Big Data Processing Technologies

Chentao Wu
Associate Professor
Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

® rirsirt

Schedule

e lecl:

Introduction on big data and cloud

computing

* lec2:
* lec3:
* lecd.
* lec5:
* lecb:
* lec/:
* lec8:

Introduction on data storage

Data reliability (Replication/Archive/EC)
Data consistency problem

Block storage and file storage
Object-based storage

Distributed file system

Metadata management

o~ oK X M
gt TANGHAT | G UNIVERSITY

Collaborators

Google
g Bl EB =

aliyun.com

\ 4

DALEMC

Contents

¥ SHANGHALI JIAO TONG UNIVERSITY

ﬁféi@/ﬁ%

GHAT JIAO TONG UNIVERSITY

Metadata

Metadata = structural information
File/Objects: attributes in inode/onode
Main problem for metadata in DFS: indexing

Data Blocks

Inode
direct 0
direct 1
direct 2
direct 3
direct 4

Host

File Attributes: =<

e "

m}’fd’“i;ﬁ% 4
n DFS (Lustre)

‘::/ ANGHAT JIAO TONG UNIVERSIT ‘ (3

Metadata Servér |

MDT

* File requests (open,close,etc) \ .
* Locking coordination u

* Transaction based

* File stat{) info oST
* Coordination

008

S

$ SP=

Direct file I/0O

'

2
\‘// SHANGHAT JIAO TONG UNIVERSITY
o

I'| System Call Interface | |
Operating i : :
System | File System :
! | Client Component | |
1

/7\ '
---------- -
Metadata- ~Data

’r,e(m’é;ts requests

............. _ Object Interface

Metadata Interface Metadata L e s

L e e e | andlor system | S i

1 = 1y management] File Svstem I 3

: File System ¥ i - Data I\/{anager ! bO el
Metadata | Metadata Manager | | : f ' ased
Server * ! ' Storage

; Metadata) | : i [Block /0 Manager | | ,g
(MDS) : storage E :‘ _>: : Device

: - - - i (OSD)

I I 1 1

I : 1 :

1 [|

: : T~ S . !

I\/Ietadata Server in DFS (GFS)

Application
GFS client |

(file name, chunk index) _

(chunk handle,
chunk locations)

GFS master

File namespace ,~

)
/
i

_» /foo/bar

chunk 2ef0

(chunk handle, byte range)

Y

Instructions to chunkserver

Chunkserver state

Legend:

mmmmd Data messages
- Control messages

-

GFS chunkserver

GFS chunkserver

chunk data

Linux file system

Linux file system

99 -

99 -

Metadat‘afopg"[Namenode

Metadata (Name, replicas, ...):

/home/foo/data, 3,

Read Datanodes

!

_ \ ~I|" Replication

Block ops

Datanodes

" Bloc

KS

Rack 2

NameNode I\/Ietadata in HDFS

Metadata in Memory

The entire metadata is in main memory

No demand paging of meta-data
Types of Metadata

List of files

List of Blocks for each file

List of DataNodes for each block

File attributes, e.g creation time, replication factor
A Transaction Log

Records file creations, file deletions. etc

A

I\/Ietadata Ievel in DFS (Azure)
Partition Layer — Index Range Partitioning

Split index into Blob Index
RangePartitions based on ount | cont

| O a d aaaa adaa aaaaa
Split at PartitionKey | s e e
boundaries
PartitionMap tracks Index — fereal
RangePartition assignment S F
to partition servers e psL ™
Front-End caches the L2 e
PartitionMap to route user |G| o
requests [e | o
EaCh part Of the |ndeX |S

assigned to only one
Partition Server at a time

gl vicrosoft

Storage Stamp ey P
' JH-R: PS2[]
G R-Z:PS3/

Partition :
Map

Partition Partition

H'-R

PS 3t

@ 2inast

1140 TONG L

I\/Ietadata level in DFS (Pangu) P =
Partition layer

Load Balancing

Access Layer Protocol Manager &
Restful Protocol
Access Control

Partition Layer
Key-Value Engine

Partition & Index

PersPistent FLgver Persistent, Redundancy
angu
& Fault-Tolerance

Contents

5/ SHANGHAI JIAO TONG UNIVERSITY

Tree Structures Indexes

Recall: 3 alternatives for data entries k*:

Data record with key value k

<k, rid of data record with search key value k>

<k, list of rids of data records with search key k>
Choice is orthogonal to the indexing technique used to locate
data entries k*.
Tree-structured indexing techniques support both range
searches and equality searches.

