
Big Data Processing Technologies

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

Schedule

• lec1: Introduction on big data and cloud
computing

• Iec2: Introduction on data storage

• lec3: Data reliability (Replication/Archive/EC)

• lec4: Data consistency problem

• lec5: Block storage and file storage

• lec6: Object-based storage

• lec7: Distributed file system

• lec8: Metadata management

Collaborators

Contents

Object-based Data Access1

The Block Paradigm

The Object Paradigm

File Access via Inodes
• Inodes contain file attributes

Object Access

• Metadata:
 Creation data/time; ownership; size …

• Attributes – inferred:
 Access patterns; content; indexes …

• Attributes – user supplied:
 Retention; QoS …

Object Autonomy
• Storage becomes autonomous

 Capacity planning

 Load balancing

 Backup

 QoS, SLAs

 Understand data/object grouping

 Aggressive prefetching

 Thin provisioning

 Search

 Compression/Deduplication

 Strong security, encryption

 Compliance/retention

 Availability/replication

 Audit

 Self healing

Data Sharing
homogeneous/heterogeneous

Data Migration
homogeneous/heterogeneous

Strong Security
Additional layer

• Strong security via
external service
 Authentication

 Authorization

 …

• Fine granularity
 Per object

Contents

Object-based Storage Devices2

Data Access (Block-based vs. Object-
based Device)

• Objects contain both data and attributes
 Operations: create/delete/read/write objects, get/set attributes

OSD Standards (1)

• ANSI INCITS T10 for OSD (the SCSI Specification, www.t10.org)

 ANSI INCITS 458

 OSD-1 is basic functionality

 Read, write, create objects and partitions

 Security model, Capabilities, manage shared secrets and
working keys

 OSD-2 adds

 Snapshots

 Collections of objects

 Extended exception handling and recovery

 OSD-3 adds

 Device to device communication

 RAID-[1,5,6] implementation between/among devices

OSD Standards (2)

OSD Forms

• Disk array/server subsystem

 Example: custom-built HPC systems
predominantly deployed in national
labs

• Storage bricks for objects

 Example: commercial
supercomputing offering

• Object Layer Integrated in Disk
Drive

OSDs: like disks, only different

OSDs: like a file server, only different

OSD Capabilities (1)

• Unlike disks, where access is granted on an all or nothing
basis, OSDs grant or deny access to individual objects
based on Capabilities

• A Capability must accompany each request to read or
write an object

 Capabilities are cryptographically signed by the Security
Manager and verified (and enforced) by the OSD

 A Capability to access an object is created by the Security
Manager, and given to the client (application server) accessing
the object

 Capabilities can be revoked by changing an attribute on the
object

OSD Capabilities (2)

OSD Security Model

• OSD and File Server know a secret key

 Working keys are periodically generated from a master key

• File server authenticates clients and makes access control
policy decisions

 Access decision is captured in a capability that is signed with the
secret key

 Capability identifies object, expire time, allowed operations, etc.

• Client signs requests using the capability signature as a
signing key

 OSD verifies the signature before allowing access

 OSD doesn’t know about the users, Access Control Lists (ACLs),
or whatever policy mechanism the File Server is using

Contents

Object-based File Systems3

Why not just OSD = file system?

• Scaling

 What if there’s more data than the biggest OSD can hold?

 What if too many clients access an OSD at the same time?

 What if there’s a file bigger than the biggest OSD can hold?

• Robustness

 What happens to data if an OSD fails?

 What happens to data if a Metadata Server fails?

• Performance

 What if thousands of objects are access concurrently?

 What if big objects have to be transferred really fast?

