Big Data Processing Technologies

Chentao Wu
Associate Professor
Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

® rirsirt

Schedule

e lecl:

Introduction on big data and cloud

computing

* lec2:
* lec3:
* lecd.
* lec5:
* lecb:
* lec/:
* lec8:

Introduction on data storage

Data reliability (Replication/Archive/EC)
Data consistency problem

Block storage and file storage
Object-based storage

Distributed file system

Metadata management

o~ oK X M
gt TANGHAT | G UNIVERSITY

Collaborators

Google
g Bl EB =

aliyun.com

\ 4

DALEMC

Contents

sy x4 v
Y- FEV L

%/ SHANGHAI JIAO TONG UNIVERSITY

The Block Paradlgm

Write Block 2
Write Block £
Write Block
Write Block
Write Block #
Write Block #
Write Block £

Status
Retun 0

Read Block 2
Read Block #
Read Block
Read Block 2
Read Block #

Read Block 2
Read Block 2

Store

Retrieve

The ObJect Parad|gm" »

Data OID oID Data

-1l

P TENE

’v\ \‘;' SHANGHAT JIAO TONG UNIVIRSITY ‘ Q
-

File Access via Inodes

Inodes contain file attributes

Data Blocks

Inode

File Attributes:

Metadata:
Creation data/time; ownership; size ...

Attributes — inferred:
Access patterns; content; indexes ...

Attributes — user supplied:
Retention; QoS ...

Storage becomes autonomous

Host Capacity planning
File System File System Load balancing

~ Object IDs Backup
QoS, SLAs

Understand data/object grouping

Inodes:

Block Pointers Aggressive prefetching
File Attributes Objects: . L. .
. Thin provisioning

Object Attributes Search
Compression/Deduplication
Strong security, encryption
Compliance/retention
Availability/replication
Audit

Self healing

Block Device Object Device

AT J1AO TONG 4

Data Sharing

homogeneous/heterogeneous

Host Host Host Host
File System File System File System ~ File System
:/ﬂ:?\? Object IDs Object IDs
Inodes: Inodes: ¥,
: Block Pointers Block Pointers :
L File Attributes File Attributes * s
Objects:
Block Pointers
. Object Attributes
Cluster/SAN

file system

/lé)\ﬂ/—j'

AT LA TONG LINTY

Data I\/Iigration‘

homogeneous/heterogeneous

Host Host
File System ~ File System
Object IDs ~ Object IDs

Objects: Objects:
Block Pointers Block Pointers
Object Attributes Object Attributes

Object Device Object Device

Host
File System
~ Object IDs

Objects:

Block Pointers
Object Attributes

Object Device

/o‘ﬂ')\ﬂ/‘:ii

1J140 TONG

Strong Secunty
Additional layer

Strong security via
external service
Authentication

Authorization
?
it 2
Fine granularity

Per object

Block Device Object Device

Contents

HANGHALI JIAO TONG UNIVERSITY

/Axﬂ')\ﬂf‘%\

\‘.K

1140 TONG “‘,‘ o

Data Access (Block- based VS. Object—

based Device)

Objects contain both data and attributes

Operations: create/delete/read/write objects, get/set attributes

Block Based Device

Operations

Read block
Write block

Addressing

Block range

WENRRRE

Allocation
External

Operations

Create object
Delete object
Read object
Write object
Get Attribute
Set Attribute

Addressing

[object, byte range]

Allocation
Internal

Object Based Device

Sy N v
(@) raxdrs '<
A0 TY ‘ .‘f‘l.'-“ "

_// SHANGHAT JIAO TONG UNIVER

OSD Standards (i)

ANSI INCITS T10 for OSD (the SCSI Specification, www.t10.0rg)
ANSI INCITS 458
OSD-1 is basic functionality

» Read, write, create objects and partitions

» Security model, Capabilities, manage shared secrets and
working keys

OSD-2 adds
» Snapshots
» Collections of objects
»» Extended exception handling and recovery

OSD-3 adds

»» Device to device communication

» RAID-[1,5,6] implementation between/among devices
S

oy ~ »> ljg
XEXAAY
S/ SHANGHAL JIAO TONG UNIVERSITY

—

-

OSD Standards (2)