ISAM (Indexed Sequential Access Method): static structure

B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

) YELA S

\.‘1/ AT JIAG TONG

Range Searches

Choose™ Find all students with gpa > 3.0”

If data is in sorted file, do binary search to find first such student,
then scan to find others.

Cost of binary search can be quite high.
Simple idea: Create an ‘index’ file.

Level of indirection again!

, k1 k2

\
AN

KN

|_—

N

\

Page 1

Page 2

Page 3

Page N

Can do binary search on (smaller) index file!

Index File

Data File

b ;

* Index file may still be quite large. But we can apply
the idea repeatedly!

Non-leaf ‘L
Pages l7 hihaihe ‘17
— / {, \ / {, \ / {, \ / {, \
Leaf oo e oa oo cos
Pages N 4 7
) Overflow ------= >) N LT
page

Primary pages

Leaf pages contain data entries

— N A2 o
"'\\‘; SHAN SITY

TANGHAL JIAO TONG URIVERSE ;
9
A

Comments on ISAM Data Pages

 File creation: Leaf (data) pages allocated
sequentially, sorted by search key.
Then index pages allocated.
Then space for overflow pages.

Index Pages

* Index entries: <search key value, page id>; they direct’

_ _ _ Overflow pages
search for data entries, which are in leaf pages.

e Search: Start at root; use key comparisons to go to leaf.
Cost log N ;F=#entries/index pg, N = # leaf pgs

* Insert: Find leaf where data entry belongs, put it there.
(Could be on an overflow page).

e Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

Static tree structure: inserts/deletes affect only leaf pages.

Example ISAM Tree

 Each node can hold 2 entries; no need for next-
leaf-page’ pointers.

Root ——au
40
20 33 51 63
/
/ ¥ V \
10* 15* 20* 27* 33* 37* 40* 46* 51* o5* 63* 97*

» x ¥
@ 2irirt

After Inserting 23* 48* 41* 42% ..

Root “~a
Index 40
Pages
[20]f=2], RIS

Primary / ‘ \ / ‘ \
o Kl 3 2°*I27*II33*I37*Ikw*l%*lI51*I55*II63*I97*I

Pages

Overflow | 23*| | 48* | 41*

Pages

. then Deletmg 42* 51* o7*

Root ™~

40

Lo l{@*\ﬂ*\ B R\ o) | [[e=]]
=] | L]]

’—", N W
,):r“ﬁ')\ gk’ﬂé

A 2
% R‘// SHANGHAT J140 3 UNTVERST ‘ “‘.?
Aroont £ -

Pros, Cons & Usa‘ge

Pros
Simple and easy to implement
Cons
Unbalanced overflow pages
Index redistribution
Usage
MS Access
Berkeley DB
MySQL (before 3.23) > MyISAM (not real ISAM)

=

B+ Tree The I\/IostW|der Used Index

* Insert/delete at log ; N cost; keep tree height-balanced.
(F = fanout, N = # leaf pages)

* Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The parameter d
is called the order of the tree.

e Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
‘ ("Sequence set")

Example B+ Tree

e Search begins at root, and key comparisons direct
it to a leaf (as in ISAM).

e Search for 5*, 15%*, all data entries >=24%* ...

