
Big Data Processing Technologies

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn



Schedule

• lec1: Introduction on big data and cloud 
computing

• Iec2: Introduction on data storage

• lec3: Data reliability (Replication/Archive/EC) 

• lec4: Data consistency problem

• lec5: Block level storage and file storage

• lec6: Object-based storage

• lec7: Distributed file system

• lec8: Metadata management 



Collaborators



Data Reliability Problem (1)
Google – Disk Annual Failure Rate



Data Reliability Problem (2)
Facebook-- Failure nodes in a 3000 nodes cluster 



Contents

Introduction on Replication1



What is Replication?

• Replication can be classified as
• Local replication

• Replicating data within the same array or data center

• Remote replication
• Replicating data at remote site

It is a process of creating an exact copy (replica) of data.

Replication

Source Replica (Target)

REPLICATION



File System Consistency: Flushing Host Buffer

File System

Application

Memory Buffers

Logical Volume Manager

Physical Disk Driver

Data

Flush Buffer

Source Replica



Database Consistency: Dependent Write I/O 
Principle

D InconsistentC Consistent

Source Replica

4 4

3 3

2 2

1 1

4 4

3 3

2

1

C

Source Replica



Host-based Replication: LVM-based Mirroring

CC
Host

Logical Volume

Physical
Volume 1

Physical
Volume 2

• LVM: Logical Volume Manager



Host-based Replication: File System Snapshot

CC

• Pointer-based 
replication

• Uses Copy on First 
Write (CoFW) principle

• Uses bitmap and block 
map

• Requires a fraction of 
the space used by the 
production FS

Metadata

Production FS

Metadata

1 Data a

2 Data b

FS Snapshot

3 no data

4 no data

BLKBit

1-0 1-0

2-0 2-0

N Data N

3 Data C

2 Data c

3-1

4 Data D 1 Data d

4-1

3-2

4-1



Storage Array-based Local Replication

CC

• Replication performed by the array operating 
environment

• Source and replica are on the same array

• Types of array-based replication
• Full-volume mirroring

• Pointer-based full-volume replication 

• Pointer-based virtual replication

BC HostStorage Array

ReplicaSource

Production Host



Full-Volume Mirroring

Source

Attached

Storage Array

Read/Write Not Ready

Production Host BC Host

Target

Detached – Point In Time

Read/Write Read/Write

Source

Storage Array
Production Host BC Host

Target



Copy on First Access: Write to the Source

Source

C’

Target

• When a write is issued to the source for the first time after replication
session activation: 

 Original data at that address is copied to the target

 Then the new data is updated on the source 

 This ensures that original data at the point-in-time of activation is 
preserved on the target

Production Host BC Host

C

Write to 
Source

A

B

C’ C



Copy on First Access: Write to the Target

• When a write is issued to the target for the first time after replication 
session activation: 

 The original data is copied from the source to the target

 Then the new data is updated on the target

Source

B’

Target

Production Host BC Host

B

Write to 
Target

A

B

C’ C

B’



Copy on First Access: Read from Target

• When a read is issued to the target for the first time after replication 
session activation: 

 The original data is copied from the source to the target and is made 
available to the BC host

Source

A

Target

Production Host BC Host

A

Read
request for 

data “A”

A

B

C’ C

B’

A



Tracking Changes to Source and Target

Source

Target

0 unchanged changed

Logical OR

At PIT

Target

Source
After PIT…

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0

0 0 1 1 0 0 0 1

1 0 1 1 0 1 0 1

1

For resynchronization/restore



Contents

Introduction to Erasure Codes2



Erasure Coding Basis (1)
• You've got some data • And a collection of storage 

nodes.

• And you want to store the data on the storage nodes so that 
you can get the data back, even when the nodes fail..



Erasure Coding Basis (2)
• More concrete: You have k

disks worth of data
• And n total disks.

• The erasure code tells you how to create n disks worth of 
data+coding so that when disks fail, you can still get the data



Erasure Coding Basis (3)
• You have k disks worth of 

data
• And n total disks.

• n = k + m

• A systematic erasure code stores the data in the clear on k of 
the n disks. There are k data disks, and m coding or “parity” 
disks.  Horizontal Code



Erasure Coding Basis (4)
• You have k disks worth of 

data
• And n total disks.