SCSI Block Reduced SCSI Stream SCSI Media Mult-Media SCSI Controller
Commands Block Commands Changer Commands Commands Commands
(e.g., disk drive) Commands (e.g.. tape drive) (e.g., jukebox) (e.g.. OVD) (e.g., RAID)
(SBC, SBC.2, (e.g., disk drive) (SSC, SSC.2, (SMC, SMC.2Z, SMC3 || (MMC, MMC.2, MMC.3, (SCC.2)
SBC.3) (RBC, RBC AM1) $SC.3) MMC.-4, MMC.5 MMC.6)
|]]] |
SC SS'GE&Cb’U" Object-Based Bridge Controller Automation Drive
(SES SE(:;IM Storage Device Commands Interface - Commands
éE 5.2) ’ (OSD, 0SD-2) (BCC) (ADC, ADC-2)
|
Primary Commands (for all devices)
(SPC, SPC.2, SPC.J, SPC4)
|
Architecture Model (SAM, SAM.2, SAM.3, SAM 4)
|
| I I I [| | |
SCSI Serial Bus Fibre SSA SCSi
Parolkel Protocol Channel SCSIL3 RDMA iISCSI
Inerface (SBP-2, SBP.3) Protocol Protocol Protocol
(SP1-2, SP14, (FCP, FCP- (SSA.S3P) {SRP, SRP-2)
SPL5) 2,FCP3, Serial Automation
- -R-ela:ad- - FCP-4) l Attached Drive
SCSI Interface -
sm‘r:cht:gs O:nd SSA-TL2 (SAS, Transport
reports (SDV, Fibre 1 SSAASS12: p;xg)?'
PIP, SSM, Channel SSAPH1 or InfiniBand i ADT.2)
SSM.2, EPY) IEEE 1394 (FC) SSAPH2 (tm) e

) LAY

AL JLAO TONG

OSD Forms

Disk array/server subsystem

Example: custom-built HPC systems
predominantly deployed in national
labs

i Storage bricks for objects

Example: commercial
supercomputing offering

Object Layer Integrated in Disk
Drive

OSDS I|ke disks, only dlfferent

Model Array of blocks

* Number never changes
* Size never changes

Operations
Read/write disk blocks
Security Zoning, LUN masking
*Applies to entire device
Typical Fibre Channel, SCSI, iSCSI
transports

Obijects

* Created and deleted
* Grow and shrink

Create/delete object
Read/write object blocks

Capability-based

*Applies to each object and op

ISCSI, ONC-RPC over TCP/IP

OSD I|ke a file s server, only different

Model Files Objects
Naming Human-readable names in a Two level name space:
hierarchical directory tree 64 bit object “name” in a 64 bit

partition “name”

Operations File: create, delete, rename Object: create, delete,
File byte range: read, write, Object block range: read, write,
append, truncate append, truncate

Security User | group | world x rwx Digitally signed capabilities
or access control lists * Checked for every I/O request

* Checked at initial file access

g

D Capab|||t|es ()

O

Unlike disks, where access is granted on an all or nothing
basis, OSDs grant or deny access to individual objects
based on Capabilities

A Capability must accompany each request to read or
write an object

Capabilities are cryptographically signed by the Security
Manager and verified (and enforced) by the OSD

A Capability to access an object is created by the Security
Manager, and given to the client (application server) accessing
the object

Capabilities can be revoked by changing an attribute on the
object

OSD Capabilities (2)

- . @ Locate object(s) for file A
© ‘I want to read file A and verify client X's right

to read it

: . ©® “Send object 7 and encrypted
Client X -~ capability Z for object 7 to OSD Y
to read from file A"

Shared
O“Read N bytes of object 7 secret
starting at offset P,
and here’s capability Z that

proves I'm allowed to do that”

iy
W
®“Capability Z checks out.

Here's your data”

O Use shared secret

to validate capability Z

XERAAY

A 7]
& // SHANGHAT JIAO TONG UNIVERSITY |“‘7 ’

OSD Security Model

OSD and File Server know a secret key
Working keys are periodically generated from a master key

File server authenticates clients and makes access control
policy decisions
Access decision is captured in a capability that is signed with the
secret key
Capability identifies object, expire time, allowed operations, etc.