Root \

13]| 17 24 30

AN AN AN =
o+ | 3+ | 5+ | 7+ |14*| 16 | |191 201221 ||241 2729*| | 334 344 38+ 39~

* Typical order: 100. Typical fill-factor: 67%.
e average fanout = 133

e Typical capacities:
* Height 4: 1334 =312,900,700 records
* Height 3: 1333= 2,352,637 records

e Can often hold top levels in buffer pool:
* Level 1= 1 page = 8 Kbytes
* lLevel 2= 133 pages= 1 Mbyte
* Level 3=17,689 pages = 133 MBytes

) YELA S

\.“;/ AT JIAG TONG

Inserting a Data Entry mto a B+ Tree

* Find correct leaf L.

e Put data entry onto L.
* |f L has enough space, done!

e Else, must split L (into L and a new node L2)
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

* This can happen recursively

* To split index node, redistribute entries evenly, but push up
middle key. (Contrast with leaf splits.)

* Splits “grow” tree; root split increases height.
* Tree growth: gets wider or one level taller at top.

p
_r‘ 2

Example B+ Tree - Inserting 8*

Root \

13 || 17 24 30

N AN N =
o+ | 3+ | 5+ | 7+ |14| 16 | |19f 2o| 221 |24| 27 29| | 33} 34} 38 39

. FERAA A
Example B+ Tree - Insertmg 8*

Roh

17

5 |] 13| 24| 30|

N\ N N\ N N
2%) 3* 5*) 7*] 8* 14116 19520722 241271297 33134138139

» Notice that root was split, leading to increase in height.

¢ In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

@) Yz Ay
Inserting 8* into Example B+ Tree

* Observe how
-- B!
minimum occupancy
is guaranteed in both

leaf and index pg AN\
splits. 1l 1] 7] [eee
* Note difference
between and
be sure you

understand the
reasons for this.

IHEHN

[y 0]

W - “‘ -~

2 SHAL TONG UNIVERSITY ‘ \

Deleting a Data Entry from a B+ Tree

e Start at root, find leaf L where entry belongs.

 Remove the entry.
e If Lis at least half-full, done!
* |If L has only d-1 entries,

e Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

* If re-distribution fails, merge L and sibling.

* If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

* Merge could propagate to root, decreasing height.

(’..T-Q Sa X /{ "'& 24
(@) FARLLT |)
S 74

NS/ SHANGHAT JLAO TONG UNIVERSITY ‘ (?_’,‘.‘ ’

Example Tree (including 8*)
Delete 19* and 20* ...

RO(N

17
5 || 13 ! 24| 30
= a Y V a V a
2+ 3+ 5] 7+ o+ 116 1ok201 22 2271201 1133134138139

* Deleting 19%* is easy.

Example Tree (mcludmg 8*)
Delete 19* and 20* ...

RoOTN

17

5 13 27]| 30|

2%) 3* 5*) 7*] 8* 14116 22F 24 27129 33134138139

* Deleting 19%* is easy.

e Deleting 20* is done with re-distribution. Notice
how middle key is

\v
Lo
5

LAY
ER
3 e

I\ i o o =)’
... And hen Deleting 24*
* Must merge. H H H
* Observe of index
entry (on right), and —~ —
of index entry |22* I 21 | 29* I I |33* |34* |38* |39* I
(below).

RoN

5 13 || 17 30

H
o+ | 3+ |5*|7* 8*| ||14*|16* I ||22|27 29| I 33+ | 34+ | 38+ | 39*

* Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

* In contrast to previous example, can re-distribute entry
from left child of root to right child.

Roo\
22

5 || 13|17 || 20 30
L L J N \ >
/ g r\x\&X& X \a m\s

2% 3* S5*| 7*| 8* 144 16% 174 18% 20% 214 224 277 297 337 34% 38* 394

N N v
. 3/1“;):‘ﬁ. @K’?

After Re- d|str|but|on

* Intuitively, entries are re-distributed by pushing
through’” the splitting entry in the parent node.

* |t suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

Rog?\\\\\

17
5 13 20| 22 (| 30
d 4 ' L ~

2%| 3% 5| 77| 8 14+ 16* 17418 20% 21* 224271294 | |33%34438*39*

GHAT JIAO TONG UNIVERSITY ‘4'.?
\ s

Prefix Key Compfession

* Important to increase fan-out. (Why?)

* Key values in index entries only "direct traffic’; can
often compress them.