General Principle
• Architecture

 File = one or more groups of objects

 Usually on different OSDs

 Clients access Metadata Servers to locate data

 Clients transfer data directly to/from OSDs

• Address

 Capacity

 Robustness

 Performance

Capacity
• Add OSDs

 Increase total system capacity

 Support bigger files

 Files can span OSDs if necessary or desirable

Robustness
• Add metadata servers

 Resilient metadata services

 Resilient security services

• Add OSDs

 Failed OSD affects small percentage
of system resources

 Inter-OSD mirroring and RAID

 Near-online file system checking

Advantage of Reliability
• Declustered Reconstruction

 OSDs only rebuild actual data
(not unused space)

 Eliminates single-disk rebuild
bottleneck

 Faster reconstruction to
provide high protection

Performance
• Add metadata servers

 More concurrent metadata
operations

 Getattr, Readdir, Create, Open, …

• Add OSDs

 More concurrent I/O operations

 More bandwidth directly between
clients and data

Additional Advantages
• Optimal data placement

 Within OSD: proximity of
related data

 Load balancing across OSDs

• System-wide storage pooling

 Across multiple file systems

• Storage tiering

 Per-file control over
performance and resiliency

Per-file tiering in OSDs: striping

Per-file tiering in OSDs: RAID-4/5/6

Per-file tiering in OSDs: mirroring(RAID-1)

Flat namespace

Hierarchical File System Vs. Flat Address Space

• Hierarchical file system organizes data in the form of files and directories

• Object-based storage devices store the data in the form of objects

 It uses flat address space that enables storage of large number of objects

 An object contains user data, related metadata, and other attributes

 Each object has a unique object ID, generated using specialized algorithm

Filenames/inodes

Hierarchical File System

Object IDs

Flat Address Space

Object Object

Object Object

Object Object

Data

Attributes

Object ID

Metadata

Object

Virtual View / Virtual File Systems

Traditional FS Vs. Object-based FS (1)

Traditional FS Vs. Object-based FS (2)

• File system layer in host manages

 Human readable namespace

 User authentication, permission checking, Access Control
Lists (ACLs)

 OS interface

• Object Layer in OSD manages

 Block allocation and placement

 OSD has better knowledge of disk geometry and
characteristic so it can do a better job of file
placement/optimization than a host-based file system

Accessing Object-based FS

• Typical Access

 SCSI (block), NFS/CIFS (file)

• Needs a client component

 Proprietary

 Standard

Standard NFS v4.1

• A standard file access protocol for OSDs

Scaling Object-based FS (1)

Scaling Object-based FS (2)

• App servers (clients) have direct access to storage to
read/write file data securely

 Contrast with SAN where security is lacking

 Contrast with NAS where server is a bottleneck

• File system includes multiple OSDs

 Grow the file system by adding an OSD

 Increase bandwidth at the same time

 Can include OSDs with different performance characteristics
(SSD, SATA, SAS)

• Multiple File Systems share the same OSDs

 Real storage pooling

Scaling Object-based FS (3)

• Allocation of blocks to Objects handled within OSDs

 Partitioning improves scalability

 Compartmentalized managements improves reliability
through isolated failure domains

• The File Server piece is called the MDS

 Meta-Data Server

 Can be clustered for scalability

Why Objects helps Scaling

• 90% of File System cycles are in the read/write path

 Block allocation is expensive

 Data transfer is expensive

 OSD offloads both of these from the file server

 Security model allows direct access from clients

• High level interfaces allow optimization

 The more function behind an API, the less often you have to use
the API to get your work done

• Higher level interfaces provide more semantics

 User authentication and access control

 Namespace and indexing

Object Decomposition

Object-based File Systems

• Lustre

 Custom OSS/OST model

 Single metadata server

• PanFS

 ANSI T10 OSD model

 Multiple metadata servers

• Ceph

 Custom OSD model

 CRUSH metadata distribution

• pNFS

 Out-of-band metadata service for NFSv4.1

 T10 Objects, Files, Blocks as data services

• These systems scale

 1000’s of disks (i.e., PB’s)

 1000’s of clients

 100’s GB/sec

 All in one file system

Lustre (1)

• Supercomputing focus emphasizing

 High I/O throughput

 Scalability in the Pbytes of data and billions of files

• OSDs called OSTs (Object Storage Targets)