Client signs requests using the capability signature as a
signing key
OSD verifies the signature before allowing access

OSD doesn’t know about the users, Access Control Lists (ACLs),

or whatever policy mechanism the File Server is using
S

Contents

ot/ SHANGHALI JIAO TONG UNIVERSITY

Why not Just OSD f||e system? .

Scaling
What if there’s more data than the biggest OSD can hold?
What if too many clients access an OSD at the same time?
What if there’s a file bigger than the biggest OSD can hold?
Robustness
What happens to data if an OSD fails?
What happens to data if a Metadata Server fails?
Performance
What if thousands of objects are access concurrently?
What if big objects have to be transferred really fast?

/«3')\1}7

%_,/ o Towe

General Principle

Clients

Architecture

File = one or more groups of objects

» Usually on different OSDs
Clients access Metadata Servers to locate data
Clients transfer data directly to/from OSDs
Address

Capacity

Robustness
Performance

— N ¥ R
@) raxart

S NGHAT JIAO TONG UNIVERSITY

s

4

Capacity

Add OSDs

Increase total system capacity

Support bigger files
» Files can span OSDs if necessary or desirable

\‘“ AT JIAD TONG L

Robustness

Add metadata servers
Resilient metadata services
Resilient security services

Add OSDs

Failed OSD affects small percentage
of system resources

Inter-OSD mirroring and RAID
Near-online file system checking

Declustered Reconstruction

OSDs only rebuild actual data
(not unused space)

Eliminates single-disk rebuild
bottleneck

Faster reconstruction to
provide high protection

@) rFriry

3
T NGHAT JLAO TONG UNIVERSI

Performance

Add metadata servers

More concurrent metadata
operations

»» Getattr, Readdir, Create, Open, ...
Add OSDs
More concurrent I/O operations

More bandwidth directly between
clients and data

@) raiirt

Add|t|onal Advantages‘

Optimal data placement

Within OSD: proximity of
related data

Load balancing across OSDs
System-wide storage pooling

Across multiple file systems
Storage tiering

Per-file control over
performance and resiliency

Scratch file

Ordinary file

Critical file

gy
\

Flat namespace

File names / inodes

Traditional
Hierarchical

Filenames/inodes

Object IDs

Object

Object ID

 bwa . Metadata

Flat Address Space

Hierarchical File System

Hierarchical file system organizes data in the form of files and directories

Object-based storage devices store the data in the form of objects
It uses flat address space that enables storage of large number of objects
An object contains user data, related metadata, and other attributes
Each object has a unique object ID, generated using specialized algorithm

. b
" & - ; ‘i. ~)
@) AR (A
. / SHANGHAT JIAO TONG UNIVIRSITY A

Virtual View / Virtual File Systems

Virtual View A Virtual View B

File names / inodes

Virtual

YERARY 2

SHANGHAT JIAO TONG UNIVERSITY X
. -

Traditional FS Vs. Object-based FS (1)

Traditional File System Object-based File System

Applications
System Call Interface

File System
Namespace Component

OSD Interface
Sector/LBA Interface File System

Storage Component

EBlock I/O Manager
- Block I/O Manager
"'—-——-—"""
S

Applications
System Call Interface

File System
Namespace Component

File System
Storage Component

.....__..
——

Lk | P '
Tracmonal FS Vs. Object-based FS (2)

File system layer in host manages

Human readable namespace

User authentication, permission checking, Access Control
Lists (ACLs)

OS interface

Object Layer in OSD manages

Block allocation and placement

OSD has better knowledge of disk geometry and
characteristic so it can do a better job of file
placement/optimization than a host-based file system

@) iFxars » ‘ﬁ‘i

A 14O TONG SITY

Accessmg ObJect based FS

Typical Access
SCSI (block), NFS/CIFS (file)
Needs a client component

Proprietary
Standard

| Object-based file
system client
~

Present files Implement
(e.g., POSIX, NFS) OSD protocols

Standard% NFS v41

A standard file access protocol for OSDs

ISCSI, Fibre Channel| =———————

NFSv4.1 >
OSD-2
lr PNFS
*Where is my file?
*How do | access it?
. | ;

;fﬁfz:@ﬁé—z

NGHAT JIAO TONG UNIVERSITY X
-4

~

Scaling Object—basd FS (1)

IP Network

User/App Authentication
Security/Capability Manager
Dirent, (ObjID, Capability) || Namespace Management

Create Object,
List Objects,

/ Manage Keys
FC or IP Network

Read(ObjID, Capability)
Write(ObjID, Capability)

File Open, Readdir, etc.

