can be done much more efficiently.

• Initialization: Sort all data entries, insert pointer to
first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Bulk Loading (Contd.)

• Index entries for leaf pages
always entered into right-
most index page just above
leaf level. When this fills up,
it splits. (Split may go up
right-most path to the root.)

• Much faster than repeated
inserts, especially when one
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages

Summary of Bulk Loading

• Option 1: multiple inserts.
• Slow.

• Does not give sequential storage of leaves.

• Option 2: Bulk Loading
• Has advantages for concurrency control.

• Fewer I/Os during build.

• Leaves will be stored sequentially (and linked, of
course).

• Can control “fill factor” on pages.

Contents

Log Structured Merge (LSM) Tree3

Structure of LSM Tree

• Two trees
• C0 tree: memory resident (smaller part)

• C1 tree: disk resident (whole part)

Rolling Merge (1)

• Merge new leaf nodes in C0 tree and C1 tree

Rolling Merge (2)
• Step 1: read the new leaf nodes from C1 tree, and store them as

emptying block in memory

• Step 2: read the new leaf nodes from C0 tree, and make merge
sort with the emptying block

Rolling Merge (3)
• Step 3: write the merge results into filling block, and delete the new leaf nodes in C0.

• Step 4: repeat step 2 and 3. When the filling block is full, write the filling block into
C1 tree, and delete the corresponding leaf nodes.

• Step 5: after all new leaf nodes in C0 and C1 are merged, finish the rolling merge
process.

Data temperature

• Data Type
• Hot/Warm/Cold Data different trees

A LSM tree with multiple components

• Data Type
• Hottest data C0 tree

• Hotter data C1 tree

• ……

• Coldest data CK tree

Rolling Merge among Disks

• Two emptying blocks and filling blocks

• New leaf nodes should be locked (write lock)

Search and deletion (based on temporal locality)

• Lastest Τ (0- Τ)
accesses are in C0
tree

• Τ - 2Τ accesses
are in C1 tree

• ……

Checkpointing
• Log Sequence Number (LSN0) of last insertion at Time T0

• Root addresses

• Merge cursor for each component

• Allocation information

Contents

Distributed Hash & DHT4

Definition of a DHT

• Hash table supports two operations
• insert(key, value)

• value = lookup(key)

• Distributed
• Map hash-buckets to nodes

• Requirements
• Uniform distribution of buckets

• Cost of insert and lookup should scale well

• Amount of local state (routing table size) should scale well

Fundamental Design Idea - I

• Consistent Hashing
• Map keys and nodes to an identifier space; implicit

assignment of responsibility

Identifiers
A C DB

Key

 Mapping performed using hash functions (e.g.,

SHA-1)

 Spread nodes and keys uniformly throughout

11111111110000000000

Fundamental Design Idea - II

• Prefix / Hypercube routing

Source

Destination

But, there are so many of them!

• Scalability trade-offs
• Routing table size at each node vs.

• Cost of lookup and insert operations

• Simplicity
• Routing operations

• Join-leave mechanisms

• Robustness

• DHT Designs
• Plaxton Trees, Pastry/Tapestry

• Chord

• Overview: CAN, Symphony, Koorde, Viceroy, etc.

• SkipNet

Plaxton Trees Algorithm (1)

9 A E 4 2 4 7 B

1. Assign labels to objects and nodes

Each label is of log2
b n digits

Object Node

- using randomizing hash functions

Plaxton Trees Algorithm (2)

2 4 7 B

2. Each node knows about other nodes with varying
prefix matches

Node

2 4 7 B

2 4 7 B

2 4 7 B2 4 7 B

3

1

5

3

6

8

A

C

2

2

2 4

2 42 4 7

2 4 7

Prefix match of length 0

Prefix match of length 1

Prefix match of length 2

Prefix match of length 3

Plaxton Trees Algorithm (3)
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

2 4 7 B

Node

9 A E 2

9 A 7 6

9 F 1 0

9 A E 4

Object

Store the object at each of these locations

Plaxton Trees Algorithm (4)
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

2 4 7 B

Node

9 A E 2

9 A 7 6

9 F 1 0

9 A E 4

Object

Store the object at each of these locations

log(n) steps to insert or locate object

Plaxton Trees Algorithm (5)
Why is it a tree?

2 4 7 B

9 F 1 0

9 A 7 6

9 A E 2

Object

Object

Object

Object

Plaxton Trees Algorithm (6)
Network Proximity

• Overlay tree hops could be totally unrelated to the
underlying network hops

USA

Europe

East Asia

• Plaxton trees guarantee constant factor
approximation!

• Only when the topology is uniform in some sense

Pastry (1)

• Based directly upon Plaxton Trees

• Exports a DHT interface

• Stores an object only at a node whose ID is closest to
the object ID

• In addition to main routing table
• Maintains leaf set of nodes

• Closest L nodes (in ID space)
• L = 2(b + 1) ,typically -- one digit to left and right

Pastry (2)

2 4 7 B

9 F 1 0

9 A 7 6

9 A E 2
Object

Only at the root!

