Big Data Processing Technologies

Chentao Wu
Associate Professor
Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

® rirsirt

Schedule

e lecl:

Introduction on big data and cloud

computing

* lec2:
* lec3:
* lecd.
* lec5:
* lecb:
* lec/:
* lec8:

Introduction on data storage

Data reliability (Replication/Archive/EC)
Data consistency problem

Block storage and file storage
Object-based storage

Distributed file system

Metadata management

o~ oK X M
gt TANGHAT | G UNIVERSITY

Collaborators

Google
g Bl EB =

aliyun.com

\ 4

DALEMC

Contents

SHANGHALI JIAO TONG UNIVERSITY

twitter¥

o,

40 W
{ 4

P
(@) Y EXArE “
@) S ARELT 2L P
' SHANGHAD JIAO TONG UNIVERSITY 4l

Today’s data s‘are sstems (2)

Fundamental Propertles

* Consistency
 (informally) “every request receives the right response”
e E.g. If | get my shopping list on Amazon | expect it contains all
the previously selected items
 Availability
* (informally) “each request eventually receives a response”
e E.g. eventually | access my shopping list

e tolerance to network Partitions

* (informally) “servers can be partitioned in to multiple groups
that cannot communicate with one other”

The CAP Theorem

* The CAP Theorem (Eric Brewer):

* One can achieve at most two of the following:
* Data Consistency
e System Availability
* Tolerance to network Partitions

* Was first made as a conjecture At PODC 2000 by Eric Brewer

* The Conjecture was formalized and confirmed by MIT
researchers Seth Gilbert and Nancy Lynch in 2002

Proof

Read (A)

Networked Shared-data system

YEZAAY

SHANGHAL J1ao TONG UNIVERSITY

CAP

consistency

C

Claim: every distributed
system is on one side of the
triangle.

Fox&Brewer “CAP Theorem’:
C-A-P: choose two.

CP: always consistent, even in a
partition, but a reachable replica may
deny service without agreement of the
others (e.g., quorum).

CA: available, and consistent,
unless there is a partition.

A AP: a reachable replica provides P
. T service even in a partition, but may TR T
Availability be inconsistent. Partition-resilience

;fﬁfz:@ﬁé—z

NGHAT JIAO TONG UNIVERSITY X
-4

Forfeit Partitions

Examples
Single-site databases

Cluster databases
LDAP

Fiefdoms

W, W W W

Traits
» 2-phase commit
» cache validation protocols

» The“inside”

Tolerance to network

Partitions

) YELA S

\.‘;/ AT JIAG TONG

Observations

e CAP states that in case of failures you can have at most
two of these three properties for any shared-data
system

* To scale out, you have to distribute resources.
* Pin not really an option but rather a need
* The real selection is among consistency or availability

* In almost all cases, you would choose availability over
consistency

&) LHrars

GHAT 140 TONG UNIVERSITY X
. |

Forfeit Availabilit

Availability

Examples
Distributed databases
Distributed locking
Majority protocols

Traits
Pessimistic locking

Make minority partitions
unavailable

;fﬁfz:@ﬁé—z

NGHAT JIAO TONG UNIVERSITY X
-4

Forfeit Consistency

VvV V¥V VW

D R SN SRR

Examples
Coda

Web caching
DNS

Emissaries

Traits
expirations/leases
conflict resolution
Optimistic
The “outside”

Consistency Boundary‘Summary

* We can have consistency & availability within a cluster.
* No partitions within boundary!

* OS/Networking better at A than C

e Databases better at C than A

e \Wide-area databases can’t have both
* Disconnected clients can’t have both

Document-Oriented

Another CAP -- BASE

e BASE stands for Basically Available Soft State Eventually
Consistent system.