Scalmg ObJect based FS (l 2)

App servers (clients) have direct access to storage to
read/write file data securely

Contrast with SAN where security is lacking

Contrast with NAS where server is a bottleneck

File system includes multiple OSDs
Grow the file system by adding an OSD
Increase bandwidth at the same time

Can include OSDs with different performance characteristics
(SSD, SATA, SAS)

Multiple File Systems share the same OSDs
Real storage pooling

Sca ing ObJect based FS (. 3)

Allocation of blocks to Objects handled within OSDs
Partitioning improves scalability

Compartmentalized managements improves reliability
through isolated failure domains

The File Server piece is called the MDS
Meta-Data Server
Can be clustered for scalability

Why ObJects helps Scallng

90% of File System cycles are in the read/write path
Block allocation is expensive
Data transfer is expensive
OSD offloads both of these from the file server
Security model allows direct access from clients
High level interfaces allow optimization

The more function behind an API, the less often you have to use
the API to get your work done

Higher level interfaces provide more semantics
User authentication and access control
Namespace and indexing

@) 2iiirs

GHAT J1AO TONG LNV "
A
Y

Object Decomposition

MDS

OID:Layout
OID:Layout
OID:Layout
OID:Layout
OID:Layout
OID:Layout
OID:Layout

Object Object Object Object
Component Component Component Component

Object Layout

Sy N v
/, /‘:rﬂ')\ g/ﬁ%ﬁ

()
‘_/"' SHANGHAT J1AO TONG UNIVERSITY ‘ ‘4'..:-‘ .
O b . t

based File Systems
Lustre These systems scale
Custom OSS/OST model 1000’s of disks (i.e., PB’s)
Single metadata server 1000’s of clients
PanFS 100’s GB/sec
ANSI T10 OSD model All in one file system
Multiple metadata servers

Ceph
Custom OSD model
CRUSH metadata distribution

PNFS
Out-of-band metadata service for NFSv4.1

T10 Objects, Files, Blocks as data services

/o‘ﬂ')\ﬂ/‘:ii

1J140 TONG

Lustre (1)

Supercomputing focus emphasizing
High 1/0 throughput
Scalability in the Pbytes of data and billions of files
OSDs called OSTs (Object Storage Targets)
Only RAID-0 supported across Objects
Redundancy inside OSTs
Runs over many transports
IP over ethernet
Infiniband
OSD and MDS are Linux based & Client Software supports Linux

Other platforms under consideration

Used in Telecom/Supercomputing Center/Aerospace/National
Lab

VAR ALY

SHANGHAT JIAO TONG UNIVIRSITY

Nl

MDS disk storage containing

0SS servers
1-1000s

~©

Metadata Targets (MDT) @
Pool of clustered MDS servers
1-100
MBS 1 5 2
(active) (standby)
EN
" Myrinet
{‘;*-\ InfiniBand
. - Simultaneous
Lustre clients _— support of multiple
1-100,000 { - _ network types
e Router
& \
S
c] ,
(=1 GigE

Y = Failover

0SS storage with object
storage targets (OST)

00

Commodity Storage

00

Shared storage
enables failover 0SS

Enterprise-Class
Storage Arrays and
SAN Fabric

y Sr X o
(@) Yaxd s
‘::_// SHANGHAT J1AO TONG UNIVERSITY ‘ ‘9@}' " 4

Lustre (3) Architecture-MDS

Metadata Server (MDS)

Node(s) that manage namespace, file
creation and layout, and locking.
Directory operations

» File open/close

» File status

» File creation
» Map of file object location

Relatively expensive serial atomic
transactions to maintain consistency

eMetadata Target (MDT)
Block device that stores metadata

OST

Object Storage Server (OSS)

Multiple nodes that manage network
requests for file objects on disk.

