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Schedule

 lecl: Introduction on big data, cloud computing & loT
* lec2: Parallel processing framework (e.g., MapReduce)

 lec3: Advanced parallel processing techniques (e.g.,
YARN, Spark)

lec4: Cloud & Fog/Edge Computing

lec5: Data reliability & data consistency

lec6: Distributed file system & objected-based storage
lec7: Metadata management & NoSQL Database

lec8: Big Data Analytics
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Metadata

Metadata = structural information
File/Objects: attributes in inode/onode
Main problem for metadata in DFS: indexing

Data Blocks

Inode
direct 0
direct 1
direct 2
direct 3
direct 4

Host

File Attributes: =<
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etadata Server in DFS (Lustre)

MDT

* File requests (open,close,etc) \ .
* Locking coordination u

* Transaction based

* File stat{) info oST
* Coordination
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Direct file I/0O
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ata Server in DFS (Ceph)
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Metadata Server in DFS (GFS)

Application
GFS client |

(file name, chunk index) _

(chunk handle,
chunk locations)

GFS master

File namespace ,~

)
/
i

_» /foo/bar

chunk 2ef0

(chunk handle, byte range)

Y

Instructions to chunkserver

Chunkserver state

Legend:

mmmmd  Data messages
- Control messages

-

GFS chunkserver

GFS chunkserver

chunk data

Linux file system

Linux file system

99 -

99 -




Metadat‘afopg"[ Namenode

Metadata (Name, replicas, ...):

/home/foo/data, 3,

Read Datanodes

!

_ \ ~I|" Replication

Block ops

Datanodes

" Bloc

KS

Rack 2




NameNode I\/Ietadata in HDFS

Metadata in Memory

The entire metadata is in main memory

No demand paging of meta-data
Types of Metadata

List of files

List of Blocks for each file

List of DataNodes for each block

File attributes, e.g creation time, replication factor
A Transaction Log

Records file creations, file deletions. etc
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I\/Ietadata IeveI in DFS (Azure)
Partition Layer — Index Range Partitioning

Split index into
RangePartitions based on
load

Split at PartitionKey
boundaries

PartitionMap tracks Index
RangePartition assignment
to partition servers

Front-End caches the
PartitionMap to route user
requests

Each part of the index is
assigned to only one
Partition Server at a time

Blob Index
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harry pictures sunrise
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Dartition
rarntiaoini
......... Map ™
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I\/Ietadata level in DFS (Pangu) P =
Partition layer

Load Balancing

Acc;efs Layer | Protocol Manager &
Restful Prot
B Access Control

Partition Layer
Key-Value Engine

Partition & Index

Per.;istent Fster Persistent, Redundancy
angu
& Fault-Tolerance
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Tree Structures Indexes

Recall: 3 alternatives for data entries k*:

Data record with key value k

<k, rid of data record with search key value k>

<k, list of rids of data records with search key k>
Choice is orthogonal to the indexing technique used to locate
data entries k*.
Tree-structured indexing techniques support both range
searches and equality searches.

ISAM (Indexed Sequential Access Method): static structure

B+ tree: dynamic, adjusts gracefully under inserts and
deletes.
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Range Searches

Choose™ Find all students with gpa > 3.0”

If data is in sorted file, do binary search to find first such student,
then scan to find others.

Cost of binary search can be quite high.
Simple idea: Create an ‘index’ file.

Level of indirection again!

L, k1 k2

\
AN

KN

|_—

N

\

Page 1

Page 2

Page 3

Page N

Can do binary search on (smaller) index file!

Index File

Data File
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* Index file may still be quite large. But we can apply
the idea repeatedly!

Non-leaf ‘L
Pages coo
; :

=2\ A A A
Leaf .- .o .o R
Pages ) ) %, Kl 7

Overflow ------3 > N LT
page

Primary pages

Leaf pages contain data entries
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Comments on ISAM Data Pages

 File creation: Leaf (data) pages allocated
sequentially, sorted by search key.
Then index pages allocated.
Then space for overflow pages.

