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Schedule

• lec1: Introduction on big data and cloud 
computing

• Iec2: Introduction on data storage

• lec3: Data reliability (Replication/Archive/EC) 

• lec4: Data consistency problem

• lec5: Block storage and file storage

• lec6: Object-based storage

• lec7: Distributed file system

• lec8: Metadata management 
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Data Consistency & CAP Theorem1



Today’s data share systems (1)



Today’s data share systems (2)



Fundamental Properties
• Consistency

• (informally) “every request receives the right response”

• E.g. If I get my shopping list on Amazon I expect it contains all 
the previously selected items

• Availability
• (informally) “each request eventually receives a response”

• E.g. eventually I access my shopping list

• tolerance to network Partitions
• (informally) “servers can be partitioned in to multiple groups 

that cannot communicate with one other”



The CAP Theorem
• The CAP Theorem (Eric Brewer):

• One can achieve at most two of the following:
• Data Consistency

• System Availability

• Tolerance to network Partitions

• Was first made as a conjecture At PODC 2000 by Eric Brewer 

• The Conjecture was formalized and confirmed by MIT 
researchers Seth Gilbert and Nancy Lynch in 2002 



Proof



Consistency (Simplified)

WAN

Replica A Replica B

Update Retrieve



Tolerance to Network Partitions / Availability

WAN

Replica A Replica B

Update Update



CAP



Forfeit Partitions



Observations

• CAP states that in case of failures you can have at most 
two of these three properties for any shared-data 
system

• To scale out, you have to distribute resources.
• P in not really an option but rather a need

• The real selection is among consistency or availability

• In almost all cases, you would choose availability over 
consistency



Forfeit Availability



Forfeit Consistency



Consistency Boundary Summary

• We can have consistency & availability within a cluster.
• No partitions within boundary!

• OS/Networking better at A than C

• Databases better at C than A

• Wide-area databases can’t have both

• Disconnected clients can’t have both



CAP in Database System



Another CAP -- BASE

• BASE stands for Basically Available Soft State Eventually 
Consistent system.

• Basically Available: the system available most of the 
time and there could exists a subsystems temporarily 
unavailable

• Soft State: data are “volatile” in the sense that their 
persistence is in the hand of the user that must take 
care of refresh them

• Eventually Consistent: the system eventually converge 
to a consistent state



Another CAP -- ACID

• Relation among ACID and CAP is core complex

• Atomicity: every operation is executed in “all-or-nothing” 
fashion

• Consistency: every transaction preserves the consistency 
constraints on data

• Integrity: transaction does not interfere. Every 
transaction is executed as it is the only one in the system

• Durability: after a commit, the updates made are 
permanent regardless possible failures



CAP vs. ACID

• ACID

• C here looks to constraints 
on data and data model

• A looks to atomicity of 
operation and it is always 
ensured

• I is deeply related to CAP. I 
can be ensured in at most 
one partition

• D is independent from CAP

• CAP

• C here looks to single-copy 
consistency

• A here look to the 
service/data availability



2 of 3 is misleading (1)
• In principle every system should be designed to 

ensure both C and A in normal situation

• When a partition occurs the decision among C and A 
can be taken

• When the partition is resolved the system takes 
corrective action coming back to work in normal 
situation



2 of 3 is misleading (2)
• Partitions are rare events

• there are little reasons to forfeit by design C or A

• Systems evolve along time
• Depending on the specific partition, service or data, the 

decision about the property to be sacrificed can change

• C, A and P are measured according to continuum
• Several level of Consistency (e.g. ACID vs BASE)

• Several level of Availability

• Several degree of partition severity



Consistency/Latency Tradeoff (1)
• CAP does not force designers to give up A or C but why 

there exists a lot of systems trading C?

• CAP does not explicitly talk about latency…

• … however latency is crucial to get the essence of CAP



Consistency/Latency Tradeoff (2)
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Consensus Protocol: 2PC and 3PC2



2PC: Two Phase Commit Protocol (1)
• Coordinator: propose a vote to other nodes

• Participants/Cohorts: send a vote to coordinator



2PC: Phase one
• Coordinator propose a vote, and wait for the response 

of participants



2PC: Phase two
• Coordinator commits or aborts the transaction 

according to the participants’ feedback
• If all agree, commit

• If any one disagree, abort



Problem of 2PC
• Scenario:

– TC sends commit decision to A, A gets it and 
commits, and then both TC and A crash

– B, C, D, who voted Yes, now need to wait for 
TC or A to reappear (w/ mutexes locked)

• They can’t commit or abort, as they don’t 
know what A responded

– If that takes a long time (e.g., a human must 
replace hardware), then availability suffers

– If TC is also participant, as it typically is, then 
this protocol is vulnerable to a single-node 
failure (the TC’s failure)!