Object Storage Target (OST)

Block device that stores file objects

@) Lrxars A\

& Z
“’/ NGHAT JIAO TONG UNIVERSIT (3
L
A

Lustre (4) Simplest Lustre File System

MDT

* File requests (open,close,etc) \ .
* Locking coordination u

* Transaction based

* File stat() info QST
* Coordination

008

S

S SP—

Direct file I/0O

'

NGHAT JIAO TONG UKV

YEZAAS

-
—

hs
-"

Lustre (5) File Operation

When a compute node needs to create or access a file, it requests the
associated storage locations from the MDS and the associated MDT.

|/O operations then occur directly with the OSSs and OSTs associated
with the file bypassing the MDS.

For read operations, file data flows from the OSTs to the compute node.

@) yiaxdry
S uancHA A TonG UNIVERSITY By
Lustre (6) File I/Os

Single stream

Single stream
through a master

Parallel

'@

Lustre (7) File Striping

A file is split into segments and consecutive segments are stored
on different physical storage devices (OSTs).

< 5 MB >

<«— 1 MB—»

b
-J 00080

/lé)\g/ —j'

AT J1AO TONG 4

Lustre (8) Allgned and Unallgned Strlpes

Aligned stripes is where each segment fits fully onto a single OST.
Processes accessing the file do so at corresponding stripe boundaries.

N

|
100108

Unaligned stripes means some file segments are split across OSTs.

N
-

|
50

— N2 R
@ ririist

gt NGHAT JLA0 TONG UNIVIRS!

s

D
- ‘

Lustre (9) Striping Example

File1l - 1MB

File 2 - 4MB

File 3 - 7MB

1085
4 Stripes
1MB Stripe Size

Lustre (10) Advantages/Dlsadvantages

Striping will not benefit ALL applications

Bandwidth — file objects are striped across
0STs, so bandwidth is the aggregate 1/0
rate

File Size — file objects striped across OST
can have a total size larger than available
space on any single OST

User Overhead — Time and thought required
to understand your |/O patterns and create
stripe layout for directories and files

System Overhead — Additional stripes
means more OST lookups to determine the
size of the file (more time)

/lé)\ﬂ/—j'

AT LA TONG LINTY

Ceph(l)
* What is Ceph?

Ceph is a distributed file system that provides excellent
performance, scalability and reliability.

Features Goals

[Decoupled data and J Easy scalability to peta-

metadata byte capacity
Dynamic distributed ~ Adaptive to varying
metadata management workloads

|| Reliable autonomic Tolerant to node failures
distributed object storage

FEZALS

°;:_/ SHANGHAT JIAO TONG UNIVERSITY ‘
-

Ceph (2) — Architecture

* Decoupled Data and Metadata

I'| System Call Interface | |
1
Operating i : !
1
System 1 File System "
! | Client Component | |
1 1
Me(a(lgj;‘/\ Qata
’[equ'é'sls requests
JAsaneazessacs E Object Interface
Metadata Interface Metadata storage -~ — ! e
N, S ————— : and/orsystem :' — 1
! R -~ © File System E Object-
Metadata |} Y : - Data Manager 1 based
S Metadata Manager | | . f g X
erver B 1 I Storage
Rerve : Metadata| | : i [Block 1/0 Manager | | ,g
(MDS) + | storage J A O i Device
: | ! : 1 (OSD)
i . 1 " 1
: - | : |
1 ! I
: : 0 e ot i

T ‘,‘ :
A

Ceph (3) — Architecture

s | [libfuse

I | \

[L
1y \ |
A 4 : [| 1
vfs fuse ¥ :ﬂc et ‘ |
Linux kernel ! i myproc | |
|

———————————————————————————————————

- - o 9 ,
SN » . 2 /f
{2 S " P
\)
/ SHANGHAT JIAO TONG UNIVERSITY

Metadata operations

1@
SLONO DR
PRI S N B\) Metadata
I - I ‘u)
. Lbash | client ﬂ]\ @f/o ﬁ storage

Metadata Cluster

Object Storage Cluster

tHEHEE

FiEZAAY

GHAT JIAO TONG UNIVERS

Clients

Object
Storage
cluster

Metadata
Server
cluster

Metadata I/O

ﬁféi@/ﬁ%

GHAT JIAO TONG UNIVERSITY

Clients

CRUSH is used to
map Placement
Group (PG) to OSD.

