
Big Data Processing Technologies

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

Schedule

• lec1: Introduction on big data and cloud
computing

• Iec2: Introduction on data storage

• lec3: Data reliability (Replication/Archive/EC)

• lec4: Data consistency problem

• lec5: Block storage and file storage

• lec6: Object-based storage

• lec7: Distributed file system

• lec8: Metadata management

Collaborators

Contents

Distributed File System (DFS)1

File System & Operating Systems

File System Component

The File Systems Evolution
• File systems evolved over time

• Starting with local file system over time, additional file systems
appeared focusing on specialized requirements such as data
sharing, remote file access, distributed file access, parallel file
access, HPC, archiving, etc.

The File Systems Taxonomy

File System Types
• Local File System

 Host-based, single operating system

 Co-located with application server

 Many types with unique formats, feature mix

• Shared (SAN and Clustered) File Systems
 Host-based file systems

 Hosts access all data

 Co-located with application server for performance

• Distributed File System
 Remote, network-access

 Semantics are limited subset of local file system

 Cooperating file servers

 Can include integrated replication

 Clustered DFS/Wide Area File System

Evaluating File Systems (1)
• Does it fit the Application Characteristics

 Does the application even support the file system?

 Is it optimized for the type of operations that are important to the
application?

• Performance & Scalability

 Does the file system meet the latency and throughput
requirements?

 Can it scale up to the expected workload and deal with growth?

 Can it support the number of files and total storage needed?

• Data Management

 What Kind of features does it include? Backup, Replication,
Snapshots, Information Lifecycle Management (ILM), etc.

Evaluating File Systems (2)
• Security

 Does it conform to the security requirements of your company?

 Does it integrate with your security services?

 Does it have Auditing, Access control and at what granularity?

• Ease of Use

 Does it require training the end users or changing applications to
perform well?

 Can it be easily administered in small and large deployments?

 Does it have centralized monitoring, reporting?

 How hard is it to recover from a software or hardware failure and
how long does it take?

 How hard is it to upgrade or downgrade the software and is it live?

Application Characteristics
• Typical applications

 (A) OLTP

 (B) Small Data Set

 (C) Home Directory

 (D) Large Scale Streaming

 (E) High Frequency Metadata Update (small file create/delete)

Performance & Scalability
• Performance

 Throughput

 Read/write access patterns

 Impact of data protection mechanisms, operations

• Scalability

 Number of files, directories, file systems

 Performance, recovery time

 Simultaneous and active users

Data Management (1)
• Backup

 Performance

 Backup vendors; local agent vs. network-based

 Data deduplication backup once

• Replication

 Multiple read-only copies

 Optimization for performance over network

 Data deduplication transfer once

• Quotas

 Granularity： User/Group/Directory tree quotas

 Extended quota features

 Ease of set up

 Local vs. external servers

Data Management (2)
• Information Lifecycle Management (ILM)

 Lots of features, differing definitions

 Can enforce compliance and auditing rules

 Cost & performance vs. impact of lost/altered data

Security Considerations (1)
• Authentication

 Support and to what degree

• Authorization

 Granularity by access types

 Need for client-side software

 Performance impact of large scale ACL changes

• Auditing

 Controls

 Audit log full condition

 Login vs. login attempt vs. data access

Security Considerations (2)
• Virus scanning

 Preferred vendor supported?

 Performance & scalability

 External vs. file server-side virus scanning

• Vulnerabilities

 Security & data integrity vulnerabilities vs. performance

 Compromised file system (one client, one file server)

 Detection

 Packet sniffing

Ease of Use
• End-User

 Local file system vs. Distributed File System

• Deployment & Maintenance

 Implementation

 Scalability of management

 File system migration

 Automatic provisioning

 Centralized monitoring, reporting

 Hardware failure recovery

 Performance monitoring

Distributed File System
• A distributed file system is a network file system whose clients,

servers, and storage devices are dispersed among the machines
of a distributed system or intranet.

Distributed File System (NAS & SAN Environment)

Key Characteristics of DFS

• Often purpose-built file servers

• No real standardization for file sharing across Unix (NFS) and
Windows (CIFS)

• Scales independently of application services

• Performance limited to that of a single file server

• Reduces (not eliminate) islands of storage

• Replications sometimes built in

• Global namespace through external service

• Strong network security supported

• Etc.