* E.g., If we have adjacent index entries with search key
values Dannon Yogurt, David Smith and Devarakonda
Murthy, we can abbreviate David Smith to Dav. (The other
keys can be compressed too ...)

* Is this correct? Not quite! What if there is a data entry Davey
Jones? (Can only compress David Smith to Davi)

* |In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

* Insert/delete must be suitably modified.

/lé)\g/ —j'

AT J1AO TONG 4

Bulk Loading of a B+ Tree

* If we have a large collection of records, and we want
to create a B+ tree on some field, doing so by
repeatedly inserting records is very slow.

* Also leads to minimal leaf utilization --- why?

* Bulk Loading can be done much more efficiently.

* |nitialization: Sort all data entries, insert pointer to
first (Iea\f) page in a new (root) page.
oot

Sorted pages of data entries; not yet in B+ tree

/

3*

4*

6*

9*

10*

11*| |12*13% |20*22*| |23*|31* [35*|36*| |38*|41*| |44*

HANGHAL JIAO TONG

(P

Bu Ik Loadmg (Contd.)

* Index entries for leaf pages
always entered into right-
most index page just above

leaf level. When this fills up,

it splits. (Split may go up

\

Root

>

23

\

A

£\ /%\\\L R\

Data entry pages
not yet in B+ tree

[

right-most path to the rooty;

9*| 110%11*

22%

234317

35%

381411 |44

* Much faster than repeated
inserts, especially when one
considers locking!

Root

Data entry pages

\ not yet in B+ tree

L

L

3*

9*| (10411~

317 |35

381414444

e Option 1: multiple inserts.

* Slow.
* Does not give sequential storage of leaves.

e Option 2: Bulk Loading

* Has advantages for concurrency control.
* Fewer I/Os during build.

» Leaves will be stored sequentially (and linked, of
course).

e Can control “fill factor” on pages.

Contents

SHANGHALI JIAO TONG UNIVERSITY

/fﬁ')\@f%‘

1140 TONG | wsI

‘-.-

Structure of LSI\/I Tree

* Two trees
* C,tree: memory resident (smaller part)
* C, tree: disk resident (whole part)

Cq tree Cp tree

Disk Memory

AP0 YELAAE
@® - AXLLT

Rolling Merge (15

* Merge new leaf nodes in C, tree and C, tree

Cy tree Cp tree

Disk Memory

/Axﬂ')\ﬂf‘%\

1J140 TONG “‘,‘ o

Rollmg Merge (2)

* Step 1: read the new leaf nodes from C, tree, and store them as
emptying block in memory

* Step 2: read the new leaf nodes from C, tree, and make merge
sort with the emptying block

root

root
C1 s
7
s

e & o o o ¢ o

directory zf'j f‘_\
. & & » B L I N *. &

leaf e &« & & & ol|e ¢ & & & & o|]6 ¢ o ¢ & & o

Co

oo'oooo'ooooooloooo;0|eaf

T full *
- [0 o ¢ ¢ ¢+ ¢ = . |Mmerge

write back filling block 4
read in (o 0 s 0 0 ¢ 4

emptying block

/fﬁ')\@f‘:ii

11140 TONG &

Rollmg Merge (3)

 Step 3: write the merge results into filling block, and delete the new leaf nodes in C,,

» Step 4: repeat step 2 and 3. When the filling block is full, write the filling block into
C, tree, and delete the corresponding leaf nodes.

 Step 5: after all new leaf nodes in C,and C; are merged, finish the rolling merge

process.

root

7
C1 /
g
i

e p o o o ¢ o]

directory

leaf[® ¢ ¢ ¢ & o|[e o 0 ¢ ¢ ¢ a|[0 ¢ 0 ¢ ¢ o o

T

write back

s o o o o & o

emptying block

|

| root

| Co

| : 1 : 1 1
' AR
I 1 1 : 1 :
I oo'oooo'oooolooIOOOO;O|eaf
|

!fu" |e o & ¢ o ¢ o - -:: merge

: filling block ‘

| read in

I

|

Po*ﬂ')\ /';!-

\\ _.
et 5

AT J1AO TONG 4

Data temperature

* Data Type
 Hot/Warm/Cold Data = different trees

COST-TOT/Mbyte Hot Data

Warm Data

Temperature H/S
accesses/sec/Mbyte)