Index Pages

* Index entries: <search key value, page id>; they direct’

_ _ : Overflow pages
search for data entries, which are in leaf pages.

e Search: Start at root; use key comparisons to go to leaf.
Cost log N ;F=#entries/index pg, N = # leaf pgs

* Insert: Find leaf where data entry belongs, put it there.
(Could be on an overflow page).

e Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

Static tree structure: inserts/deletes affect only leaf pages.



Example ISAI\/I Tree

 Each node can hold 2 entries; no need for next-
leaf-page’ pointers.

Root ——=au

40
20 33 51 | | 63

/ L\

46* 51* 55* 63* o7*

10* | 15* 20* 27* 33* | 37* 40*
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After Inserting 23* 48* 41* 42% ..

Root “~a
Index 40
Pages
[20]f=2], RIS

Primary / ‘ \ / ‘ \
o Kl 53 ZO*IZY*II%*IB?*Ikm*l%*lI51*I55*II63*I97*I

Pages

Overflow | 23*| | 48+ | 41*

Pages




then Deletmg 42* 51* o7

Root ~~a

40

L] l{@*\ﬂ*\ B R\ o) | [ fe=] ]
=] | L] ]
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Pros, Cons & Usa‘ge

Pros
Simple and easy to implement
Cons
Unbalanced overflow pages
Index redistribution
Usage
MS Access
Berkeley DB
MySQL (before 3.23) = MyISAM (not real ISAM)
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B+ Tree The I\/IostW|de|y Used Index

* Insert/delete at log ;- N cost; keep tree height-balanced.
(F = fanout, N = # leaf pages)

* Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The parameter d
is called the order of the tree.

e Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
‘ ("Sequence set")




Example B+ Tree

e Search begins at root, and key comparisons direct
it to a leaf (as in ISAM).

e Search for 5*, 15%*, all data entries >= 24%* ...

Root \

13 || 17 24 30

AN AN AN =
o+ | 3+ | 5+ | 7+ |14*| 16 | |191 201221 ||241 2729*| | 334 344 38+ 39~




e Typical order: 100. Typical fill-factor: 67%.
e average fanout = 133

e Typical capacities:
* Height 4: 1334 =312,900,700 records
* Height 3: 1333= 2,352,637 records

* Can often hold top levels in buffer pool:
* Level 1= 1 page = 8 Kbytes
* level 2= 133 pages= 1 Mbyte
* Level 3=17,689 pages = 133 MBytes
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Inserting a Data Entry into a B+ Tree

* Find correct leaf L.

e Put data entry onto L.
* |f L has enough space, done!

e Else, must split L (into L and a new node L2)
» Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

* This can happen recursively

* To split index node, redistribute entries evenly, but push up
middle key. (Contrast with leaf splits.)

* Splits “grow” tree; root split increases height.
* Tree growth: gets wider or one level taller at top.
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Example B+ Tree - Inserting 8*

Root \

13 || 17 24 30

N AN N =
o+ | 3+ | 5+ | 7+ |14| 16 | |19t 2o| 221 |24| 27 29| | 33} 34} 381 39
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Example B+ Tree - Inserting 8*

Roh

17

5 |] 13| 24| 30|

N\ N N\ N N
2%) 3* 5*] 7*] 8* 14116 19520722 241271297 33134138139

Notice that root was split, leading to increase in height.

In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.
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Inserting 8* into Example B+ Tree

* Observe how
f B!
minimum occupancy
is guaranteed in both

leaf and index pg AN\
splits. Ll L] Elxfe] |ees
* Note difference
between and
be sure you

understand the
reasons for this.

IHEHN

I
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Deleting a Data Entry from a B+ Tree

e Start at root, find leaf L where entry belongs.

 Remove the entry.
e If Lis at least half-full, done!
* |If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

* If re-distribution fails, merge L and sibling.

* If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

* Merge could propagate to root, decreasing height.
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Example Tree (including 8*)
Delete 19* and 20* ...

Roh

17
5 || 13 ! 24| 30
=  a Y V a V
2+ 3+ o[ 7+[ & 116 19F20] 22 21271201 |[33134]38139

* Deleting 19* is easy.
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Example Tree (including 8*)
Delete 19* and 20* ...