• This is why 2 phase commit is called a blocking protocol

• In context of consensus requirements: 2PC is safe, but not live



3PC: Three Phase Commit Protocol (1)

• Goal: Turn 2PC into a live (non-blocking) protocol

– 3PC should never block on node failures as 2PC did

• Insight: 2PC suffers from allowing nodes to irreversibly 
commit an outcome before ensuring that the others 
know the outcome, too

• Idea in 3PC: split “commit/abort” phase into two 
phases

– First communicate the outcome to everyone

– Let them commit only after everyone knows the 
outcome



3PC: Three Phase Commit Protocol (2)



Can 3PC Solving the Blocking Problem?  (1)

• 1. If one of them has received 
preCommit, …

• 2. If none of them has received 
preCommit, …

• Assuming same scenario as before (TC, A crash), can 
B/C/D reach a safe decision when they time out?



Can 3PC Solving the Blocking Problem?  (2)

3PC is safe for node 
crashes (including 
TC+participant)

• Assuming same scenario as before (TC, A crash), can 
B/C/D reach a safe decision when they time out?

• 1. If one of them has received preCommit, 
they can all commit

• This is safe if we assume that A is DEAD and after 
coming back it runs a recovery protocol in which it 
requires input from B/C/D to complete an 
uncommitted transaction

• This conclusion was impossible to reach for 2PC b/c 
A might have already committed and exposed 
outcome of transaction to world

• 2. If none of them has received preCommit, 
they can all abort

• This is safe, b/c we know A couldn't have received a 
doCommit, so it couldn't have committed



3PC: Timeout Handling Specs (trouble begins)



But Does 3PC Achieve Consensus?
• Liveness (availability): Yes

– Doesn’t block, it always makes progress by timing out

• Safety (correctness): No

– Can you think of scenarios in which original 3PC would result 
in inconsistent states between the replicas?

• Two examples of unsafety in 3PC:

– A hasn’t crashed, it’s just offline

– TC hasn’t crashed, it’s just offline

Network

Partitions



Partition Management



3PC with Network Partitions

• Similar scenario with partitioned, not crashed, TC

• One example scenario:

– A receives prepareCommit from TC

– Then, A gets partitioned from B/C/D 
and TC crashes

– None of B/C/D have received 
prepareCommit, hence they all abort 
upon timeout

– A is prepared to commit, hence, 
according to protocol, after it times out, it 
unilaterally decides to commit



Safety vs. liveness
• So, 3PC is doomed for network partitions

– The way to think about it is that this protocol’s 
design trades safety for liveness

• Remember that 2PC traded liveness for safety

• Can we design a protocol that’s both safe and live?
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Paxos3



Paxos (1)
• The only known completely-safe and largely-live 

agreement protocol

• Lets all nodes agree on the same value despite node 
failures, network failures, and delays

– Only blocks in exceptional circumstances that are vanishingly 
rare in practice

• Extremely useful, e.g.:

– nodes agree that client X gets a lock

– nodes agree that Y is the primary

– nodes agree that Z should be the next operation to be 
executed



Paxos (2)
• Widely used in both industry and academia 

• Examples: 
– Google: Chubby (Paxos-based distributed lock service) 

Most Google services use Chubby directly or indirectly 

– Yahoo: Zookeeper (Paxos-based distributed lock service)

In Hadoop rightnow

– MSR: Frangipani (Paxos-based distributed lock service) 

– UW: Scatter (Paxos-based consistent DHT) 

– Open source: 

• libpaxos (Paxos-based atomic broadcast) 

• Zookeeper is open-source and integrates with Hadoop



Paxos Properties
• Safety

– If agreement is reached, everyone agrees on the same value

– The value agreed upon was proposed by some node

• Fault tolerance (i.e., as-good-as-it-gets liveness)

– If less than half the nodes fail, the rest nodes reach agreement 
eventually

• No guaranteed termination (i.e., imperfect liveness)

– Paxos may not always converge on a value, but only in very 
degenerate cases that are improbable in the real world

• Lots of awesomeness 

– Basic idea seems natural in retrospect, but why it works in any 
detail is incredibly complex!