™
Cold Data

@® A1t LA e
A LSM tree with multiple components
* Data Type

* Hottest data = C, tree
* Hotter data = C, tree

* Coldest data =2 C, tree

Ck tree Coe Cq tree Cp tree

Qerge merge merge
—_ v 1 M

| | |
| Disk 'Memory

Sy N Ry
@) rirxdrs
%‘::_/% SHANGHAT JI40 TONG UNIVER

STy

:

* Two emptying blocks and filling blocks

* New leaf nodes should be locked (write lock)

emptying block
* & P | |

Y
N

/ l
BUFSDI’*
‘\l

I
...@...I

filling block

) LAY

Search and deletlon (based on temporal locality)

e Lastest T (O-T) CK A root
accesses are in C, TIN G,
AN
(k-1)T (k-2)T 2T

* T-2T accesses
are in C, tree

CK root
CK-1 4 root
o
...... /\ /\ C1 . root
A% LY A
AN A
B |

rolling merge

delete node entry

Disk Memory

o .:_d SHANGHAT JIA0 TONG UNIVERSI

Checkpointing
* Log Sequence Number (LSNO) of last insertion at Time T,
* Root addresses

* Merge cursor for each component

* Allocation information

Log | :
I 1
CK a root
CK-1 4 root
N C1 rOOt
Checkpoint roots, cursors —
LSNO —\ -
cursor cursor cursor
LSNZ2] T1
LSN1| T1
LSNO)_TO i~
T0
T0

Contents

¥ SHANGHALI JIAO TONG UNIVERSITY

({72} SR {ﬁ./f'i'
\/ SHANGHAT JIAO TONG UNIVERSITY

Definition of a DHT

* Hash table =» supports two operations
* insert (key, value)
* value = lookup (key)

* Distributed
* Map hash-buckets to nodes

* Requirements
* Uniform distribution of buckets
* Cost of insert and lookup should scale well
 Amount of local state (routing table size) should scale well

LD
1 -‘

Fundamental Design ldea - |

* Consistent Hashing

* Map keys and nodes to an identifier space; implicit
assignment of responsibility

QO U

A
Identifiers O O O
0000000000 Key &~> 1111111111

= Mapping performed using hash functions (e.g.,
SHA-1)
o Spread nodes and keys uniformly throughout

\' y
y

Fundamental Design ldea - Il

* Prefix / Hypercube routing

\
A7 D
vj A\
Cgoomin | (O |
> T ® | O
pvall | estination

4

* Scalability trade-offs
* Routing table size at each node vs.
* Cost of lookup and insert operations

e Simplicity
* Routing operations
* Join-leave mechanisms

e Robustness

* DHT Designs
* Plaxton Trees, Pastry/Tapestry
* Chord

* Overview: CAN, Symphony, Koorde, Viceroy, etc.
e SkipNet

HANGHAT JIAO TONG UNIVERSITY ‘4'.?
\ P

Plaxton Trees Algorithm (1)

1. Assign labels to objects and nodes
- using randomizing hash functions

9 A E| 4 2,417 |8B

Object Node

Each label is of log,” n digits

Plaxton Trees Algonthm (2)

2. Each node knows about other nodes with varying
prefix matches

1
> 2 B
417 Prefix match of length O
2147 |8B 3
Node 2 | 3
»2 | 4|7 |8B Prefix match of length 1
2 |5
21417 |A 21al6
»2 (4|7 | B .
BEREE 7 |UB Prefix match of length 2
2147 |C 2148

Prefix match of length 3

Sy N v
@) YiExdrY p
N e SHANGHAT JIAO TONG UNIVERSITY Py 3

% - ‘ £

Plaxton Trees Algorithm (3)
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

Node Object

v
Vo)
-
=
o

|
v

(Vo)

>

m

N

Store the object at each of these locations

(2
Plaxton Trees Algorithm (4)
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

|-’9A76—|

Node

log(n) steps to insert or locate object

v
(\o)

Store the object at each of these locations

T -~
/(—\‘- : L~y o
} y P :
%u’/ SHANGHAT JIA0 TONG UNIVERSITY ‘ “4‘?
Sk g ;

Plaxton Trees Algorithm (5)
Why is it a tree?