Meta Data
Storage cluster
cluster

Capability
Management

\ 4

Ceph () — Components

* Client Synchronization

o Synchronous |/0.
performance killer

o Solution: HPC extensions

to POSIX
o Default: Consistency/
correctness

o Optionally relax

o Extensions for both data
and metadata

POSIX

Semantics

Writes are Atomic

Previously written
data

Relaxed
Consistency

lazyio_propagate

lazyio_synchronize

FiERALY

Ceph (7) — Namespace Operat|ons

Ceph optimizes for most
common meta-data
access scenarios

But by default “correct”
behavior is provided at

some cost.
(readdir followed by stat)

Namespace
Operations

Applications for which
coherent behavior is
unnecessary use
extensions

Stat operation on a file
opened by multiple
writers

YEZARY

GHAT 140 TONG UNIVERSITY X
| B
-

Ceph (8) — Metadata

* Metadata Storage
* Advantages

Easier failure
recovery. Journal

Sequential
Update
P | , can be
More efficient \ rescanned for
recovery.

Optimized on-
Reducing re- disk storage
write workload. layout for future
read access

Ceph (9) — I\/Ietadata

* Dynamic Sub-tree Partitioning

Root

“Hoso) W st WIE
MDS 0 | MDS 1 [] MDs2 DMDss | MDS 4

Busy directory hashed across many MDS's

= Adaptively distribute cached metadata hierarchically across a set of
nodes.

= Migration preserves locality.

= MDS measures popularity of metadata.

.z?""\ FEL ALY
Ceph (10) — Metadata

* Traffic Control for metadata access
e Challenge

 Partitioning can balance workload but can’t deal with
hot spots or flash crowds

e Ceph Solution

v’ Heavily read directories are selectively replicated
across multiple nodes to distribute load

v’ Directories that are extra large or experiencing heavy
write workload have their contents hashed by file name
across the cluster

TN,

%«

| | |] «
1 ||\' 11\‘ H\‘ (ino,ono) — oid

File I
Objects |

| = n =

W \ hash(oid) & mask — pgid
s (E5=)|(22=) (3=

OSDs <
(grouped by .

p

failure domain) - AN N NN

* CRUSH(x) = (osd,,, osd,, osd. ,)
* Inputs
* x is the placement group

* Hierarchical cluster map
* Placement rules

e Qutputs a list of OSDs

* Advantages
* Anyone can calculate object location
* Cluster map infrequently updated

- ~p M ‘Jg
S\ > (el -
: YELAAL T

Ny ‘-// SHANGHAT JIAO TONG UNIVERSITY

Ceph (12) — Replication

* Objects are replicated on OSDs within same PG
* Client is oblivious to replication

@ Client] Primary @ Replica 8 Replica

)
£
" | .. & Apply update
| . Ack
| - o » Commit to disk
N BTl ——+ Commit
& -
— _‘A——- -

Ceph (13) — Conclusion

* Strengths:

SR T
e

» Easy scalability to peta-byte capacity Ceph Cookbook

* High performance for varying work loads
» Strong reliability

* Weaknesses:
 MDS and OSD Implemented in user-space

* The primary replicas may become bottleneck to heavy
write operation

* N-way replication lacks storage efficiency

 References

* Ceph: A Scalable, High Performance Distributed File System.
In Proc. of OSDI'06

Contents

HANGHALI JIAO TONG UNIVERSITY

(2
Web ObJect Feature

RESTful API (i.e., web-based)
Security/Authentication tied to Billing
Metadata capabilities
Highly available
Loosely consistent
Data Storage
Blobs
Tables
Queues
Other related APIs (compute, search, etc.)
Storage API is relatively simple in comparison

N ‘,» HANGHAT JIAO TONG UNIVER ‘,‘
A

S|mp\e HTTP example

EXALE

% telnet www.google.com 80

(GET

k GET /index.html HTTP/1.0 parameters 5
K_(_blank line) metadata
' HTTP/1.0 200 OK)

Date: Wed, 13 Feb 2013 07:24:07 GMT
. Content-Type: text/html; charset=1S0-8859-1 | REPLY
< metadata
e . data