* Basically Available: the system available most of the
time and there could exists a subsystems temporarily
unavailable

e Soft State: data are “volatile” in the sense that their
persistence is in the hand of the user that must take
care of refresh them

* Eventually Consistent: the system eventually converge
to a consistent state

2 -
Another CAP -- ACID

e Relation among ACID and CAP is core complex

* Atomicity: every operation is executed in “all-or-nothing”
fashion

* Consistency: every transaction preserves the consistency
constraints on data

* Integrity: transaction does not interfere. Every
transaction is executed as it is the only one in the system

* Durability: after a commit, the updates made are
permanent regardless possible failures

Gl LrEX 4 LK
(@) Y ExEL7
\ ‘:_/7’ SHANGHAT JIAO TONG UNIVERSITY

CAP vs. ACID

* CAP * ACID

* C here looks to single-copy * C here looks to constraints
consistency on data and data model

* A here look to the * A looks to atomicity of
service/data availability operation and it is always

ensured

* | is deeply related to CAP. |
can be ensured in at most
one partition

* D is independent from CAP

P of 3 IS m|s|ead|ng (1)

* In principle every system should be designed to
ensure both C and A in normal situation

* When a partition occurs the decision among C and A
can be taken

* When the partition is resolved the system takes
corrective action coming back to work in normal
situation

P of 3 IS m|s|ead|ng (2)

* Partitions are rare events
* there are little reasons to forfeit by design C or A

* Systems evolve along time
* Depending on the specific partition, service or data, the
decision about the property to be sacrificed can change
* C, Aand P are measured according to continuum
e Several level of Consistency (e.g. ACID vs BASE)

e Several level of Availability
» Several degree of partition severity

Con5|stency/Latency Tradeoff (1 (1)

* CAP does not force designers to give up A or C but why
there exists a lot of systems trading C?

LATENCY |

* CAP does not explicitly talk about latency...
* ... however latency is crucial to get the essence of CAP

@) YiELALE
’v“ '] ERSITY

- 4y
Consistency/Latency Tradeoff (2)

~ SHANGHAT JIAO TONG LINTY (3
y z
- L

DA High Availability is a strong requirement of modern shared-data systems
Availability

* To achieve High Availability, data and services must be replicated

Replication

* Replication impose consistency maintenance

* Every form of consistency requires communication and a stronger
consistency requires higher latency

Contents

ot/ SHANGHALI JIAO TONG UNIVERSITY

tﬂ')\ﬂ/‘:ii

1J140 TONG

. D

ZPC Two Phase Commit Protocol (1)

* Coordinator: propose a vote to other nodes
* Participants/Cohorts: send a vote to coordinator

coordinator
©q
o

participants participants

/o’ﬁ')\@f i’

GHAT JLA0 TONG

ZPC Phase ones

e Coordinator propose a vote, and wait for the response
of participants

coordinator
©aq
o

participants participants

2PC: Phase two

e Coordinator commits or aborts the transaction
according to the participants’ feedback
* |f all agree, commit
 If any one disagree, abort

participants

Problem of ZPC

e Scenario:

— TC sends commit decision to A, A gets it and Phase 2: Decision
commits, and then both TC and A crash

— B, C, D, who voted Yes, now need to wait for dec:s;op

TC or A to reappear (w/ mutexes locked)

* They can’t commit or abort, as they don’t
know what A responded

— If that takes a long time (e.g., a human must
replace hardware), then availability suffers

—If TC is also participant, as it typically is, then yes '
this protocol is vulnerable to a single-node /
failure (the TC’s failure)!

* This is why 2 phase commit is called a blocking protocol

* In context of consensus requirements: 2PC is safe, but not live

3PC Three Phase Commit Protocol (1)

e Goal: Turn 2PC into a live (non-blocking) protocol
— 3PC should never block on node failures as 2PC did

* Insight: 2PC suffers from allowing nodes to irreversibly
commit an outcome before ensuring that the others
know the outcome, too

* |dea in 3PC: split “commit/abort” phase into two
phases

— First communicate the outcome to everyone

— Let them commit only after everyone knows the
outcome

) iz drs

HANGHAT JIAO TONG L

3PC Three Phase Commit Protocol (2)

Done. Phesaa COMMitted.

Status | Coordinator | | Cohorts | Status
| |
| |
Soliciting votes... !) !
g \ canCommit? \
i —== |
| |
| |
| = Yes ! Uncertain,
: o : Phasa 1 Timeout causes abort.
| |
1 - 1
Commit authorized. ! preCommit _ !
Timeout causes abart. : - :
I ACK | Prepared to commit.
: = : Phase 2 Timaout causes commit.
l l
1 . 1
Finalizing commit. ! doCommit o !
Timeout causes abort. : :
I haveCommitted I
| e |
| T |
| |
| |
| |
1 1
]]

Can 3PC Solvmg the Blockmg Problem? (1)

e Assuming same scenario as before (TC, A crash), can
B/C/D reach a safe decision when they time out?

e 1. If one of them has received

oreCommit, ... Phase 3: Commit

e 2.1f none of them has received doCommit
preCommit, ...