• Only RAID-0 supported across Objects

 Redundancy inside OSTs

• Runs over many transports

 IP over ethernet

 Infiniband

• OSD and MDS are Linux based & Client Software supports Linux

 Other platforms under consideration

• Used in Telecom/Supercomputing Center/Aerospace/National
Lab

Lustre (2) Architecture

Lustre (3) Architecture-MDS

• Metadata Server (MDS)

 Node(s) that manage namespace, file
creation and layout, and locking.
Directory operations

 File open/close

 File status

 File creation

 Map of file object location

 Relatively expensive serial atomic
transactions to maintain consistency

• •Metadata Target (MDT)

 Block device that stores metadata

Lustre (3) Architecture-OSS

• Object Storage Server (OSS)
 Multiple nodes that manage network

requests for file objects on disk.

• Object Storage Target (OST)
 Block device that stores file objects

Lustre (4) Simplest Lustre File System

Lustre (5) File Operation

• When a compute node needs to create or access a file, it requests the
associated storage locations from the MDS and the associated MDT.

• I/O operations then occur directly with the OSSs and OSTs associated
with the file bypassing the MDS.

• For read operations, file data flows from the OSTs to the compute node.

Lustre (6) File I/Os

• Single stream

• Single stream
through a master

• Parallel

Lustre (7) File Striping

• A file is split into segments and consecutive segments are stored
on different physical storage devices (OSTs).

Lustre (8) Aligned and Unaligned Stripes

• Aligned stripes is where each segment fits fully onto a single OST.
Processes accessing the file do so at corresponding stripe boundaries.

• Unaligned stripes means some file segments are split across OSTs.

Lustre (9) Striping Example

Lustre (10) Advantages/Disadvantages

• Striping will not benefit ALL applications

Ceph (1)
• What is Ceph?

Ceph is a distributed file system that provides excellent
performance, scalability and reliability.

Features

Decoupled data and
metadata

Dynamic distributed
metadata management

Reliable autonomic
distributed object storage

Goals

Easy scalability to peta-
byte capacity

Adaptive to varying
workloads

Tolerant to node failures

Ceph (2) – Architecture

• Decoupled Data and Metadata

Ceph (3) – Architecture

Ceph (4) – Components

Object
Storage
cluster

Clients

Metadata
Server
cluster

Cluster
monitor

Metadata I/O

Ceph (5) - Components

Meta Data
cluster

Clients

Object
Storage
cluster

Capability
Management

CRUSH is used to
map Placement

Group (PG) to OSD.

Ceph (6) – Components
• Client Synchronization

POSIX

Semantics

Relaxed
Consistency

 Synchronous I/O.
performance killer

 Solution: HPC extensions
to POSIX

 Default: Consistency /
correctness

 Optionally relax

 Extensions for both data
and metadata

Ceph (7) – Namespace Operations

Ceph optimizes for most
common meta-data
access scenarios

(readdir followed by stat)

But by default “correct”
behavior is provided at
some cost.

Stat operation on a file
opened by multiple
writers

Applications for which
coherent behavior is
unnecessary use
extensions

Namespace
Operations

Ceph (8) – Metadata

Per-MDS
journals

Eventually
pushed to

OSD

Sequential
Update

More efficient

Reducing re-
write workload.

Optimized on-
disk storage

layout for future
read access

Easier failure
recovery. Journal

can be
rescanned for

recovery.

• Metadata Storage
• Advantages

Ceph (9) – Metadata
• Dynamic Sub-tree Partitioning

 Adaptively distribute cached metadata hierarchically across a set of
nodes.

 Migration preserves locality.

 MDS measures popularity of metadata.