DFS Logical Data Access Path
• Using Ethernet as a networking protocol between nodes, a DFS

allows a single file system to span across all nodes in the DFS
cluster, effectively creating a unified Global Namespace for all
files.

Contents

Google File System (GFS)2

Why build GFS?

• Node failures happen frequently

• Files are huge – multi-GB

• Most files are modified by appending at the end

 Random writes (and overwrites) are practically non-existent

• High sustained bandwidth is more important than low
latency

 Place more priority on processing data in bulk

Typical workloads on GFS

• Two kinds of reads: large streaming reads & small random reads

 Large streaming reads usually read 1MB or more

 Oftentimes, applications read through contiguous regions in the file

 Small random reads are usually only a few KBs at some arbitrary
offset

• Also many large, sequential writes that append data to files

 Similar operation sizes to reads

 Once written, files are seldom modified again

 Small writes at arbitrary offsets do not have to be efficient

• Multiple clients (e.g. ~100) concurrently appending to a single file

 e.g. producer-consumer queues, many-way merging

Interface

• Not POSIX-compliant, but supports typical file system operations:
create, delete, open, close, read, and write

• snapshot: creates a copy of a file or a directory tree at low cost

• record append: allow multiple clients to append data to the
same file concurrently

 At least the very first append is guaranteed to be atomic

GFS Architecture (1)

GFS Architecture (2)

• Very important: data flow is decoupled from control flow

 Clients interact with the master for metadata operations

 Clients interact directly with chunkservers for all files operations

 This means performance can be improved by scheduling expensive
data flow based on the network topology

• Neither the clients nor the chunkservers cache file data

 Working sets are usually too large to be cached, chunkservers can use
Linux’s buffer cache

The Master Node (1)

• Responsible for all system-wide activities

 managing chunk leases, reclaiming storage space, load-balancing

• Maintains all file system metadata

 Namespaces, ACLs, mappings from files to chunks, and current
locations of chunks

 all kept in memory, namespaces and file-to-chunk mappings are also
stored persistently in operation log

• Periodically communicates with each chunkserver in HeartBeat
messages

 This let’s master determines chunk locations and assesses state of the
overall system

 Important: The chunkserver has the final word over what chunks it
does or does not have on its own disks – not the master

The Master Node (2)

• For the namespace metadata, master does not use any per-
directory data structures – no inodes! (No symlinks or hard links,
either.)

 Every file and directory is represented as a node in a lookup
table, mapping pathnames to metadata. Stored efficiently using
prefix compression (< 64 bytes per namespace entry)

• Each node in the namespace tree has a corresponding read-write
lock to manage concurrency

 Because all metadata is stored in memory, the master can
efficiently scan the entire state of the system periodically in the
background

 Master’s memory capacity does not limit the size of the system

The Operation Log

• Only persistent record of metadata

• Also serves as a logical timeline that defines the serialized order of
concurrent operations

• Master recovers its state by replaying the operation log

 To minimize startup time, the master checkpoints the log
periodically

 The checkpoint is represented in a B-tree like form, can be
directly mapped into memory, but stored on disk

 Checkpoints are created without delaying incoming requests
to master, can be created in ~1 minute for a cluster with a
few million files

Why a Single Master? (1)

• The master now has global knowledge of the whole system, which
drastically simplifies the design

• But the master is (hopefully) never the bottleneck

 Clients never read and write file data through the master; client
only requests from master which chunkservers to talk to

 Master can also provide additional information about
subsequent chunks to further reduce latency

 Further reads of the same chunk don’t involve the master,
either

Why a Single Master? (2)

• Master state is also replicated for reliability on multiple machines,
using the operation log and checkpoints

 If master fails, GFS can start a new master process at any of
these replicas and modify DNS alias accordingly

 “Shadow” masters also provide read-only access to the file
system, even when primary master is down

 They read a replica of the operation log and apply the same
sequence of changes

 Not mirrors of master – they lag primary master by fractions
of a second

 This means we can still read up-to-date file contents while
master is in recovery!