Can 3PC Solvmg the Blockmg Problem? (2)

e Assuming same scenario as before (TC, A crash), can
B/C/D reach a safe decision when they time out?

* 1. If one of them has received preCommit, Phase 3: Commit
they can all commit

o _ _ doCommit
* This is safe if we assume that A is DEAD and after

coming back it runs a recovery protocol in which it
requires input from B/C/D to complete an
uncommitted transaction

\

|
{

* This conclusion was impossible to reach for 2PC b/c
A might have already committed and exposed /
outcome of transaction to world .

e 2. If none of them has received preCommit,

they can all abort 3PC is safe for node
* This is safe, b/c we know A couldn't have received a ~r5shes (including

doCommit, so it couldn't have committed ..
TC+Ea rticipa nt}

) FiEidrs) e

A 14O TONG

3PC Timeout Handlmg Specs (trouble begins)

Done. Phasea Committed.

Status Coordinator | Cohorts Status
AR, SR R SR
| I
irit I I
Soliciting votes... E canCommit? . i [2. forina Dostars
| |
: = Yes :
| |
: : Phase 1
| |
mmi i7e : preCommit :
T |) |
: :
| ACK I renared to cammi
< e
| |
| |
Finalizing commit. : doCommit :
[Trenimemsio]| 1 [3.frombefore]
: haveCommitted :
| |
| |
| |
! !

But Does 3PC Ach|eve Consensus?

* Liveness (availability): Yes

— Doesn’t block, it always makes progress by timing out

 Safety (correctness): No

— Can you think of scenarios in which original 3PC would result
in inconsistent states between the replicas?

* Two examples of unsafety in 3PC:
— A hasn’t crashed, it’s just offline Network
— TC hasn’t crashed, it’s just offline _ Partitions

State: S i State: 51 ' State: S'
Partition
. 1 recover
Operations on $)

: State: S I

—O—0O0—"—0—"—0—

Partition starts B
<«4— Partition mode ——p

Time >

Partition Activating Partition
Detection Partition Mode Recovery

@® >#rizs Ry
3PC with Network Partitions

* One example scenario:
— A receives prepareCommit from TC Phase 2: Prepare

— Then, A gets partitioned from B/C/D '
and TC crashes prepareCommit

— None of B/C/D have received
prepareCommit, hence they all abort
upon timeout

— A is prepared to commit, hence, 1 /
according to protocol, after it times out, it -
unilaterally decides to commit

e Similar scenario with partitioned, not crashed, TC

Safety vs. liveness

* So, 3PC is doomed for network partitions

— The way to think about it is that this protocol’s
design trades safety for liveness

* Remember that 2PC traded liveness for safety
e Can we design a protocol that’s both safe and live?

Contents

Paxos

SHANGHALI JIAO TONG UNIVERSITY

* The only known completely-safe and largely-live
agreement protocol

* Lets all nodes agree on the same value despite node
failures, network failures, and delays

— Only blocks in exceptional circumstances that are vanishingly
rare in practice

* Extremely useful, e.g.:
— nodes agree that client X gets a lock
— nodes agree that Y is the primary

— nodes agree that Z should be the next operation to be
executed

Gl LrEX 4 LK
(@) Y ExEL7
\ ‘:_/7’ SHANGHAT JIAO TONG UNIVERSITY

Paxos (2)
* Widely used in both industry and academia

* Examples:
— Google: Chubby (Paxos-based distributed lock service)

Most Google services use Chubby directly or indirectly

— Yahoo: Zookeeper (Paxos-based distributed lock service)
In Hadoop rightnow

— MSR: Frangipani (Paxos-based distributed lock service)
— UW: Scatter (Paxos-based consistent DHT)

— Open source:

e libpaxos (Paxos-based atomic broadcast)

e Zookeeper is open-source and integrates with Hadoop

Paxos Propertles
e Safety

— If agreement is reached, everyone agrees on the same value
— The value agreed upon was proposed by some node
* Fault tolerance (i.e., as-good-as-it-gets liveness)

— If less than half the nodes fail, the rest nodes reach agreement
eventually

* No guaranteed termination (i.e., imperfect liveness)

— Paxos may not always converge on a value, but only in very
degenerate cases that are improbable in the real world

* Lots of awesomeness

— Basic idea seems natural in retrospect, but why it works in any

detail is incredibly complex!