Object
9]AE|2
Object /
/95 76 R

4171B N

Gl LrEX 4 LK :
'2’\'.,'3 /‘:r“ﬁ')k i“./f'ﬂ'
\::_/7’ SHANGHAT JIAO TONG UNIVERSITY ‘ ‘9'.;.' o

Plaxton Trees Algorithm (6)
Network Proximity

* Overlay tree hops could be totally unrelated to the
underlying network hops

- Plaxton trees guarantee constant factor
approximation!

- Only when the topology is uniform in some sense

(7)) o~ ¥ A“ﬁx’_
\7 \'I-"cNﬂ‘I‘LH_IImIM:..NI\'TR‘E\‘

Pastry (1)

* Based directly upon Plaxton Trees
* Exports a DHT interface

 Stores an object only at a node whose ID is closest to
the object ID

* In addition to main routing table
* Maintains leaf set of nodes

* Closest L nodes (in ID space)
o L=2(k+*1) typically -- one digit to left and right

91A|E|2

Key Insertion and Lookup = Routing to Root
=>» Takes O(log n) steps

(7)) o~ ¥ A“ﬁx’_
\7 \'I-‘ANG‘I‘LU_IIM)IM:..NI\'[R(i\‘

Pastry (3)
Self Organization

* Node join
 Start with a node “close” to the joining node
* Route a message to nodelD of new node
* Take union of routing tables of the nodes on the path

e Joining cost: O(log n)

* Node leave

* Update routing table
* Query nearby members in the routing table

* Update leaf set

Chord [Karger et aI] (1)

* Map nodes and keys to identifiers
* Using randomizing hash functions

AT J1AO TONG 4

* Arrange them on a circle

succ(x)

‘v\ 010111110
Identifier X

Circle

010110110

pred(x)

010110000

/0’3')\ fi'

"° /' AT 1A TONG U

Chord()
Efficient routing

* Routing table
e ith entry = succ(n + 2)
 log(n) finger pointers

dentifier

Circle

Exponentially spaced
pointers!

Chord()
Key Insertion and Lookup

To insert or lookup a key X/,
route to succ(x)

source

O(log n) hops for routing

Self Organization

* Node join
« Set up finger i: route to succ(n + 2/)
* log(n) fingers) O(log? n) cost

* Node leave

* Maintain successor list for ring connectivity
* Update successor list and finger pointers

CAN [Ratnasamy, et al]

* Map nodes and keys to coordinates in a multi-dimensional
cartesian space

. _— Zone

source '\ o /
e 1 o IR

O b‘\». L] key

Routing through shortest Euclidean path

For d dimensions, routing takes O(dn'/d) hops

 Similar to Chord — mapping of nodes, keys
* ‘k” links are constructed probabilistically!

This link chosen with probability P(x) = 1/(x In n)

Expected routing guarantee: O(1/k (log? n)) hops

TEN L -
@ inzirs
<, “ GHAL JIAO TONG UNIVERS ‘ ‘9":" g

Ty

SkipNet [Harvey,ﬁet al] (1)

* Previous designs distribute data uniformly throughout
the system

* Good for load balancing
* But, my data can be stored in Timbuktu!

* Many organizations want stricter control over data
placement

 What about the routing path?

* Should a Microsoft = Microsoft end-to-end path pass
through Sun?

SkipNet (2)
Content and Path Locality

Basic Idea: Probabilistic skip lists

S _)| |

s I e

Nodes

Height

* Each node choose a height at random
* Choose height ‘h’ with probability 1/2"

SkipNet (3)
Content and Path Locality

I
I%

Nodes
60
C C
& &
C
@ . .
Still O(log n) routing guarantee!