Key Insertion and Lookup = Routing to Root
 Takes O(log n) steps

Pastry (3)
Self Organization

• Node join
• Start with a node “close” to the joining node

• Route a message to nodeID of new node

• Take union of routing tables of the nodes on the path

• Joining cost: O(log n)

• Node leave
• Update routing table

• Query nearby members in the routing table

• Update leaf set

Chord [Karger, et al] (1)

• Map nodes and keys to identifiers
• Using randomizing hash functions

• Arrange them on a circle

Identifier
Circle

x

succ(x)

010110110

010111110

pred(x)

010110000

Chord (2)
Efficient routing

• Routing table
• ith entry = succ(n + 2i)

• log(n) finger pointers

Identifier
Circle

Exponentially spaced
pointers!

Chord (3)
Key Insertion and Lookup

To insert or lookup a key ‘x’,
route to succ(x)

x

succ(x)

source

O(log n) hops for routing

Chord (4)
Self Organization

• Node join
• Set up finger i: route to succ(n + 2i)

• log(n) fingers) O(log2 n) cost

• Node leave
• Maintain successor list for ring connectivity

• Update successor list and finger pointers

CAN [Ratnasamy, et al]

• Map nodes and keys to coordinates in a multi-dimensional
cartesian space

source

key

Routing through shortest Euclidean path

For d dimensions, routing takes O(dn1/d) hops

Zone

Symphony [Manku, et al]

• Similar to Chord – mapping of nodes, keys
• ‘k’ links are constructed probabilistically!

x

This link chosen with probability P(x) = 1/(x ln n)

Expected routing guarantee: O(1/k (log2 n)) hops

SkipNet [Harvey, et al] (1)

• Previous designs distribute data uniformly throughout
the system
• Good for load balancing

• But, my data can be stored in Timbuktu!

• Many organizations want stricter control over data
placement

• What about the routing path?

• Should a Microsoft Microsoft end-to-end path pass
through Sun?

SkipNet (2)
Content and Path Locality

Basic Idea: Probabilistic skip lists

H
ei

gh
t

Nodes

• Each node choose a height at random
• Choose height ‘h’ with probability 1/2h

SkipNet (3)
Content and Path Locality

H
ei

gh
t

Nodes

Nodes are lexicographically sorted
Still O(log n) routing guarantee!

Summary

Links per node Routing hops

Pastry/Tapestry O(2b log2
b n) O(log2

b n)

Chord log n O(log n)

CAN d dn1/d

SkipNet O(log n) O(log n)

Symphony k O((1/k) log2 n)

Koorde d logd n

Viceroy 7 O(log n)
Optimal (= lower bound)

Ceph Controlled Replication Under Scalable
Hashing (CRUSH) (1)
• CRUSH algorithm: pgid OSD ID?

• Devices: leaf nodes (weighted)

• Buckets: non-leaf nodes (weighted, contain any number of devices/buckets)

CRUSH (2)

• A partial view of a four-
level cluster map
hierarchy consisting of
rows, cabinets, and
shelves of disks.

CRUSH (3)
• Reselection behavior of select(6,disk) when device r = 2 (b) is rejected, where

the boxes contain the CRUSH output R of n = 6 devices numbered by rank. The
left shows the “first n” approach in which device ranks of existing devices
(c,d,e,f) may shift. On the right, each rank has a probabilistically independent
sequence of potential targets; here fr = 1 , and r′ =r+ frn=8 (device h).

CRUSH (4)

• Data movement in a binary hierarchy due to a node addition
and the subsequent weight changes.

CRUSH (5)

• Four types of Buckets

 Uniform buckets

 List buckets

 Tree buckets

 Straw buckets

• Summary of mapping speed and data reorganization efficiency of
different bucket types when items are added to or removed from
a bucket.

CRUSH (6)

• Node labeling strategy used for the binary tree comprising
each tree bucket

Contents

Project 45

Metadata Management in DFS (1)
• Design a simple metadata management module for a distributed

file system. Establish a distributed metadata cluster and a POSIX
API based client.

Metadata Management in DFS (2)
• The metadata management has the following functions,

 Basic command set: support metadata operations via POSIX-
based API

 i.e., mkdir, create file, readdir, rm file, stat, etc.

 file handle can be ignored

 Distribution of metadata

 Metadata are distributed among various metadata
servers

Metadata Management in DFS (3)
• Tests on the metadata management functions,

 Input: Input the specified files & directories by client

 Output:

 Traverse the files via readdir command

 List the status of a file via stat command

 Etc.

 Write the metadata of these file operations into the
metadata server

 Give the data distribution information of the whole
cluster

 Consistent with other metadata servers

Metadata Management in DFS (4)
• Additional scores

 Support metadata server failover (process level)

 Support metadata server failure

 No metadata lost in the failure

 Implementation on the read/write operations of a file

Thank you!