@ riaxirs
Basic Idea (1)

e Paxos is similar to 2PC, but with some twists
* One (or more) node decides to be coordinator (proposer)

* Proposer proposes a value and solicits acceptance from others
(acceptors)

* Proposer announces the chosen value or tries again if it’s failed
to converge on a value

pProposer Values to agree on:

“~—acceptors

Whether to commit/abort a transaction

Which client should get the next lock

Which write we perform next

= What time to meet (party example)

Baycldea()

e Paxos is similar to 2PC, but with some twists
* One (or more) node decides to be coordinator (proposer)

* Proposer proposes a value and solicits acceptance from others
(acceptors)

* Proposer announces the chosen value or tries again if it’s failed
to converge on a value

proposer ~

acceprors

(F'i S x4 '&: >
@) riaxdrs)
e WA/ SHANGHAL JIAO TONG UNIVERSITY Py p

5 ‘ P g

Béﬂcldea(B)

e Paxos is similar to 2PC, but with some twists
* One (or more) node decides to be coordinator (proposer)

* Proposer proposes a value and solicits acceptance from others
(acceptors)

* Proposer announces the chosen value or tries again if it’s failed
to converge on a value

P f?f?%?f * Hence, Paxos is egalitarian: any
[v}‘ Vv YRS node can propose/accept, no
one has special powers

[V:\\ V! : V’]
V/ v * Just like real world, e.g., group
proposer < of friends organize a party —

acceptors anyone can take the lead

* What if multiple nodes become proposers
simultaneously?

 What if the new proposer proposes different values
than an already decided value?

 What if there is a network partition?
 What if a proposer crashes in the middle of solicitation?

 What if a proposer crashes after deciding but before
announcing results?

Core D|fferent|at|ng I\/Iechamsms

1. Proposal ordering

— Lets nodes decide which of several concurrent proposals to
accept and which to reject

2. Majority voting

— 2PC needs all nodes to vote Yes before committing
* As aresult, 2PC may block when a single node fails
— Paxos requires only a majority of the acceptors (half+1) to accept
a proposal

* As aresult, in Paxos nearly half the nodes can fail to reply and
the protocol continues to work correctly

* Moreover, since no two majorities can exist simultaneously,
network partitions do not cause problems (as they did for 3PC)

(@) Yz A ¥
Implementation of Paxos

* Paxos has rounds; each round has a unique ballot id

* Rounds are asynchronous
* Time synchronization not required

* |f you’re in round j and hear a message from round j+1, abort
everything and move over to round j+1

* Use timeouts; may be pessimistic

e Each round itself broken into phases (which are also
asynchronous)
* Phase 1: A leader is elected (Election)
* Phase 2: Leader proposes a value, processes ack (Bill)
* Phase 3: Leader multicasts final value (Law)

Phase 1 Electlon

* Potential leader chooses a unique ballot id, higher than seen anything so far

Sends to all processes

Processes wait, respond once to highest ballot id
* If potential leader sees a higher ballot id, it can’t be a leader
* Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case
* Processes also log received ballot ID on disk

If a process has in a previous round decided on a value V/, it includes value
v’ inits response

If majority (i.e., guorum) respond OK then you are the leader
* If no one has majority, start new round

A round cannot have two leaders (why?)

N/
\ /

Phase 2 Proposal (B|H)

* Leader sends proposed value v to all

* use v=v_if some process already decided in a previous
round and sent you its decided value Vv’

* Recipient logs on disk; responds OK

/ N/

Please elect me

1

Phase 3 DeC|S|on (Law)

* If leader hears a majority of OKs, it lets everyone
know of the decision

* Recipients receive decision, log it on disk

Value v ok?

ARG VAN
AR

Please elect me

7

Wh|ch is the pomt of no-return? (1)

* That is, when is consensus reached in the system

/N 7\

Please elect me

1

Wh|ch is the pomt of no-return? (2)

e |f/when a majority of processes hear proposed

value and accept it (i.e., are about to/have
respond(ed) with an OK!)

