
Big Data Processing Technologies

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

Schedule

• lec1: Introduction on big data and cloud
computing

• Iec2: Introduction on data storage

• lec3: Data reliability (Replication/Archive/EC)

• lec4: Data consistency problem

• lec5: Block storage and file storage

• lec6: Object-based storage

• lec7: Distributed file system

• lec8: Metadata management

Collaborators

Contents

Object-based Data Access1

The Block Paradigm

The Object Paradigm

File Access via Inodes
• Inodes contain file attributes

Object Access

• Metadata:
 Creation data/time; ownership; size …

• Attributes – inferred:
 Access patterns; content; indexes …

• Attributes – user supplied:
 Retention; QoS …

Object Autonomy
• Storage becomes autonomous

 Capacity planning

 Load balancing

 Backup

 QoS, SLAs

 Understand data/object grouping

 Aggressive prefetching

 Thin provisioning

 Search

 Compression/Deduplication

 Strong security, encryption

 Compliance/retention

 Availability/replication

 Audit

 Self healing

Data Sharing
homogeneous/heterogeneous

Data Migration
homogeneous/heterogeneous

Strong Security
Additional layer

• Strong security via
external service
 Authentication

 Authorization

 …

• Fine granularity
 Per object

Contents

Object-based Storage Devices2

Data Access (Block-based vs. Object-
based Device)

• Objects contain both data and attributes
 Operations: create/delete/read/write objects, get/set attributes

OSD Standards (1)

• ANSI INCITS T10 for OSD (the SCSI Specification, www.t10.org)

 ANSI INCITS 458

 OSD-1 is basic functionality

 Read, write, create objects and partitions

 Security model, Capabilities, manage shared secrets and
working keys

 OSD-2 adds

 Snapshots

 Collections of objects

 Extended exception handling and recovery

 OSD-3 adds

 Device to device communication

 RAID-[1,5,6] implementation between/among devices

OSD Standards (2)

OSD Forms

• Disk array/server subsystem

 Example: custom-built HPC systems
predominantly deployed in national
labs

• Storage bricks for objects

 Example: commercial
supercomputing offering

• Object Layer Integrated in Disk
Drive

OSDs: like disks, only different

OSDs: like a file server, only different

OSD Capabilities (1)

• Unlike disks, where access is granted on an all or nothing
basis, OSDs grant or deny access to individual objects
based on Capabilities

• A Capability must accompany each request to read or
write an object

 Capabilities are cryptographically signed by the Security
Manager and verified (and enforced) by the OSD

 A Capability to access an object is created by the Security
Manager, and given to the client (application server) accessing
the object

 Capabilities can be revoked by changing an attribute on the
object

OSD Capabilities (2)

OSD Security Model

• OSD and File Server know a secret key

 Working keys are periodically generated from a master key

• File server authenticates clients and makes access control
policy decisions

 Access decision is captured in a capability that is signed with the
secret key

 Capability identifies object, expire time, allowed operations, etc.

• Client signs requests using the capability signature as a
signing key

 OSD verifies the signature before allowing access

 OSD doesn’t know about the users, Access Control Lists (ACLs),
or whatever policy mechanism the File Server is using

Contents

Object-based File Systems3

Why not just OSD = file system?

• Scaling

 What if there’s more data than the biggest OSD can hold?

 What if too many clients access an OSD at the same time?

 What if there’s a file bigger than the biggest OSD can hold?

• Robustness

 What happens to data if an OSD fails?

 What happens to data if a Metadata Server fails?

• Performance

 What if thousands of objects are access concurrently?

 What if big objects have to be transferred really fast?