[<html>
<head><title>Google</title></head>
<body>
<form><input type=text name=qg>
<input type=submit value="Google Search” hame="search™

<input type=submit value="I'm Feeling Lucky” name="lucky">

_<fform></body></html>

¥,
.-f

HTTP d obJects

Request specifies method and object:
Operation: GET, POST, PUT, HEAD, COPY This is a method
call on an object
Object ID (/index.html)

Parameters use MIME format borrowed from email

Content-type: utf§; These are

Set-Cookie: tracking=1234567; parameters
Add a data payload

Optional This is data

Separated from parameters with a blank line (like email)

Response has identical structure

Status line, key-value parameters, optional data payload

W
OpenStack REST AP for Storage

GET v1/account HTTP/1.1
Login to your account

HEAD v1/account HTTP/1.1
List account metadata

PUT v1/account/container HTTP/1.1
Create container

PUT v1/account/container/object HTTP/1.1
Create object

GET v1/account/container/object HTTP/1.1
Read object

HEAD v1/account/container/object HTTP/1.1
Read object metadata

Create an obJect

_PUT\/vl/<acc0unt}/<c0ntainer}/<object> HTTP/1.1
‘Host: storage.swiftdrive.com
X-Auth-Token: eaaafdl8-0fed-4b3a-81b4-663c99eclcbb
 ETag: 8a964ee2abe88be344f36c22562a6486 | MDS checksum
:Content—Lenqth: 512000 \)
 X-Delete-At: 1339429105 | Mon Jun 11 08:38:25 PDT 2012
Content-Disposition: attachment; filename=platmap.mpi
Content-Type: video/mp4
(CGntent—Encadinq: gzlp i
X-Object-Meta-PIN: 1234 User defined metadata
M[.. .object content. .. 1

Update metadata

™

_PDST]/vl/<account>/<container>/<object> HTTP/1.1

Host: storage.swiftdrive.com

X-Auth-Token: eaaafdl8-0fed-4b3a-81b4-663c99eclcbb
X-Object-Meta-Fruit: Apple

X-Object-Meta-Veggie: Carrot

(no data pdyi@aq%f — S obec ~
Attribute Value
PIN 1234
Fruit Apple

| Veggie Carrot
> - y

:flé)\ﬁ/—j'

Ali 0SS 1 ==

Access URL: http://<bucket>.oss-cn-beijing.aliyuncs.com/<object>

Load Balancing

Access Layer Protocol Manager &
Restful Protocol
Access Control

Partition Layer
Key-Value Engine

Partition & Index

Persistent Layer Persistent, Redundancy

Pangu FS
& Fault-Tolerance

AI| OSS () 2) Architecture B EL

WS: Web Server PM: Protocol Manager

Request ACK
Access Layer (RESTful API)

WS+PM

Partition Layer (LSM Tree)

LockService

-

Persistent
Layer

@ 2isirt

Ali OSS (3) Partition Layer @EES%H

Append/Dump/Merge

Memory
MemFile
— Block Index Cache Bloomfilter Cache
Cache

Pangu

Redo Log File

Youchao Files Log Data Files

YiEZAL

\ GHAT JIAO TONG L

AI| OSS () Partition Layer 2 WEL

Read/Write Process

Read : Merge
MemFile T\ >
A

Write Memory

Pangu

Re(lj:f)l Log : Youchao
e Dump memfile Files

to youchao file

Layer WL

Write Pangu Normal File

Create Chunk

Pangu client

i ——— -

r>] Chunk Location
Q U4
©
[
Q
o
o
<
’ ---------

/

[

|

|

|

|

|

|

|

|

1

\

———

h—————————_,

\

v -

Layer WL

Write Pangu Log File

Create Chunk

Pangu client

-

Chunk Location

Flush Data
ACK

) J R ———

@ 2inirt

\ NGHAT JIAO TONG UKV

The Evolution

of Dat

v

a Storage

BN .

Storage

DAS

Application
Data Services

Meta Data

Application

Data Services

Application

Data Services

Application

~_

Storage

SAN

yptaton_
I
==

-
N
s

Meta Data

Storage

NAS

Object AP

Meta Data

Storage

OSD

Object API

Data Services

ISD

Thank you!

YEZARS

SHANGHALI JIAO TONG UNIVERSITY