* Processes may not know it yet, but a decision has
been made for the group

* Even leader does not know it yet

e What if leader fails after that?

* Keep having roundg until some round completes

N NN
NSNS

NN
f‘;ﬁ KX
N, 74 SHANGHAT JIAO T

N s/ ONG UNIVERSITY (,’.,‘ -
. |

Safety

* If some round has a majority (i.e., quorum) hearing
proposed value v and accepting it (middle of Phase 2),
then subsequently at each round either: 1) the round
chooses v’ as decision or 2) the round fails

* Proof:
* Potential leader waits for majority of OKs in Phase 1

* At least one will contain v’ (because two majorities or guorums
always intersect)

e |t will choose to send out v’ in Phase 2

* Success requires a majority, and any two majority sets
intersect

N NN
N/ NS

'{FF-;\%\ N A 4 'Jg y

@) FExart RY

\vg:_f/ SHANGHAT JI40 TONG UNIVERSITY . ‘ "
What could go wrong?

* Process fails
e Majority does not include it

 When process restarts, it uses log to retrieve a past decision (if any)
and past-seen ballot ids. Tries to know of past decisions.

Leader fails
e Start another round

Messages dropped
* If too flaky, just start another round

Note that anyone can start a round any time

Protocol may never end — tough luck, buddy!
* Impossibility result not violated
 If things go well sometime-in the future, consensus reached

N NN
N/ NS

Contents

Chub

SHANGHALI JIAO TONG UNIVERSITY

|‘I(;—; 3 “,;y %A \,"2 v
@) SALL Py
Google Chubby

e Research Paper

* The Chubby Lock Service for Loosely-coupled Distributed Systems.
Proc. of OSDI’06.

* What is Chubby?

* Lock service in a loosely-coupled distributed system (e.g., 10K 4-
processor machines connected by 1Gbps Ethernet)

* Client interface similar to whole-file advisory locks with notification
of various events (e.g., file modifications)

* Primary goals: reliability, availability, easy-to-understand semantics

e How is it used?

* Used in Google: GFS, Bigtable, etc.

e Elect leaders, store small amount of meta-data, as the root of the
distributed data structures

Sy N v
@) r#rdry

S A/ SHANGHAT JIAO TONG UNIVE ‘4'.?
L)
. |

System Structure (1)

r 5 servers of a Chubby cell
client ! chubby

application; library \Q
client ' chubby / O

master

application; library

A

client processes

Figure 1: System structure
* A chubby cell consists of a small set of servers (replicas)

* A master is elected from the replicas via a consensus protocol
* Master lease: several seconds
* If a master fails, a new one will be elected when the master leases expire

* Client talks to the master via chubby library
* All replicas are listed in DNS; clients discover the master by talking to any replica

XERAAY

£,
\“‘// SHANGHAT JIAO TONG UNIVERSITY “4
L &
. |

r 5 servers of a Chubby cell
client !chubbyl T

application; library \O :
client fchubby/@ !

master

application; library

A

1

i

1

. 1
client processes ; Q

1

1

Figure 1: System structure

Replicas maintain copies of a simple database

Clients send read/write requests only to the master

For a write:
* The master propagates it to replicas via the consensus protocol
» Replies after the write reaches a majority of replicas

For a read:

* The master satisfies the read alone
S

@ aust

NGHAT JIAO TONG UNIVERST

System Structure (3)

- 5 servers of a Chubby cell
L

client : chubby

application: library \Q

g ' master
.]]
client ! chuhby//'Q :
= A] < 1 |
application: library : :
[e |
* O
| |
| 1
: ! .
client processes : O :
| |
R ;

Figure 1: System structure

* If a replica fails and does not recover for a long time (a few hours)

* A fresh machine is selected to be a new replica, replacing the failed one
It updates the DNS
Obtains a recent copy of the database

The current master polls DNS periodically to discover new replicas

Simple UNIX- ike F|Ie System Interface

* Chubby supports a strict tree of files and directories
* No symbolic links, no hard links
 /Is/foo/wombat/pouch

e 1t component (Is): lock service (common to all names)

« 2" component (foo): the chubby cell (used in DNS lookup to find the
cell master)

* The rest: name inside the cell

* Can be accessed via Chubby’s specialized API / other file
system interface (e.g., GFS)

e Support most normal operations (create, delete, open,
write, ...)