Basic Idea (1)
• Paxos is similar to 2PC, but with some twists

• One (or more) node decides to be coordinator (proposer)

• Proposer proposes a value and solicits acceptance from others 
(acceptors)

• Proposer announces the chosen value or tries again if it’s failed 
to converge on a value

• Values to agree on:

• Whether to commit/abort a transaction

• Which client should get the next lock

• Which write we perform next

• What time to meet (party example)



Basic Idea (2)
• Paxos is similar to 2PC, but with some twists

• One (or more) node decides to be coordinator (proposer)

• Proposer proposes a value and solicits acceptance from others 
(acceptors)

• Proposer announces the chosen value or tries again if it’s failed 
to converge on a value



Basic Idea (3)
• Paxos is similar to 2PC, but with some twists

• One (or more) node decides to be coordinator (proposer)

• Proposer proposes a value and solicits acceptance from others 
(acceptors)

• Proposer announces the chosen value or tries again if it’s failed 
to converge on a value

• Hence, Paxos is egalitarian: any 
node can propose/accept, no 
one has special powers

• Just like real world, e.g., group 
of friends organize a party –
anyone can take the lead



Challenges

• What if multiple nodes become proposers 
simultaneously?

• What if the new proposer proposes different values 
than an already decided value?

• What if there is a network partition?

• What if a proposer crashes in the middle of solicitation?

• What if a proposer crashes after deciding but before 
announcing results?



Core Differentiating Mechanisms

1. Proposal ordering

– Lets nodes decide which of several concurrent proposals to 
accept and which to reject

2. Majority voting

– 2PC needs all nodes to vote Yes before committing

• As a result, 2PC may block when a single node fails

– Paxos requires only a majority of the acceptors (half+1) to accept 
a proposal

• As a result, in Paxos nearly half the nodes can fail to reply and 
the protocol continues to work correctly

• Moreover, since no two majorities can exist simultaneously, 
network partitions do not cause problems (as they did for 3PC)



Implementation of Paxos

• Paxos has rounds; each round has a unique ballot id

• Rounds are asynchronous
• Time synchronization not required

• If you’re in round j and hear a message from round j+1, abort 
everything and move over to round j+1

• Use timeouts; may be pessimistic

• Each round itself broken into phases (which are also 
asynchronous)
• Phase 1: A leader is elected (Election)

• Phase 2: Leader proposes a value, processes ack (Bill)

• Phase 3: Leader multicasts final value (Law)



Phase 1 – Election
• Potential leader chooses a unique ballot id, higher than seen anything so far

• Sends to all processes

• Processes wait, respond once to highest ballot id

• If potential leader sees a higher ballot id, it can’t be a leader

• Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case

• Processes also log received ballot ID on disk

• If a process has in a previous round decided on a value v’, it includes value 
v’ in its response

• If majority (i.e., quorum) respond OK then you are the leader

• If no one has majority, start new round 

• A round cannot have two leaders (why?)

Please elect me! OK!



Phase 2 – Proposal (Bill)
• Leader sends proposed value v to all 

• use v=v’ if some process already decided in a previous 
round and sent you its decided value v’

• Recipient logs on disk; responds OK

Please elect me! OK!

Value v ok?

OK!



Phase 3 – Decision (Law)

• If leader hears a majority of OKs, it lets everyone 
know of the decision

• Recipients receive decision, log it on disk 

Please elect me! OK!

Value v ok?

OK!

v!



Which is the point of no-return? (1)

• That is, when is consensus reached in the system

Please elect me! OK!

Value v ok?

OK!

v!



Which is the point of no-return? (2)
• If/when a majority of processes hear proposed 

value and accept it (i.e., are about to/have 
respond(ed) with an OK!)

• Processes may not know it yet, but a decision has 
been made for the group
• Even leader does not know it yet

• What if leader fails after that?
• Keep having rounds until some round completes

Please elect me! OK!

Value v ok?

OK!

v!



Safety 
• If some round has a majority (i.e., quorum) hearing 

proposed value v’ and accepting it (middle of Phase 2), 
then subsequently at each round either: 1) the round 
chooses v’ as decision or 2) the round fails

• Proof: 
• Potential leader waits for majority of OKs in Phase 1

• At least one will contain v’ (because two majorities or quorums 
always intersect)

• It will choose to send out v’ in Phase 2

• Success requires a majority, and any two majority sets 
intersect

Please elect me! OK!

Value v ok?

OK!

v!



What could go wrong?

Please elect me! OK!

Value v ok?

OK!

v!

• Process fails

• Majority does not include it

• When process restarts, it uses log to retrieve a past decision (if any) 
and past-seen ballot ids. Tries to know of past decisions.