Ceph (10) – Metadata

• Traffic Control for metadata access

• Challenge
• Partitioning can balance workload but can’t deal with

hot spots or flash crowds

• Ceph Solution
 Heavily read directories are selectively replicated

across multiple nodes to distribute load

 Directories that are extra large or experiencing heavy
write workload have their contents hashed by file name
across the cluster

Ceph (11) – Distributed Object Storage

Ceph (11) – CRUSH

• CRUSH(x) (osdn1, osdn2, osdn3)

• Inputs
• x is the placement group

• Hierarchical cluster map

• Placement rules

• Outputs a list of OSDs

• Advantages
• Anyone can calculate object location

• Cluster map infrequently updated

Ceph (12) – Replication

• Objects are replicated on OSDs within same PG
• Client is oblivious to replication

Ceph (13) – Conclusion
• Strengths:

• Easy scalability to peta-byte capacity

• High performance for varying work loads

• Strong reliability

• Weaknesses:
• MDS and OSD Implemented in user-space

• The primary replicas may become bottleneck to heavy
write operation

• N-way replication lacks storage efficiency

• References
• Ceph: A Scalable, High Performance Distributed File System.

In Proc. of OSDI’06

Contents

Object-based Storage in Cloud4

Web Object Features

• RESTful API (i.e., web-based)

• Security/Authentication tied to Billing

• Metadata capabilities

• Highly available

• Loosely consistent

• Data Storage

 Blobs

 Tables

 Queues

• Other related APIs (compute, search, etc.)

 Storage API is relatively simple in comparison

Simple HTTP example

HTTP and objects

• Request specifies method and object:

 Operation: GET, POST, PUT, HEAD, COPY

 Object ID (/index.html)

• Parameters use MIME format borrowed from email

 Content-type: utf8;

 Set-Cookie: tracking=1234567;

• Add a data payload

 Optional

 Separated from parameters with a blank line (like email)

• Response has identical structure

 Status line, key-value parameters, optional data payload

This is a method
call on an object

These are
parameters

This is data

OpenStack REST API for Storage

• GET v1/account HTTP/1.1

 Login to your account

• HEAD v1/account HTTP/1.1

 List account metadata

• PUT v1/account/container HTTP/1.1

 Create container

• PUT v1/account/container/object HTTP/1.1

 Create object

• GET v1/account/container/object HTTP/1.1

 Read object

• HEAD v1/account/container/object HTTP/1.1

 Read object metadata

Create an object

Update metadata

Ali OSS (1)

• Access URL: http://<bucket>.oss-cn-beijing.aliyuncs.com/<object>

Access Layer
Restful Protocol

LB
LVS

Partition Layer
Key-Value Engine

Persistent Layer
Pangu FS

Load Balancing

Protocol Manager &
Access Control

Partition & Index

Persistent, Redundancy
& Fault-Tolerance

Ali OSS (2) Architecture

• WS: Web Server PM: Protocol Manager

Persistent
Layer

M

M

MPaxos
OS

OS

OS

OS
OS

Nuwa
LockService

KVServer KVServer KVServer

KVMaster

WS+PM WS+PM WS+PM WS+PM

Access Layer（RESTful API）

Partition Layer（LSM Tree）

Request ACK

Ali OSS (3) Partition Layer

• Append/Dump/Merge

MemFile
Block
Cache

Block Index Cache Bloomfilter Cache

Memory

Pangu

Youchao Files
Redo Log File

Log Data Files

Ali OSS (4) Partition Layer

• Read/Write Process

MemFile

Redo Log
File

Memory

Read

Youchao
FilesDump memfile

to youchao file

Write

Pangu

Merge

Ali OSS (5) Persistent Layer

• Write Pangu Normal File

PaxosPangu client

M

M

M

OS OS OS OS

Create Chunk

Chunk Location

A
p

p
en

d
 D

at
a

A
C

K

Append Append

ACK ACK

Ali OSS (6) Persistent Layer

• Write Pangu Log File

PaxosPangu client

M

M

M

OS OS OS OS

Create Chunk

Chunk Location

Fl
u

sh
 D

at
a

A
C

K

The Evolution of Data Storage

Thank you!