• n = k + m

• A non-systematic erasure code stores only coding information, 
but we still use k, m, and n to describe the code.  Vertical 
Code



Erasure Coding Basis (5)
• You have k disks worth of 

data
• And n total disks.

• n = k + m

• When disks fail, their contents become unusable, and 
the storage system detects this. This failure mode is 
called an erasure.



Erasure Coding Basis (6)
• You have k disks worth of 

data
• And n total disks.

• n = k + m

• An MDS (“Maximum Distance Separable”) code can reconstruct 
the data from any m failures.  Optimal

• Can reconstruct any f failures (f < m)  non-MDS code



Two Views of a Stripe (1)
• The Theoretical View:

– The minimum collection of bits that encode and decode together.

– r rows of w-bit symbols from each of n disks:



Two Views of a Stripe (2)
• The Systems View:

– The minimum partition of the system that encodes and decodes 
together.

– Groups together theoretical stripes for performance.



Horizontal & Vertical Codes
• Horizontal Code

• Vertical Code



Expressing Code with Generator Matrix (1)



Expressing Code with Generator Matrix (2)



Expressing Code with Generator Matrix (3)



Encoding— Linux RAID-6 (1)



Encoding— Linux RAID-6 (2)



Encoding— Linux RAID-6 (3)



Accelerate Encoding— Linux RAID-6



Encoding— RDP (1)



Encoding— RDP (2)



Encoding— RDP (3)



Encoding— RDP (4)



Encoding— RDP (5)



Encoding— RDP (6)

Horizontal Parity Diagonal Parity Data

0 1 2 3 4 5 6 7

0

1

2

3

4

5

• Horizontal parity layout (p=7, n=8)



Encoding— RDP (7)
• Diagonal parity layout (p=7, n=8)

Horizontal Parity Diagonal Parity Data

0 1 2 3 4 5 6 7

0

1

2

3

4

5



Arithmetic for Erasure Codes
• When w = 1: XOR's only.

• Otherwise, Galois Field Arithmetic GF(2w)

– w is 2, 4, 8, 16, 32, 64, 128 so that words fit evenly into 
computer words.

– Addition is equal to XOR.
Nice because addition equals subtraction.

– Multiplication is more complicated:
Gets more expensive as w grows.

Buffer-constant different from a * b.

Buffer * 2 can be done really fast.

Open source library support.



Decoding with Generator Matrices (1)



Decoding with Generator Matrices (2)



Decoding with Generator Matrices (3)



Decoding with Generator Matrices (4)



Decoding with Generator Matrices (5)



Erasure Codes — Reed Solomon (1)
• Given in 1960.

• MDS Erasure codes for any n and k.

– That means any m = (n-k) failures can be tolerated 
without data loss.

• r = 1

(Theoretical): One word per disk per stripe.

• w constrained so that n ≤ 2w.

• Systematic and non-systematic forms.



Erasure Codes —Reed Solomon (2)
Systematic RS -- Cauchy generator matrix



Erasure Codes —Reed Solomon (3)
Non-Systematic RS -- Vandermonde generator matrix



Erasure Codes —Reed Solomon (4)
Non-Systematic RS -- Vandermonde generator matrix



Erasure Codes —EVENODD 1995
(7 disks, tolerating 2 disk failures)
• Horizontal Parity Coding

• Calculated by the data 
elements in the same row

• E.g. 𝐶0,5 = 𝐶0,0 ⊕𝐶0,1 ⊕𝐶0,2 ⊕𝐶0,3
⊕𝐶0,4

• Diagonal Parity Coding

• Calculated by the data 
elements and S

• E.g. 𝐶0,6 = 𝐶0,0 ⊕𝐶3,2 ⊕𝐶2,3 ⊕
𝐶1,4 ⊕𝑆



Erasure Codes —X-Code 1999 (1)
• Diagonal parity layout (p=7, n=7)

Diagonal Parity Anti-diagonal Parity Data

0 1 2 3 4 5 6

0

1

2

3

4

5

6



Erasure Codes —X-Code 1999 (2)
• Anti-diagonal parity layout (p=7, n=7)

Diagonal Parity Anti-diagonal Parity Data

0 1 2 3 4 5 6

0

1

2

3

4

5

6



Erasure Codes —H-Code (1)
• Horizontal parity layout (p=7, n=8)