General Principle
• Architecture

 File = one or more groups of objects

 Usually on different OSDs

 Clients access Metadata Servers to locate data

 Clients transfer data directly to/from OSDs

• Address

 Capacity

 Robustness

 Performance

Capacity
• Add OSDs

 Increase total system capacity

 Support bigger files

 Files can span OSDs if necessary or desirable

Robustness
• Add metadata servers

 Resilient metadata services

 Resilient security services

• Add OSDs

 Failed OSD affects small percentage
of system resources

 Inter-OSD mirroring and RAID

 Near-online file system checking

Advantage of Reliability
• Declustered Reconstruction

 OSDs only rebuild actual data
(not unused space)

 Eliminates single-disk rebuild
bottleneck

 Faster reconstruction to
provide high protection

Performance
• Add metadata servers

 More concurrent metadata
operations

 Getattr, Readdir, Create, Open, …

• Add OSDs

 More concurrent I/O operations

 More bandwidth directly between
clients and data

Additional Advantages
• Optimal data placement

 Within OSD: proximity of
related data

 Load balancing across OSDs

• System-wide storage pooling

 Across multiple file systems

• Storage tiering

 Per-file control over
performance and resiliency

Per-file tiering in OSDs: striping

Per-file tiering in OSDs: RAID-4/5/6

Per-file tiering in OSDs: mirroring(RAID-1)

Flat namespace

Hierarchical File System Vs. Flat Address Space

• Hierarchical file system organizes data in the form of files and directories

• Object-based storage devices store the data in the form of objects

 It uses flat address space that enables storage of large number of objects

 An object contains user data, related metadata, and other attributes

 Each object has a unique object ID, generated using specialized algorithm

Filenames/inodes

Hierarchical File System

Object IDs

Flat Address Space

Object Object

Object Object

Object Object

Data

Attributes

Object ID

Metadata

Object

Virtual View / Virtual File Systems

Traditional FS Vs. Object-based FS (1)

Traditional FS Vs. Object-based FS (2)

• File system layer in host manages

 Human readable namespace

 User authentication, permission checking, Access Control
Lists (ACLs)

 OS interface

• Object Layer in OSD manages

 Block allocation and placement

 OSD has better knowledge of disk geometry and
characteristic so it can do a better job of file
placement/optimization than a host-based file system

Accessing Object-based FS

• Typical Access

 SCSI (block), NFS/CIFS (file)

• Needs a client component

 Proprietary

 Standard

Standard NFS v4.1

• A standard file access protocol for OSDs

Scaling Object-based FS (1)

Scaling Object-based FS (2)

• App servers (clients) have direct access to storage to
read/write file data securely

 Contrast with SAN where security is lacking

 Contrast with NAS where server is a bottleneck

• File system includes multiple OSDs

 Grow the file system by adding an OSD

 Increase bandwidth at the same time

 Can include OSDs with different performance characteristics
(SSD, SATA, SAS)

• Multiple File Systems share the same OSDs

 Real storage pooling

Scaling Object-based FS (3)

• Allocation of blocks to Objects handled within OSDs

 Partitioning improves scalability

 Compartmentalized managements improves reliability
through isolated failure domains

• The File Server piece is called the MDS

 Meta-Data Server

 Can be clustered for scalability

Why Objects helps Scaling

• 90% of File System cycles are in the read/write path

 Block allocation is expensive

 Data transfer is expensive

 OSD offloads both of these from the file server

 Security model allows direct access from clients

• High level interfaces allow optimization

 The more function behind an API, the less often you have to use
the API to get your work done

• Higher level interfaces provide more semantics

 User authentication and access control

 Namespace and indexing

Object Decomposition

Object-based File Systems

• Lustre

 Custom OSS/OST model

 Single metadata server

• PanFS

 ANSI T10 OSD model

 Multiple metadata servers

• Ceph

 Custom OSD model

 CRUSH metadata distribution

• pNFS

 Out-of-band metadata service for NFSv4.1

 T10 Objects, Files, Blocks as data services

• These systems scale

 1000’s of disks (i.e., PB’s)

 1000’s of clients

 100’s GB/sec

 All in one file system

Lustre (1)

• Supercomputing focus emphasizing

 High I/O throughput

 Scalability in the Pbytes of data and billions of files

• OSDs called OSTs (Object Storage Targets)