Root\

17

5 13 27]| 30|

2%) 3* 5*] 7*] 8* 144116 22F 24 27429 33134138139

* Deleting 19* is easy.

* Deleting 20* is done with re-distribution. Notice
how middle key is
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... And hen Deleting 24*
* Must merge. H H H
* Observe of index
entry (on right), and —~ —
of index entry L2 |2 oo | | | 35 | oo |38 |5 |
(below).

RoN

5 1| 13 || 17 || 30

H
o+ | 3+ |5*|7* 8*| ||14*|16* I ||22|27 29| I 33+ | 34+ | 38+ | 39*
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Example of Non-leaf Re—distribution

* Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

* In contrast to previous example, can re-distribute entry
from left child of root to right child.

Roo\
22

5 13 || 17 20 30
277

L ! A 4 \
/ X\ v KN\AX& N
2*| 3* 5% 7*| 8* 144 16* 171 184 20% 214 22%

m\&
} 3343443

29

8% 397




After Re d|str|but|on

* Intuitively, entries are re-distributed by pushing
through’ the splitting entry in the parent node.

* It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

Ro;?\\\\\

17
5 13 20| 22 (| 30
d d ' L ~

2%| 3% 5| 77| 8 14+ 16* 17418 20% 21* 224271294 | |33%34%38*39*




Prefix Key Compression

* Important to increase fan-out. (Why?)

e Key values in index entries only ‘direct traffic’; can
often compress them.

* E.g., If we have adjacent index entries with search key
values Dannon Yogurt, David Smith and Devarakonda
Murthy, we can abbreviate David Smith to Dav. (The other
keys can be compressed too ...)

* |s this correct? Not quite! What if there is a data entry Davey
Jones? (Can only compress David Smith to Davi)

* |In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

* Insert/delete must be suitably modified.
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Bulk Loading of a B+ Tree

* If we have a large collection of records, and we want
to create a B+ tree on some field, doing so by
repeatedly inserting records is very slow.

* Also leads to minimal leaf utilization --- why?

* Bulk Loading can be done much more efficiently.

* |nitialization: Sort all data entries, insert pointer to
first (Iegi) page in a new (root) page.
Root

Sorted pages of data entries; not yet in B+ tree

/

3*

4*

6*

9*

10*

11*| |12*13% |20*22*| |23*|31* [35*|36*| |38*|41*| |44*
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* Index entries for leaf pages

always entered into right-
most index page just above

leaf level. When this fills up,

it splits. (Split may go up

\

Bulk Loading (Contd )

Root

>

\

A

£\ /%\\\L R\

Data entry pages
not yet in B+ tree

[

right-most path to the rooty;

9*| 110%11*

311

35%

381411 |44

Much faster than repeated
inserts, especially when one
considers locking!

Root

Data entry pages

\ not yet in B+ tree

L

L

3*

9*| (10%11*

317 |35

381414444




e Option 1: multiple inserts.

* Slow.
* Does not give sequential storage of leaves.

e Option 2: Bulk Loading

* Has advantages for concurrency control.
* Fewer I/Os during build.

* Leaves will be stored sequentially (and linked, of
course).

e Can control “fill factor” on pages.
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Structure of LSI\/I Tree

* Two trees
* C,tree: memory resident (smaller part)
* C, tree: disk resident (whole part)

Cq tree Cp tree

Disk Memory
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Rolling Merge (15

* Merge new leaf nodes in C, tree and C, tree

Cy tree Cp tree

Disk Memory
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Rollmg Merge (2)

* Step 1: read the new leaf nodes from C, tree, and store them as
emptying block in memory

* Step 2: read the new leaf nodes from C, tree, and make merge
sort with the emptying block

root

y; root
C1 s
/
/

e & o o o ¢ o

directory zf'j f‘_\
. & & » B L I N *. &

leaf e &« & & & ol|e ¢ & & & & o|]6 ¢ o ¢ & & o

Co

oo'oooo'ooooooloooo;0|eaf

T full *
- [0 o ¢ ¢ ¢+ ¢ = . |Mmerge

write back filling block 4
read in (o 0 s 0 0 ¢ 4

emptying block
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Rollmg Merge (3)

* Step 3: write the merge results into filling block, and delete the new leaf nodes in C,

» Step 4: repeat step 2 and 3. When the filling block is full, write the filling block into
C, tree, and delete the corresponding leaf nodes.