 Support advisory reader/writer lock on a node

S

o
ndles

1 G UNIVIERSITY

ACL File H

* Access Control List (ACL)

* A node has three ACL names (read/write/change ACL names)
* An ACL name is a name to a file in the ACL directory
* The file lists the authorized users

* File handle:

* Has check digits encoded in it; cannot be forged
e Sequence number:
* a master can tell if this handle is created by a previous master

 Mode information at open time:

* If previous master created the handle, a newly restarted master can
learn the mode information

Locks and Sequences

Locks: advisory rather than mandatory

Potential lock problems in distributed systems
* A holds alock L, issues request W, then fails
e Bacquires L (because A fails), performs actions
* W arrives (out-of-order) after B’s actions

Solution #1: backward compatible

* Lock server will prevent other clients from getting the lock if a lock
become inaccessible or the holder has failed

* Lock-delay period can be specified by clients

Solution #2: sequencer
* Alock holder can obtain a sequencer from Chubby

* It attaches the sequencer to any requests that it sends to other servers
(e.g., Bigtable)

* The other servers can verify the sequencer information

* Clients can subscribe to events (up-calls from Chubby
library)

* File contents modified: if the file contains the location of a
service, this event can be used to monitor the service location

Master failed over
Child node added, removed, modified
: probably communication problem
Lock acquired (rarely used)
Locks are conflicting (rarely used)

@ FExizt

11140 TONG &

APIS

Open()
* Mode: read/write/change ACL; Events; Lock-delay
* Create new file or directory?

Close()

GetContentsAndStat(), GetStat(), ReadDir()
SetContents(): set all contents; SetACL()
Delete()

Locks: Acquire(), TryAcquire(), Release()

* Sequencers: GetSequencer(), SetSequencer(), CheckSequencer()

Example — Pr|mary EIectlon

Open(“write mode”);
If (successful) {

// primary
SetContents(“identity”);

}

Else {
// replica
open (“read mode”, “file-modification event”);
when notified of file modification:

primary= GetContentsAndStat();

e Strict consistency: easy to understand
* Lease based
* master will invalidate cached copies upon a write request

* Write-through caches

) LAY

AT J1AO TONG 4

Sessmns Keep- A||ves I\/Iaster Fail-overs (1)

e Session:

* Aclient sends keep-alive requests to a master
* A master responds by a keep-alive response

Immediately after getting the keep-alive response, the client sends another
request for extension

The master will block keep-alives until close the expiration of a session
Extension is default to 12s

* Clients maintain a local timer for estimating the session timeouts
(time is not perfectly synchronized)

* If local timer runs out, wait for a 45s grace period before ending the
session

* Happens when a master fails over

Sessions, Keep-Alives, Master Fail-overs (2)

LD
. : .
A £f
Noas “// SHANGHAL JIA0 TONG UNIVERSITY ‘4\’...‘ ’ o .))
L £ 2 ’
- {

old master dies l no master lnew master elected
lease M2 :r ________________________________ 1:
h | |
OLD MASTER — | lease M3 ' NEW MASTER
8 I
<«—— KeepAlives—
"""""""""""""""""""""""" lease C3 !
™ CLIENT
- l

jeopardy safe
Figure 2: The role of the grace period i master fail-over

* Database implementation
* asimple database with write ahead logging and snapshotting

* Backup:

* Write a snapshot to a GFS server in a different building

* Mirroring files across multiple cells

e Configuration files (e.g., locations of other services, access
control lists, etc.)

/00Keeper

A highly-available service for coordinating
processes of distributed applications.

* Developed at Yahoo! Research

e Started as sub-project of Hadoop, now a top-level
Apache project

* Development is driven by application needs

700Keeper

» [book] ZooKeeper by Junqueira & Reed, 2013

/fﬁ')\@f‘:ii

11140 TONG &

)
‘-.-

ZooKeeper in the Hadoop Ecosystem

Pig Hive Sqoop
(Data Flow) (SQL) (Data Transfer)

T | -
22 5
§ = MapReduce (Job Scheduling/Execution) o ®

o - L N
(0 k< : I©
NS 8

HDFS

) LAY

AT J1AO TONG 4 SITY

ZooKeeper Serwce (1)‘

e /node
* In-memory data node in the Zookeeper data
* Have a hierarchical namespace
* UNIX like notation for path