• Only RAID-0 supported across Objects

 Redundancy inside OSTs

• Runs over many transports

 IP over ethernet

 Infiniband

• OSD and MDS are Linux based & Client Software supports Linux

 Other platforms under consideration

• Used in Telecom/Supercomputing Center/Aerospace/National
Lab

Lustre (2) Architecture

Lustre (3) Architecture-MDS

• Metadata Server (MDS)

 Node(s) that manage namespace, file
creation and layout, and locking.
Directory operations

 File open/close

 File status

 File creation

 Map of file object location

 Relatively expensive serial atomic
transactions to maintain consistency

• •Metadata Target (MDT)

 Block device that stores metadata

Lustre (3) Architecture-OSS

• Object Storage Server (OSS)
 Multiple nodes that manage network

requests for file objects on disk.

• Object Storage Target (OST)
 Block device that stores file objects

Lustre (4) Simplest Lustre File System

Lustre (5) File Operation

• When a compute node needs to create or access a file, it requests the
associated storage locations from the MDS and the associated MDT.

• I/O operations then occur directly with the OSSs and OSTs associated
with the file bypassing the MDS.

• For read operations, file data flows from the OSTs to the compute node.

Lustre (6) File I/Os

• Single stream

• Single stream
through a master

• Parallel

Lustre (7) File Striping

• A file is split into segments and consecutive segments are stored
on different physical storage devices (OSTs).

Lustre (8) Aligned and Unaligned Stripes

• Aligned stripes is where each segment fits fully onto a single OST.
Processes accessing the file do so at corresponding stripe boundaries.

• Unaligned stripes means some file segments are split across OSTs.

Lustre (9) Striping Example

Lustre (10) Advantages/Disadvantages

• Striping will not benefit ALL applications

Ceph (1)
• What is Ceph?

Ceph is a distributed file system that provides excellent
performance, scalability and reliability.

Features

Decoupled data and
metadata

Dynamic distributed
metadata management

Reliable autonomic
distributed object storage

Goals

Easy scalability to peta-
byte capacity

Adaptive to varying
workloads

Tolerant to node failures

Ceph (2) – Architecture

• Decoupled Data and Metadata

Ceph (3) – Architecture

Ceph (4) – Components

Object
Storage
cluster

Clients

Metadata
Server
cluster

Cluster
monitor

Metadata I/O

Ceph (5) - Components

Meta Data
cluster

Clients

Object
Storage
cluster

Capability
Management

CRUSH is used to
map Placement

Group (PG) to OSD.

Ceph (6) – Components
• Client Synchronization

POSIX

Semantics

Relaxed
Consistency

 Synchronous I/O.
performance killer

 Solution: HPC extensions
to POSIX

 Default: Consistency /
correctness

 Optionally relax

 Extensions for both data
and metadata

Ceph (7) – Namespace Operations

Ceph optimizes for most
common meta-data
access scenarios

(readdir followed by stat)

But by default “correct”
behavior is provided at
some cost.

Stat operation on a file
opened by multiple
writers

Applications for which
coherent behavior is
unnecessary use
extensions

Namespace
Operations

Ceph (8) – Metadata

Per-MDS
journals

Eventually
pushed to

OSD

Sequential
Update

More efficient

Reducing re-
write workload.

Optimized on-
disk storage

layout for future
read access

Easier failure
recovery. Journal

can be
rescanned for

recovery.

• Metadata Storage
• Advantages

Ceph (9) – Metadata
• Dynamic Sub-tree Partitioning

 Adaptively distribute cached metadata hierarchically across a set of
nodes.

 Migration preserves locality.

 MDS measures popularity of metadata.