 Step 5: after all new leaf nodes in C, and C; are merged, finish the rolling merge

process.

root

7
C1 /
g
i

e p o o o ¢ o]

directory

leaf[® ¢ ¢ ¢ & o|[e o 0 ¢ ¢ ¢ a|[0 ¢ 0 ¢ ¢ o o

T

write back

s o o o o & o

emptying block

|

| root

| Co

| : 1 : 1 1
' AR
I 1 1 : 1 :
I oo'oooo'oooolooIOOOO;O|eaf
|

!fu" |e o & ¢ o ¢ o - -:: merge

: filling block ‘

| read in

I

|
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Data temperature

* Data Type
 Hot/Warm/Cold Data = different trees

COST-TOT/Mbyte Hot Data

Warm Data

Temperature H/S
accesses/sec/Mbyte)

™
Cold Data
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A LSI\/I tree with mult|p|e components

* Data Type
* Hottest data = C, tree
* Hotter data = C, tree

* Coldest data = C, tree

Ck tree Coe Cq tree Cp tree

merge  merge merge
—_ v 1 M

| | |
| Disk 'Memory '




* Two emptying blocks and filling blocks

* New leaf nodes should be locked (write lock)

emptying block

/lo..@...l |...{§)...|
Ci \
Curso

filling block




Search and deletlon (based on temporal locality)

e Lastest T (O-T) CK A root
accesses are in C, TIN G,
tree A

e T-2T accesses (1T
are in C, tree

CK root
CK-1 4 root
o
...... /\ /\ C1 . root
A% LY A
AN A
B |

rolling merge

delete node entry

Disk Memory
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Checkpointing
* Log Sequence Number (LSNO) of last insertion at Time T,
* Root addresses

* Merge cursor for each component

* Allocation information

Log | :
I 1
CK a root
CK-1 4 root
N C1 rOOt
Checkpoint roots, cursors —
LSNO —\ -
cursor cursor cursor
LSNZ2] T1
LSN1| T1
LSNO)_TO i~
T0
T0
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Deﬂmtl of 3 DHT

* Hash table =» supports two operations
* insert (key, value)
* value = lookup (key)

* Distributed
* Map hash-buckets to nodes

* Requirements
e Uniform distribution of buckets
* Cost of insert and lookup should scale well
 Amount of local state (routing table size) should scale well
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Fundamental Design Idea - |

e Consistent Hashing

* Map keys and nodes to an identifier space; implicit
assignment of responsibility

Q U

A
Identifiers O O O
0000000000 Key &~> 1111111111

= Mapping performed using hash functions (e.g.,
SHA-1)
2 Spread nodes and keys uniformly throughout
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Fundamental Design Idea - Il

* Prefix / Hypercube routing

~_
vj / Vé7 \\

<
< ) ® |0
Yy

4




But

e

there are so many of them!

* Scalability trade-offs
* Routing table size at each node vs.
* Cost of lookup and insert operations

e Simplicity
* Routing operations
* Join-leave mechanisms

e Robustness

* DHT Designs
* Plaxton Trees, Pastry/Tapestry
* Chord

* Overview: CAN, Symphony, Koorde, Viceroy, etc.
* SkipNet
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Plaxton Trees Algorithm (1)

1. Assign labels to objects and nodes
- using randomizing hash functions

9 Al E|A4 2,417 |8B

Object Node

Each label is of log,” n digits



Plaxton Trees Algorlthm (' 2)

2. Each node knows about other nodes with varying
prefix matches

1
> 2 B
417 Prefix match of length O
24|78 3
Node 2 | 3
»2 | 4|7 |8B Prefix match of length 1
2 |5
21417 |A 21al6
»2 (4|7 | B .
EERES 7 |UB Prefix match of length 2
2147 |C 21438

Prefix match of length 3



Plaxton Trees Algorlthm (3)
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

Node Object

v
Vo)
T
=
o

|
v

(o)

>

m

N

Store the object at each of these locations



(2
Plaxton Trees Algorithm (4)
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

|-’9A76—|

Node

log(n) steps to insert or locate object

v
(\o)

Store the object at each of these locations
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Plaxton Trees Algorithm (5)
Why is it a tree?