• Leader fails

• Start another round

• Messages dropped

• If too flaky, just start another round

• Note that anyone can start a round any time

• Protocol may never end – tough luck, buddy!

• Impossibility result not violated

• If things go well sometime in the future, consensus reached
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Google Chubby

• Research Paper
• The Chubby Lock Service for Loosely-coupled Distributed Systems. 

Proc. of OSDI’06.

• What is Chubby?
• Lock service in a loosely-coupled distributed system (e.g., 10K 4-

processor machines connected by 1Gbps Ethernet)

• Client interface similar to whole-file advisory locks with notification 
of various events (e.g., file modifications)

• Primary goals: reliability, availability, easy-to-understand semantics

• How is it used?
• Used in Google: GFS, Bigtable, etc.

• Elect leaders, store small amount of meta-data, as the root of the 
distributed data structures



System Structure (1)

• A chubby cell consists of a small set of servers (replicas)

• A master is elected from the replicas via a consensus protocol
• Master lease: several seconds

• If a master fails, a new one will be elected when the master leases expire

• Client talks to the master via chubby library
• All replicas are listed in DNS; clients discover the master by talking to any replica



System Structure (2)

• Replicas maintain copies of a simple database

• Clients send read/write requests only to the master

• For a write: 
• The master propagates it to replicas via the consensus protocol

• Replies after the write reaches a majority of replicas 

• For a read:
• The master satisfies the read alone



System Structure (3)

• If a replica fails and does not recover for a long time (a few hours)
• A fresh machine is selected to be a new replica, replacing the failed one

• It updates the DNS

• Obtains a recent copy of the database

• The current master polls DNS periodically to discover new replicas



Simple UNIX-like File System Interface

• Chubby supports a strict tree of files and directories
• No symbolic links, no hard links

• /ls/foo/wombat/pouch
• 1st component (ls): lock service (common to all names)

• 2nd component (foo): the chubby cell (used in DNS lookup to find the 
cell master)

• The rest: name inside the cell

• Can be accessed via Chubby’s specialized API / other file 
system interface (e.g., GFS)

• Support most normal operations (create, delete, open, 
write, …)

• Support advisory reader/writer lock on a node



ACLs and File Handles

• Access Control List (ACL)
• A node has three ACL names (read/write/change ACL names)

• An ACL name is a name to a file in the ACL directory

• The file lists the authorized users

• File handle:
• Has check digits encoded in it; cannot be forged

• Sequence number: 
• a master can tell if this handle is created by a previous master

• Mode information at open time:
• If previous master created the handle, a newly restarted master can 

learn the mode information



Locks and Sequences

• Locks: advisory rather than mandatory

• Potential lock problems in distributed systems
• A holds a lock L, issues request W, then fails
• B acquires L (because A fails), performs actions
• W arrives (out-of-order) after B’s actions

• Solution #1: backward compatible
• Lock server will prevent other clients from getting the lock if a lock 

become inaccessible or the holder has failed
• Lock-delay period can be specified by clients

• Solution #2: sequencer
• A lock holder can obtain a sequencer from Chubby
• It attaches the sequencer to any requests that it sends to other servers 

(e.g., Bigtable)
• The other servers can verify the sequencer information



Chubby Events

• Clients can subscribe to events (up-calls from Chubby 
library)
• File contents modified: if the file contains the location of a 

service, this event can be used to monitor the service location

• Master failed over

• Child node added, removed, modified

• Handle becomes invalid: probably communication problem

• Lock acquired  (rarely used)

• Locks are conflicting (rarely used)



APIs

• Open()
• Mode: read/write/change ACL; Events; Lock-delay

• Create new file or directory?

• Close()

• GetContentsAndStat(), GetStat(), ReadDir()

• SetContents(): set all contents; SetACL()

• Delete()

• Locks: Acquire(), TryAcquire(), Release()

• Sequencers: GetSequencer(), SetSequencer(), CheckSequencer()



Example – Primary Election

Open(“write mode”);

If (successful) {

// primary

SetContents(“identity”);

}

Else {

// replica

open (“read mode”, “file-modification event”);

when notified of file modification:

primary= GetContentsAndStat(); 

}



Caching

• Strict consistency: easy to understand
• Lease based

• master will invalidate cached copies upon a write request

• Write-through caches



Sessions, Keep-Alives, Master Fail-overs (1)

• Session:
• A client sends keep-alive requests to a master

• A master responds by a keep-alive response

• Immediately after getting the keep-alive response, the client sends another 
request for extension

• The master will block keep-alives until close the expiration of a session

• Extension is default to 12s

• Clients maintain a local timer for estimating the session timeouts 
(time is not perfectly synchronized)

• If local timer runs out, wait for a 45s grace period before ending the 
session
• Happens when a master fails over



Sessions, Keep-Alives, Master Fail-overs (2)



Other details

• Database implementation
• a simple database with write ahead logging and snapshotting

• Backup:
• Write a snapshot to a GFS server in a different building

• Mirroring files across multiple cells
• Configuration files (e.g., locations of other services, access 

control lists, etc.)