Chunks and Chunkservers

• Files are divided into fixed-size chunks, which has an immutable,
globally unique 64-bit chunk handle

 By default, each chunk is replicated three times across multiple
chunkservers (user can modify amount of replication)

• Chunkservers store the chunks on local disks as Linux files

 Metadata per chunk is < 64 bytes (stored in master)

 Current replica locations

 Reference count (useful for copy-on-write)

 Version number (for detecting stale replicas)

Chunk Size

• 64 MB, a key design parameter (Much larger than most file systems.)

• Disadvantages:

 Wasted space due to internal fragmentation

 Small files consist of a few chunks, which then get lots of traffic from
concurrent clients

 This can be mitigated by increasing the replication factor

• Advantages:

 Reduces clients’ need to interact with master (reads/writes on the
same chunk only require one request)

 Since client is likely to perform many operations on a given chunk,
keeping a persistent TCP connection to the chunkserver reduces
network overhead

 Reduces the size of the metadata stored in master → metadata can
be entirely kept in memory

Consistency Model

• Terminology:

 consistent: all clients will always see the same data, regardless of
which replicas they read from

 defined: same as consistent and, furthermore, clients will see what
the modification is in its entirety

• Guarantees:

Data Modification in GFS

• After a sequence of modifications, if successful, then modified
file region is guaranteed to be defined and contain data written
by last modification

• GFS applies modification to a chunk in the same order on all its
replicas

• A chunk is lost irreversibly if and only if all its replicas are lost
before the master node can react, typically within minutes

 even in this case, data is lost, not corrupted

Record Appends

• A modification operation that guarantees that data (the “record”)
will be appended atomically at least once – but at the offset of
GFS’s choosing

 The offset chosen by GFS is returned to the client so that the
application is aware

• GFS may insert padding or record duplicates in between different
record append operations

• Preferred that applications use this instead of write

 Applications should also write self-validating records (e.g.
checksumming) with unique IDs to handle
padding/duplicates

GFS Write Control and Data Flow (1)

• If the master receives a modification operation for a particular chunk:

 Master finds the chunkservers that have the chunk and grants a chunk
lease to one of them

 This server is called the primary, the other servers are called secondaries

 The primary determines the serialization order for all of the chunk’s
modifications, and the secondaries follow that order

 After the lease expires (~60 seconds), master may grant primary status
to a different server for that chunk

 The master can, at times, revoke a lease (e.g. to disable modifications
when file is being renamed)

 As long as chunk is being modified, the primary can request an extension
indefinitely

 If master loses contact with primary, that’s okay: just grant a new lease
after the old one expires

GFS Write Control and Data Flow (2)

• 1. Client asks master for all
chunkservers (including all
secondaries)

• 2. Master grants a new lease on
chunk, increases the chunk version
number, tells all replicas to do the
same. Replies to client. Client no
longer has to talk to master

• 3. Client pushes data to all servers,
not necessarily to primary first

• 4. Once data is acked, client sends
write request to primary. Primary
decides serialization order for all
incoming modifications and applies
them to the chunk

GFS Write Control and Data Flow (3)

• 5. After finishing the modification,
primary forwards write request and
serialization order to secondaries,
so they can apply modifications in
same order. (If primary fails, this
step is never reached.)

• 6. All secondaries reply back to the
primary once they finish the
modifications

• 7. Primary replies back to the client,
either with success or error

 If write succeeds at primary but

fails at any of the secondaries,
then we have inconsistent state
→ error returned to client

 Client can retry steps (3) through (7)

Contents

Hadoop File System (HDFS)3

Hadoop History

• Dec 2004 – Google GFS paper published

• July 2005 – Nutch uses MapReduce

• Feb 2006 – Starts as a Lucene subproject

• Apr 2007 – Yahoo! on 1000-node cluster

• Jan 2008 – An Apache Top Level Project

• May 2009 – Hadoop sorts Petabyte in 17 hours

• Aug 2010 – World’s Largest Hadoop cluster at Facebook

 2900 nodes, 30+ PetaByte

Hadoop Commodity Hardware

• Typically in 2 level architecture

 Nodes are commodity PCs

 20-40 nodes/rack

 Uplink from rack is 4 gigabit

 Rack-internal is 1 gigabit

Goals of Hadoop Distributed
File System (HDFS)