Ceph (10) – Metadata

• Traffic Control for metadata access

• Challenge
• Partitioning can balance workload but can’t deal with

hot spots or flash crowds

• Ceph Solution
 Heavily read directories are selectively replicated

across multiple nodes to distribute load

 Directories that are extra large or experiencing heavy
write workload have their contents hashed by file name
across the cluster

Ceph (11) – Distributed Object Storage

Ceph (11) – CRUSH

• CRUSH(x)  (osdn1, osdn2, osdn3)

• Inputs
• x is the placement group

• Hierarchical cluster map

• Placement rules

• Outputs a list of OSDs

• Advantages
• Anyone can calculate object location

• Cluster map infrequently updated

Ceph (12) – Replication

• Objects are replicated on OSDs within same PG
• Client is oblivious to replication

Ceph (13) – Conclusion
• Strengths:

• Easy scalability to peta-byte capacity

• High performance for varying work loads

• Strong reliability

• Weaknesses:
• MDS and OSD Implemented in user-space

• The primary replicas may become bottleneck to heavy
write operation

• N-way replication lacks storage efficiency

• References
• Ceph: A Scalable, High Performance Distributed File System.

In Proc. of OSDI’06

Contents

Object-based Storage in Cloud4

Web Object Features

• RESTful API (i.e., web-based)

• Security/Authentication tied to Billing

• Metadata capabilities

• Highly available

• Loosely consistent

• Data Storage

 Blobs

 Tables

 Queues

• Other related APIs (compute, search, etc.)

 Storage API is relatively simple in comparison

Simple HTTP example

HTTP and objects

• Request specifies method and object:

 Operation: GET, POST, PUT, HEAD, COPY

 Object ID (/index.html)

• Parameters use MIME format borrowed from email

 Content-type: utf8;

 Set-Cookie: tracking=1234567;

• Add a data payload

 Optional

 Separated from parameters with a blank line (like email)

• Response has identical structure

 Status line, key-value parameters, optional data payload

This is a method
call on an object

These are
parameters

This is data

OpenStack REST API for Storage

• GET v1/account HTTP/1.1

 Login to your account

• HEAD v1/account HTTP/1.1

 List account metadata

• PUT v1/account/container HTTP/1.1

 Create container

• PUT v1/account/container/object HTTP/1.1

 Create object

• GET v1/account/container/object HTTP/1.1

 Read object

• HEAD v1/account/container/object HTTP/1.1

 Read object metadata

Create an object

Update metadata

Ali OSS (1)

• Access URL: http://<bucket>.oss-cn-beijing.aliyuncs.com/<object>

Access Layer
Restful Protocol

LB
LVS

Partition Layer
Key-Value Engine

Persistent Layer
Pangu FS

Load Balancing

Protocol Manager &
Access Control

Partition & Index

Persistent, Redundancy
& Fault-Tolerance

Ali OSS (2) Architecture

• WS: Web Server PM: Protocol Manager

Persistent
Layer

M

M

MPaxos
OS

OS

OS

OS
OS

Nuwa
LockService

KVServer KVServer KVServer

KVMaster

WS+PM WS+PM WS+PM WS+PM

Access Layer（RESTful API）

Partition Layer（LSM Tree）

Request ACK

Ali OSS (3) Partition Layer

• Append/Dump/Merge

MemFile
Block
Cache

Block Index Cache Bloomfilter Cache

Memory

Pangu

Youchao Files
Redo Log File

Log Data Files

Ali OSS (4) Partition Layer

• Read/Write Process

MemFile

Redo Log
File

Memory

Read

Youchao
FilesDump memfile

to youchao file

Write

Pangu

Merge

Ali OSS (5) Persistent Layer

• Write Pangu Normal File

PaxosPangu client

M

M

M

OS OS OS OS

Create Chunk

Chunk Location

A
p

p
en

d
 D

at
a

A
C

K

Append Append

ACK ACK

Ali OSS (6) Persistent Layer

• Write Pangu Log File

PaxosPangu client

M

M

M

OS OS OS OS

Create Chunk

Chunk Location

Fl
u

sh
 D

at
a

A
C

K

The Evolution of Data Storage

Thank you!