ZooKeeper

• Developed at Yahoo! Research

• Started as sub-project of Hadoop, now a top-level 
Apache project

• Development is driven by application needs

• [book] ZooKeeper by Junqueira & Reed, 2013



ZooKeeper in the Hadoop Ecosystem



ZooKeeper Service (1)

• Znode
• In-memory data node in the Zookeeper data

• Have a hierarchical namespace

• UNIX like notation for path

• Types of Znode
• Regular

• Ephemeral

• Flags of Znode
• Sequential flag



ZooKeeper Service (2)

• Watch Mechanism
• Get notification

• One time triggers

• Other properties of Znode
• Znode doesn’t not design for data storage, instead it store 

meta-data or configuration

• Can store information like timestamp version

• Session
• A connection to server from client is a session

• Timeout mechanism



Client API

• Create(path, data, flags)

• Delete(path, version)

• Exist(path, watch)

• getData(path, watch)

• setData(path, data, version)

• getChildren(path, watch)

• Sync(path)

• Two version synchronous and asynchronous 



Guarantees

• Linearizable writes
• All requests that update the state of ZooKeeper

are serializable and respect precedence 

• FIFO client order
• All requests are in order that they were sent by 

client.



Implementation (1)

• ZooKeeper data is replicated on each server that 
composes the service



Implementation (2)

• ZooKeeper server services clients

• Clients connect to exactly one server to submit 
requests
• read requests served from the local replica

• write requests are processed by an agreement protocol 
(an elected server leader initiates processing of the write 
request)



Hadoop Environment



Example: Configuration



Example: group membership



Example: 
simple locks



Example: locking without herd effect



Example:
leader election



Zookeeper Application (1)

• Fetching Service
• Using ZooKeeper for recovering from failure of masters

• Configuration metadata and leader election



Zookeeper Application (2)

• Yahoo! Message Broker
• A distributed publish-subscribe system
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Distributed Lock Design (1)
• Design a simple consensus system, which satisfy the 

following requirements,
• Contain one leader server and multiple follower server

• Each follower server has a replicated map, the map is consisted 
with the leader server. The key of map is the name of distributed 
lock, and the value is the Client ID who owns the distributed lock.

Client 1

Client 2

Quorum

Client 3

TryLock

TryUnlock OwnTheLock



Distributed Lock Design (2)
• Support multiple clients to preempt/release a distributed lock, 

and check the owner of a distributed lock.
• For preempting a distributed lock

-- If the lock doesn’t exist, preempt success;

-- Otherwise, preempt fail;

• For releasing a distributed lock

-- If the client owns the lock, release success;

-- Otherwise, release fail;

• For checking a distributed lock

-- Any client can check the owner of a distributed lock



Distributed Lock Design (3)
• To ensure the data consistency of the system, the follower 

servers send all preempt/release requests to the leader server.

• To check the owner of a distributed lock, the follower server 
accesses its map directly and sends the results to the clients.

• When the leader server handling preempt/release requests:

• If needed, modify its map and sends a request propose to all 
follower servers

• When a follower server receives a request propose

-- modify its local map

-- check the request is pending or not

-- if the request is pending, send an answer to the client



Distributed Lock Design (4)
• In this system, all clients provide preempt/release/check 

distributed lock interface.

• When a client is initialized

• Define the IP address of the target server 

• Generate the Client ID information based on the user information 
(UUID)



Distributed Lock Design (5)
• Reference

• Data structure of a client in the consensus system
class DistributedLock
{
public:

DistributedLock(std::string serverAddr); /*Generate ClientId and establish a
connection to a Server*/

~ DistributedLock();
bool TryLock(std::string lockKey);
bool TryUnlock(std::string lockKey);
bool OwnTheLock(std::string lockKey);

private:
std::string GetClientId(); /*Generate ClientId based on UUID*/
bool ConnectToServer(std::string serverAddr); /*Attempt to connect to a Server*/
std::string clientId;
bool isConnected;
int fd; // the descriptor used to talk to the consensus system

}



Thank you!