• Very Large Distributed File System

 10K nodes, 1 billion files, 100 PB

• Assumes Commodity Hardware

 Files are replicated to handle hardware failure

 Detect failures and recovers from them

• Optimized for Batch Processing

 Data locations exposed so that computations can move to
where data resides

 Provides very high aggregate bandwidth

• User Space, runs on heterogeneous OS

Basic of HDFS

• Single Namespace for entire cluster

• Data Coherency

 Write-once-read-many access model

 Client can only append to existing files

• Files are broken up into blocks

 Typically 128 - 256 MB block size

 Each block replicated on multiple DataNodes

• Intelligent Client

 Client can find location of blocks

 Client accesses data directly from DataNode

HDFS Architecture (1)

HDFS Architecture (2)

NamenodeMetadata

• Meta-data in Memory

 The entire metadata is in main memory

 No demand paging of meta-data

• Types of Metadata

 List of files

 List of Blocks for each file & file attributes

• A Transaction Log

 Records file creations, file deletions, etc.

Datanode

• A Block Server

 Stores data in the local file system (e.g. ext3)

 Stores meta-data of a block (e.g. CRC32)

 Serves data and meta-data to Clients

 Periodic validation of checksums

• Block Report

 Periodically sends a report of all existing blocks to the
NameNode (heartbeats)

• Facilitates Pipelining of Data

 Forwards data to other specified DataNodes

Block Placement

• Current Strategy

 One replica on local node

 Second replica on a remote rack

 Third replica on same remote rack

 Additional replicas are randomly placed

• Clients read from nearest replica

• Pluggable policy for placing block replicas

 Co-locate datasets that are often used together

Block Replication

HDFS Read

• To read a block, the client requests the list of replica locations
from the NameNode

• Then pulling data from a replica on one of the DataNodes

Data Pipelining

• Client writes block to the first
DataNode

 The first DataNode forwards
the data to the next

• DataNode in the Pipeline, and so
on

 When all replicas are written,
the Client moves on to write
the next block in file

• Not good for latency sensitive
applications

HDFS Write

• To write a block of a file, the client requests a list of candidate
DataNodes from the NameNode, and organizes a write pipeline.

Namenode failure

• A Single Point of Failure

• Transaction Log stored in multiple directories

 A directory on the local file system

 A directory on a remote file system (NFS/CIFS)

• This is a problem with 24 x 7 operations

 AvatarNode comes to the rescue

NameNode High Availability
Challenges
• DataNodes send block location

information to only one
NameNode

• NameNode needs block
locations in memory to serve
clients

• The in-memory metadata for
100 million files could be 60
GB, huge!

NameNode High Availability
AvatarNode
• Active-Standby Pair

 Coordinated via zookeeper

 Failover in few seconds

 Wrapper over NameNode

• Active AvatarNode

 Writes transaction log to filer

• Standby AvatarNode

 Reads transactions from filer

 Latest metadata in memory

Rebalancer

• Goal: % disk full on DataNodes should be similar

 Usually run when new DataNodes are added

 Cluster is online when Rebalancer is active

 Rebalancer is throttled to avoid network congestion

• Disadvantages

 Does not rebalance based on access patterns or load

 No support for automatic handling of hotspots of data

HDFS RAID

• Triplicate every data block

• Background encoding

 Combine third replica of
blocks from a single file to
create parity block

 Remove third replica

• RaidNode

 Auto fix of failed replicas

• Reed Solomon encoding for
old files

HDFS Command

• HDFS Administrator Command

• HDFS Shell Command

Contents

Microsoft Azure and Ali DFS4

Microsoft Azure Storage
• Blobs – File system in the cloud

• Tables – Massively scalable structured storage

• Queues – Reliable storage and delivery of messages

• Drives – Durable NTFS volumes for Windows Azure applications

Windows Azure Storage Stamps

Storage Stamp

LB

Storage
Location
Service

Access blob storage via the URL: http://<account>.blob.core.windows.net/

Data access

Partition Layer

Front-Ends

Stream Layer

Intra-stamp replication
Storage Stamp

LB

Partition Layer

Front-Ends

Stream Layer

Intra-stamp replication

Inter-stamp (Geo) replication

Storage Stamp Architecture – Stream Layer
• Append-only distributed file system

• All data from the Partition Layer is stored into files (extents) in the Stream layer