Summary

Links per node

Routing hops

Pastry/Tapestry O(2° log,P n) O(log,? n)
Chord log n O(log n)
CAN d dn1/d
SkipNet O(log n) O(log n)
Symphony K O((1/k) log® n)
Koorde d logy n
Viceroy k Z Oflan)

Optimal (= lower bound)

@ ririst LA\

0y
“’/ NGHAT JLAO TONG UNIVERSIT ‘ ‘,l)

Ceph Controlled Replication Under Scalable
Hashing (CRUSH) (1)

* CRUSH algorithm: pgid = OSD ID?

e Devices: leaf nodes (weighted)

e Buckets: non-leaf nodes (weighted, contain any number of devices/buckets)

Objects | | | | | | |

2 |
W l (nrep, hash(oid) & mask)
— pgid

CRUSH(rule,, pgid)
— (0sd1, 0sd2, osd3)

filter (0=d1, osd2, osd3)
— (0sd2, 0sd3)

e/ SHANGHAL JIAO TONG LINTV

CRUSH (2)

* A partial view of a four-
level cluster map
hierarchy consisting of
rows, cabinets, and
shelves of disks.

Action Resulting i

take(root) root

select(1 row) row?2

select(3 ,cabinet) | cab21 cab23 cab24

select(1 ,disk) disk2107 disk2313 disk2437
emit

choose(1,disk)

* Reselection behavior of select(6,disk) when device r = 2 (b) is rejected, where
the boxes contain the CRUSH output R of n = 6 devices numbered by rank. The
left shows the “first n” approach in which device ranks of existing devices
(c,d,e,f) may shift. On the right, each rank has a probabilistically independent
sequence of potential targets; here f, =1, and r’ =r+ f n=8 (device h).

=r+f '=r+1fn

(=0
(]
() [~
&)
@l

@ m - a|hiEE
O O

-@ @]
= ()|

CRUSH (4)

 Data movement in a binary hierarchy due to a node addition
and the subsequent weight changes.

Y83 +—— Affected weights

2 2 2 /%

7”7 A

0 O 1]
Addeditem/

Gl LrEX 4 LK
(@) FAXELS
\ ‘:_/7’ SHANGHAT JIAO TONG UNIVERSITY

CRUSH (5)

Four types of Buckets

Uniform buckets

£
‘4

List buckets
Tree buckets
Straw buckets

Summary of mapping speed and data reorganization efficiency of
different bucket types when items are added to or removed from

a bucket.
Action Uniform List Tree Straw
Speed O(1) O(n) O(log n) O(n)
Additions poor optimal good optimal
Removals poor poor good optimal

* Node labeling strategy used for the binary tree comprising
each tree bucket

/1000
100 1100

0 110 1010

/ N\ /N N\

Contents

) Project 4

SHANGHALI JIAO TONG UNIVERSITY

I\/Ietadata I\/Ianagement in DFS (1)

* Design a simple metadata management module for a distributed
file system. Establish a distributed metadata cluster and a POSIX
APl based client.

Po e o e e o e e o e e e e e e e e G e S M e e e e e e M e e S e e S e e e -y

Meta Data Cluster

I\/Ietadata I\/Ianagement in DFS (2)

The metadata management has the following functions,

Basic command set: support metadata operations via POSIX-
based API

» i.e., mkdir, create file, readdir, rm file, stat, etc.
» file handle can be ignored
Distribution of metadata

»» Metadata are distributed among various metadata
servers

nagement in DFS (3)

Tests on the metadata management functions,

Input: Input the specified files & directories by client

Output:
» Traverse the files via readdir command
» List the status of a file via stat command
» Etc.

Write the metadata of these file operations into the
metadata server

»» Give the data distribution information of the whole
cluster

»» Consistent with other metadata servers

I\/Ietadata I\/Ianagement in DFS (4)

Additional scores

Support metadata server failover (process level)

Support metadata server failure
» No metadata lost in the failure

Implementation on the read/write operations of a file

Thank you!

YEZARS

SHANGHALI JIAO TONG UNIVERSITY