* Types of Znode
* Regular

* Ephemeral
lapp2

* Flags of Znode
* Sequential flag

lapp1/p_1 lapp1/p_2 /app1/p_3

’
T 9 'y
FHAT JIAO TONG LURIVERSIT ‘.._-
\ Ve

/ooKeeper Service (2) .

e Watch Mechanism

* Get notification
* One time triggers

e Other properties of Znode

* Znode doesn’t not design for data storage, instead it store
meta-data or configuration

* Can store information like timestamp version

e Session
* A connection to server from client is a session
* Timeout mechanism

* Create(path, data, flags)

* Delete(path, version)

* Exist(path, watch)

e getData(path, watch)

» setData(path, data, version)

e getChildren(path, watch)

* Sync(path)

* Two version synchronous and asynchronous

@) riFxdrs

N £3
\E,!__// ANGHAT JI40 |

Guarantees

e Linearizable writes

* All requests t
are serializab

* FIFO client orc

nat update the state of ZooKeeper
e and respect precedence

er

* All requests are in order that they were sent by

client.

/Axﬂ')\ﬂf‘%\

Q
\‘“‘ 1146 TONG ‘,‘ .
. |

Implementation (1)

* ZooKeeper data is replicated on each server that
composes the service

replicated across
all servers
(in-memory)

_S—) Response

ZooKeeper Service

Request

Write
i‘) Processor

Request

Replicated
Database

updates first
logged to disk;
write-ahead log

write request requires Road) and snapshot

Request

coordination between servers for recovery

‘ _‘9.'-' -

n (2)
* ZooKeeper server services clients

* Clients connect to exactly one server to submit
requests
* read requests served from the local replica

* write requests are processed by an agreement protocol
(an elected server leader initiates processing of the write
request)

45 5
- - = v | 2

(&), P T EN v

by ANGHAT J1AO T

~ SHANGHAT JIAO TONG UNIVERSITY X
y z
. -

Hadoop Environment

BACKUP
MASTER

COORDINATION

SERVICE
MASTER

Slave Slave

* String create(path, data, flags)
* void delete(path, version)

* Stat exists(path, watch)
Questions: « (data, Stat) getData(path, watch)
1. How does a new worker query ZK « Stat setData(path, data, version)
for a configuration? * String[] getChildren(path, watch)
2. How does an administrator change

the configuration on the fly?

3. How do the workers read the new

configuration? 7 !

1. getData(/appl/config,true)
2. setData(/appl/config/config data,-1)

app configuration ./

3. getData(/appl/config,true)
/app1/config /ébpl/ progress

-.v\ \.‘; SHANGHAL]IM'D TONG UNIVERSITY ‘ f

Example: groub embership

* String create(path, data, flags)

* void delete(path, version)

* Stat exists(path, watch)

* (data, Stat) getData(path, watch)
* Stat setData(path, data, version)
Questions: * String[] getChildren(path, watch)
1. How can all workers (slaves) of an

application register themselves on ZK?

2. How can a process find out about all ;-
active workers of an application? o
| /appl
1 éféatek/aépi/&érkexis/ | ;
worker,data, EPHEMERAL) /app]_ /workers
2. getChildren(/appl/workers,true) "\
/appl/workers/workerl /appl/workers/worker2

OPLIEVS
by \.f SHAN

GHAT J1AO TONG UNIVERSITY

Example:
simple locks

Question:

* String create(path, data, flags)
* void delete(path, version)

* Stat exists(path, watch)

* (data, Stat) getData(path, watch)
* Stat setData(path, data, version)
* String[] getChildren(path, watch)

1. How can all workers of an application use a single resource through
a lock?

create(/appl/lockl,..,EPHE.)

yes

!

getData(/appl/lockl,true)
all processes compete at all times for the lock

[)./
/appl _ A\
'7"&’11‘f e
use locked resource A_,\/appl/workers -
. /appl/lockl

/appl/workers/workerl /Eppl/workers/workerZ

Example: locking without herd effect

id=create(/appl/locks/lock ,SEQ.|EPHE.)
~ |

o
v

ids’= getChildren(/appl/locks/,false)
f = - 4 J

m=nmnmgi;;~—> exit (use lock)

[\'/ A/ /appl
| - no 1 -
! O e .. /appl/locks
\] /appl/locks/lock 1 - /appl/locks/lock 2

fwait for notification

Question:
1. How can all workers of an application use a single resource through

a lock?