• An extent is replicated 3 times across different fault and upgrade domains

• With random selection for where to place replicas for fast MTTR

• Checksum all stored data

• Verified on every client read

• Scrubbed every few days

• Re-replicate on disk/node/rack failure or checksum mismatch

M

Extent Nodes (EN)

Paxos

M

M
Stream

Layer

(Distributed

File System)

Storage Stamp Architecture – Partition Layer
• Provide transaction semantics and strong consistency for Blobs, Tables and Queues

• Stores and reads the objects to/from extents in the Stream layer

• Provides inter-stamp (geo) replication by shipping logs to other stamps

• Scalable object index via partitioning

M

Extent Nodes (EN)

Paxos

M

M

Partition

Server

Partition

Server

Partition

Server

Partition

Server

Partition

Master
Lock

Service

Partition Layer

Stream

Layer

Storage Stamp Architecture – Front End Layer
• Stateless Servers

• Authentication + authorization

• Request routing

M

Extent Nodes (EN)

Paxos

Front End

Layer
FE

M

M

Partition

Server

Partition

Server

Partition

Server

Partition

Server

Partition

Master

FE FE FE FE

Lock

Service

Partition Layer

Stream

Layer

Storage Stamp Architecture – Request

M

Extent Nodes (EN)

Paxos

Front End

Layer
FE

Incoming Write Request

M

M

Partition

Server

Partition

Server

Partition

Server

Partition

Server

Partition

Master

FE FE FE FE

Lock

Service

Ack

Partition Layer

Stream

Layer

Partition Layer – Scalable Object Index

• 100s of Billions of blobs, entities, messages across all
accounts can be stored in a single stamp
• Need to efficiently enumerate, query, get, and update them

• Traffic pattern can be highly dynamic

• Hot objects, peak load, traffic bursts, etc

• Need a scalable index for the objects that can
• Spread the index across 100s of servers

• Dynamically load balance

• Dynamically change what servers are serving each part of
the index based on load

Scalable Object Index via Partitioning

• Partition Layer maintains an internal Object Index
Table for each data abstraction
• Blob Index: contains all blob objects for all accounts in a stamp

• Table Entity Index: contains all entities for all accounts in a stamp

• Queue Message Index: contains all messages for all accounts in a
stamp

• Scalability is provided for each Object Index
• Monitor load to each part of the index to determine hot spots

• Index is dynamically split into thousands of Index RangePartitions
based on load

• Index RangePartitions are automatically load balanced across
servers to quickly adapt to changes in load

Partition Layer – Index Range Partitioning

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

zzzz zzzz zzzzz

• Split index into
RangePartitions based on
load

• Split at PartitionKey
boundaries

• PartitionMap tracks Index
RangePartition assignment
to partition servers

• Front-End caches the
PartitionMap to route user
requests

• Each part of the index is
assigned to only one
Partition Server at a time

Storage Stamp

Partition

Server
Partition

Server
Account

Name
Container

Name
Blob

Name

richard videos tennis

……… ……… ………

……… ……… ………

zzzz zzzz zzzzz

Account
Name

Container
Name

Blob
Name

harry pictures sunset

……… ……… ………

……… ……… ………

richard videos soccer

Partition

Server

Partition

Master

Front-End
Server

PS 2 PS 3

PS 1

A-H: PS1
H’-R: PS2
R’-Z: PS3

A-H: PS1
H’-R: PS2
R’-Z: PS3

Partition
Map

Blob Index

Partition

Map

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

……… ……… ………

……… ……… ………

harry pictures sunrise
A-H

R’-ZH’-R

Each RangePartition – Log Structured Merge Tree

Checkpoint
File Table

Checkpoint
File Table

Checkpoint
File Table

Blob Data Blob Data Blob Data

Commit Log Stream

Metadata log Stream

Writes Read/Query

Stream Layer

• Append-Only Distributed File System

• Streams are very large files
• Has file system like directory namespace

• Stream Operations
• Open, Close, Delete Streams

• Rename Streams

• Concatenate Streams together

• Append for writing

• Random reads

Stream Layer Concepts

Extent E2 Extent E3

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

Block
• Min unit of write/read

• Checksum

• Up to N bytes (e.g. 4MB)