Horizontal Parity Anti-diagonal Parity Data

0 1 2 3 4 5 6 7

0

1

2

3

4

5



Erasure Codes —H-Code (2)
• Anti-diagonal parity layout (p=7, n=8)

Horizontal Parity Anti-diagonal Parity Data

0 1 2 3 4 5 6 7

0

1

2

3

4

5



Erasure Codes —H-Code (3)
• Recover double disk failure by single recovery chain

Horizontal Parity Anti-diagonal Parity Data Lost Data and Parity 

Recovery 

Chain

1

23

45

67

89

1011

12X

F

H

J

L

B

D

K

E

A

I

G

C

0 1 2 3 4 5 6 7

0

1

2

3

4

5



Erasure Codes —H-Code (4)
• Recover double disk failure by two recovery chains

5

Horizontal Parity Anti-diagonal Parity Data Lost Data and Parity 

Recovery 

Chain

1

23

45

6X

DE

L

J

K

I

H

F

G

A

BC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

1

2 3

4

6X



Erasure Codes —HDP Code (1)
• Diagonal parity layout (p=7, n=6)

0 1 2 3 4 5

0

1

2

3

4

5

HDP ADPData



Erasure Codes —HDP Code (2)
• Diagonal parity layout (p=7, n=6)

0 1 2 3 4 5

0

1

2

3

4

5

HDP ADPData



Erasure Codes —HDP Code (3)
• HDP reduces more than 30% average recovery time.

0 1 2 3 4 5

0

1

2

3

4

5

HDP ADPData Lost Data and Parity 

A1B

CD

EF

K L

I J

G H

F

F

F

F

2

34

56

1 2

3 4

5 6



Contents

Replication and EC in Cloud3



Three Dimensions in Cloud Storage 



Replication vs Erasure Coding (RS)



Fundamental Tradeoff



Pyramid Codes (1)



Pyramid Codes (2)



Pyramid Codes (3) Multiple Hierachies



Pyramid Codes (4) Multiple Hierachies



Pyramid Codes (5) Multiple Hierachies



Pyramid Codes (6)



Google GFS II – Based on RS



Microsoft Azure (1)
How to Reduce Cost?



Microsoft Azure (2)
Recovery becomes expensive



Microsoft Azure (3)
Best of both worlds?



Microsoft Azure (4)
Local Reconstruction Code (LRC)



Microsoft Azure (5)
Analysis LRC vs RS



Microsoft Azure (6)
Analysis LRC vs RS



Recovery problem in Cloud

• Recovery I/Os from 6 disks (high network bandwidth)



Optimizing Recovery Network I/O (1)



Optimizing Recovery Network I/O (1)

• Establish recovery relationships among disks



Optimizing Recovery I/O (3)

• ~20+% savings in general



Regenerating Codes (1)

• Data = {a,b,c}



Regenerating Codes (2)

• Optimal Repair



Regenerating Codes (3)

• Optimal Repair



Regenerating Codes (4)

• Optimal Repair



Regenerating Codes (4)
Analysis -- Regenerating vs RS



Facebook Xorbas Hadoop
Locally Repairable Codes



Combination of Two ECs (1)
Recovery Cost vs. Storage Overhead



Combination of Two ECs (2)
Fast Code and Compact Code



Combination of Two ECs (3)
Analysis



Combination of Two ECs (4)
Analysis



Combination of Two ECs (5)
Analysis



Combination of Two ECs (6)
Conversion
• Horizontal parities require no re-computation

• Vertical parities require no data block transfer

• All parity updates can be done in parallel and in a distributed
manner



Combination of Two ECs (7)
Results



Contents

Project 14



Erasure Code in Hadoop (1)

• Implement an erasure code into Hadoop system

• Hadoop Version: 2.7 or higher

• Erasure Code: you can select one, but not RS

• Test the storage efficiency of your proposed code

• Report and Source Code are required

• Source Code should be checked by TA

• Deadline: June 30th



Erasure Code in Hadoop (2)

• References

• Jerasure
http://web.eecs.utk.edu/~plank/plank/www/software.html

• HDFS-Xorbas
http://smahesh.com/HadoopUSC/



Thank you!