~ N M
‘; FIERALS
1"\ _; SHANGHAL J1ao TONG UNIVERSITY

* String create(path, data, flags)

Exa m p | e : * vold delete(path, version)
. * Stat exists(path, watch)
|eader eleCt|On * (data, Stat) getData(path, watch)
* Stat setData(path, data, version)
* String[] getChildren(path, watch)

Question:

1. How can all workers of an application elect a leader among
themselves?

getData(/appl/workers/leader,true)

y (, /
.l: ‘ &,/
ok S| For1ow
= A/ /appl

a8 u/ appl/workers

create(/appl/workers/leader,IP,EPHE.)

N v
noN\. A
> N

ok? »>—»|lead /appl /workers/leader /appl/workers/workerl

\\/ s

if the leader dies, elect again (“herd effect”)

AT LA TONG LINTY
N

Zookeeper Application (1)
* Fetching Service

* Using ZooKeeper for recovering from failure of masters
* Configuration metadata and leader election

2000

1500

1000

Number of operations

500

0]
Oh 6h 12h 18h 24h 30h 36h 42h 48h 54h 60h 66h

Time in seconds

Zookeeper Apphcatlon (2)

* Yahoo! Message Broker
* A distributed publish-subscribe system
primary and backup

server per topic;
topic subscribers

monitored by bioxgrdomain
all servers /I\
shutdown = nodes migratfbn_prohlb‘ﬂeﬂ topics broker disabled

<hostname><hoStname> ... <hoStname> <topic> <topic> <topic>

i load :

.......... primary backup

ephemeral nodes « hostname |

Contents

) Project 2

SHANGHALI JIAO TONG UNIVERSITY

@) riaxary

\‘.K

1J140 TON

NS

Distributed Lock Des‘lgn (1)

* Design a simple consensus system, which satisfy the
following requirements,
e Contain one leader server and multiple follower server

* Each follower server has a replicated map, the map is consisted
with the leader server. The key of map is the name of distributed
lock, and the value is the Client ID who owns the distributed lock.

Client 1

TryLock

Client 2 —— i
TryUnlock OwnTheLock g Eﬁ] E

) LAY

AT J1AO TONG 4

Dlstrlbuted Lock Des‘lgn (2)

* Support multiple clients to preempt/release a distributed lock,
and check the owner of a distributed lock.

* For preempting a distributed lock
-- If the lock doesn’t exist, preempt success;
-- Otherwise, preempt fail;
* For releasing a distributed lock
-- If the client owns the lock, release success;
-- Otherwise, release fail;
* For checking a distributed lock
-- Any client can check the owner of a distributed lock

/fﬁ')\@f%‘

1140 TONG | wsI

Dlstrlbuted Lock De5|gn (3)

e To ensure the data consistency of the system, the follower
servers send all preempt/release requests to the leader server.

* To check the owner of a distributed lock, the follower server
accesses its map directly and sends the results to the clients.

* When the leader server handling preempt/release requests:

* |If needed, modify its map and sends a request propose to all
follower servers

 When a follower server receives a request propose
-- modify its local map
-- check the request is pending or not

-- if the request is pending, send an answer to the client

04 e
Dlstrlbuted Lock Design (4)

* In this system, all clients provide preempt/release/check
distributed lock interface.

* When a client is initialized
e Define the IP address of the target server

e Generate the Client ID information based on the user information
(UUID)

@ YERAAE
SHANGHAL jIM‘) TONG UNIVERSITY

|

Distributed Lc5c

 Reference

e Data structure of a client in the consensus system
class DistributedLock

{
public:
DistributedLock(std::string serverAddr); /*Generate Clientld and establish a
connection to a Server*/
~ DistributedLock();
bool TryLock(std::string lockKey);
bool TryUnlock(std::string lockKey);
bool OwnThelLock(std::string lockKey);
private:
std::string GetClientld(); /*Generate Clientld based on UUID*/
bool ConnectToServer(std::string serverAddr); /*Attempt to connect to a Server*/
std::string clientld;
bool isConnected;
int fd; // the descriptor used to talk to the consensus system

Thank you!

YEZARS

SHANGHALI JIAO TONG UNIVERSITY