Extent
• Unit of replication

• Sequence of blocks

• Size limit (e.g. 1GB)

• Sealed/unsealed

Stream
• Hierarchical namespace

• Ordered list of pointers to
extents

• Append/Concatenate

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

Extent E4

Stream //foo/myfile.data

Ptr E1 Ptr E2 Ptr E3 Ptr E4

Extent E1

Creating an Extent

SM
SMStream

Master

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN

Create Stream/Extent

Allocate Extent replica set

Primary Secondary A Secondary B

EN1 Primary
EN2, EN3 Secondary

Replication Flow

SM
SM

SM

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN

Append

Primary Secondary A Secondary B

Ack

EN1 Primary
EN2, EN3 Secondary

Providing Bit-wise Identical Replicas
• Want all replicas for an extent to be bit-wise the same, up to a committed length

• Want to store pointers from the partition layer index to an extent+offset

• Want to be able to read from any replica

• Replication flow

• All appends to an extent go to the Primary

• Primary orders all incoming appends and picks the offset for the append in the

extent

• Primary then forwards offset and data to secondaries

• Primary performs in-order acks back to clients for extent appends

• Primary returns the offset of the append in the extent

• An extent offset can commit back to the client once all replicas have written

that offset and all prior offsets have also already been completely written

• This represents the committed length of the extent

Dealing with Write Failures
Failure during append

1. Ack from primary lost when going back to partition layer

• Retry from partition layer can cause multiple blocks to be appended
(duplicate records)

2. Unresponsive/Unreachable Extent Node (EN)

• Append will not be acked back to partition layer

• Seal the failed extent

• Allocate a new extent and append immediately

Stream //foo/myfile.dat

Ptr E1 Ptr E2 Ptr E3 Ptr E4

Extent E5

Ptr E5

Extent E1 Extent E2 Extent E3 Extent E4

Extent Sealing (Scenario 1)

SM
SMStream

Master

Paxos

Partition

Layer

EN 1 EN 2 EN 3 EN 4

Append

Primary Secondary A Secondary B

Ask for current length120
120

Sealed at 120

Seal Extent
Seal Extent

Extent Sealing (Scenario 1)

SM
SMStream

Master

Paxos

Partition

Layer

EN 1 EN 2 EN 3 EN 4

Primary Secondary A Secondary B

Sync with SM
120

Sealed at 120

Seal Extent

Extent Sealing (Scenario 2)

SM
SM
SM

Paxos

Partition

Layer

EN 1 EN 2 EN 3 EN 4

Append

Primary Secondary A Secondary B

Ask for current length
120

Sealed at 100

Seal Extent

100

Seal Extent

Extent Sealing (Scenario 2)

SM
SM
SM

Paxos

Partition

Layer

EN 1 EN 2 EN 3 EN 4

Primary Secondary A Secondary B

Sync with SM

Sealed at 100

Seal Extent

100

Providing Consistency for Data Streams

SMSMSM

EN 1 EN 2 EN 3

Primary Secondary A Secondary B

Partition

Server

Network partition
• PS can talk to EN3
• SM cannot talk to EN3

• For Data Streams, Partition
Layer only reads from offsets
returned from successful
appends

• Committed on all replicas

• Row and Blob Data Streams

• Offset valid on any replica
Safe to read from EN3

Providing Consistency for Log Streams

SMSMSM

EN 1 EN 2 EN 3

Primary Secondary A Secondary B

Partition

Server

Check commit length

• Logs are used on partition load

• Commit and Metadata log
streams

• Check commit length first

• Only read from

• Unsealed replica if all replicas have
the same commit length

• A sealed replica
Check commit length

Seal Extent

Use EN1, EN2 for loading

Network partition
• PS can talk to EN3
• SM cannot talk to EN3

Design Consideration (1)

• Multi-Data Architecture

• Use extra resources to serve mixed workload for
incremental costs
• Blob -> storage capacity

• Table -> IOPS

• Queue -> memory

• Drives -> storage capacity and IOPS

• Multiple data abstractions from a single stack
• Improvements at lower layers help all data abstractions

• Simplifies hardware management

• Tradeoff: single stack is not optimized for specific workload
pattern

Design Consideration (2)
• Append-only System

• Greatly simplifies replication protocol and failure handling

• Consistent and identical replicas up to the extent’s commit length

• Keep snapshots at no extra cost

• Benefit for diagnosis and repair

• Erasure Coding

• Tradeoff: GC overhead

• Scaling Compute Separate from Storage
• Allows each to be scaled separately

• Important for multitenant environment

• Moving toward full bisection bandwidth between compute and
storage

• Tradeoff: Latency/BW to/from storage

Design Consideration (3)

• Automatic load balancing
• Quickly adapt to various traffic conditions

• Need to handle every type of workload thrown at the system

• Built an easily tunable and extensible language to
dynamically tune the load balancing rules

• Need to tune based on many dimensions
• CPU, Network, Memory, TPS, GC load, Geo-Rep load, Size of

partitions, etc.

• Achieving consistently low append latencies
• Ended up using journaling

• Efficient upgrade support

• Pressure point testing

Ali Pangu Architecture

MPaxos

Master-1

Paxos

Master-2

MPaxos

Master-n

……

ChunkServer-1 ChunkServer-i ChunkServer-n

N
am

e
 S

p
ac

e
C

h
u

n
k

St
o

ra
ge

M

M

M

M

M

M

M

……

Ali Pangu - Hybrid Read/Write Mode

SSD1 SSD2

HDD HDDHDD

dumpclient

write/read

read

• SSD

 High IOPS

 Limited Endurance

• HDD

 High throughput

 Low IOPS

Pangu Functions

API

Data Security

Availability &
Performance

Access type

Management &
Maintaince

• Multi-Master
• Multiple Replication
• Error Detection

• Flow control
• Hybrid Storage

• Data Aggregation
• Hotspot avoidance
• Blacklist

• Capability Security Access
• Quota Management
• Disk Automatic online

• Dynamic Scaling
• Online Monitoring
• Offline Analytics

• Directory/File Structure
• Create/Open/Close/Delete/Rename … Operations
• Support Batch Processing/Asynchronous API

• Random Access
• Append-Only

Write Mode for
Multiple Replications

• Chain Replication
• Direct Replication

• Primary-Secondary Replication

• Checksum
• Garbage Collection

Contents

Project 35

Distributed File System Design (1)
• Design a Mini Distributed File System (Mini-DFS), which

contains
• A client

• A name server

• Four data servers

Name Server

Data

Server-1

Data

Server-2

Data

Server-3

App/Client

Data

Server-4

Distributed File System Design (2)
• Mini-DFS is running through a process. In this process, the name

server and data servers are different threads.

• Basic functions of Mini-DFS

 Read/write a file
 Upload a file: upload success and return the ID of the file

 Read the location of a file based on the file ID and the offset

 File striping
 Slicing a file into several chunks

 Each chunk is 2MB

 Uniform distribution of these chunks among four data servers

 Replication
 Each chunk has three replications

 Replicas are distributed in different data servers

Distributed File System Design (3)
• Name Server

 List the relationships between file and chunks

 List the relationships between replicas and data servers

 Data server management

• Data Server

 Read/Write a local chunk

 Write a chunk via a local directory path

• Client

 Provide read/write interfaces of a file

Distributed File System Design (4)
• Mini-DFS can show

 Read a file (more than 7MB)
 Via input the file and directory

 Write a file (more than 3MB)
 Each data server should contain appropriate number of chunks

 Using MD5 checksum for a chunk in different data servers, the
results should be the same

 Check a file in (or not in) Mini-DFS via inputting a given
directory

 By inputting a file and a random offset, output the content

Distributed File System Design (5)
• Bonus points

 Add directory management
 Write a file in a given directory

 Access a file via “directory + file name”

 Recovery
 Delete a data server (three data servers survive)

 Recover the data in the lost data server

 Redistribute the data and ensure each chunk has three replicas

Thank you!