Object
9]AE|2
Object /
/95 76 R

4171B N
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Plaxton Trees Algorithm (.6)
Network Proximity

e Overlay tree hops could be totally unrelated to the
underlying network hops

- Plaxton trees guarantee constant factor
approximation!

- Only when the topology is uniform in some sense
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Ceph Controlled Replication Under Scalable
Hashing (CRUSH) (1)

* CRUSH algorithm: pgid = OSD ID?

e Devices: leaf nodes (weighted)

e Buckets: non-leaf nodes (weighted, contain any number of devices/buckets)

Objects | | | | | | |

2 |
W l (nrep, hash(oid) & mask)
— pgid

CRUSH(rule,, pgid)
— (0sd1, 0sd2, osd3)

filter (0=d1, osd2, osd3)
— (0sd2, 0sd3)
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CRUSH (2)

* A partial view of a four-
level cluster map
hierarchy consisting of
rows, cabinets, and
shelves of disks.

Action Resulting i

take(root) root

select(1 row) row?2

select(3 ,cabinet) | cab21 cab23 cab24

select(1 ,disk) disk2107 disk2313 disk2437
emit

choose(1,disk)




* Reselection behavior of select(6,disk) when device r = 2 (b) is rejected, where
the boxes contain the CRUSH output R of n = 6 devices numbered by rank. The
left shows the “first n” approach in which device ranks of existing devices
(c,d,e,f) may shift. On the right, each rank has a probabilistically independent
sequence of potential targets; here f, =1, and r’' =r+ f n=8 (device h).

=r+f '=r+1fn

(=0
(]
() [~
&)
@l

@ m - a|hiEE
O O

-@ @]
= ()|




 Data movement in a binary hierarchy due to a node addition
and the subsequent weight changes.

Y83 +—— Affected weights

2 2 2 /%

7”7 A

0 O 1 ]
Addeditem/
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CRUSH (5)

Four types of Buckets

Uniform buckets

£
‘4

List buckets
Tree buckets
Straw buckets

Summary of mapping speed and data reorganization efficiency of
different bucket types when items are added to or removed from

a bucket.
Action Uniform List Tree Straw
Speed O(1) O(n) O(log n) O(n)
Additions poor optimal good optimal
Removals poor poor good optimal




* Node labeling strategy used for the binary tree comprising
each tree bucket

/1000
100 1100

0 110 1010

/ N\ /N N\
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Big Data %Scalmg Trad|t|ona| Databases

= Traditional RDBMSs can be either scaled:
= Vertically (or Scale Up)

= Can be achieved by hardware upgrades (e.g., faster CPU, more
memory, or larger disk)

= Limited by the amount of CPU, RAM and disk that can be configured
on a single machine

" Horizontally (or Scale Out)

= Can be achieved by adding more machines
= Requires database sharding and probably replication
= Limited by the Read-to-Write ratio and communication overhead



Big Data %Improvmg the Performance of

Traditional Databases

= Data is typically striped to allow for concurrent/parallel
accesses

Machine 1 Machine 3
Chunkl of input data Chunk5 of input data

Chunk2 of input data Chunk5 of input data

E.g., Chunks 1, 3 and 5 can be accessed in parallel




Why Rephcatmg Data?

= Replicating data across servers helps in:
= Avoiding performance bottlenecks
= Avoiding single point of failures
= And, hence, enhancing scalability and availability

A

. = [
M%SW&P\/{{?& e > Por \—\’\——\('
/ < O / @
L \ :
1 ;
W\ O 3 y
F== - ;)
A Y ﬂ\/\l “ ;ﬁ
Chef e
\ .......... \) ‘\\\--00‘4 r -
: OB k.
' @// ............ (‘ ({F r A
\\j Replicated Servers <™ S _~
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But, Consistency Becomes a Challenge

=" An example:

" |n an e-commerce application, the bank database has
been replicated across two servers

" Maintaining consistency of replicated data is a challenge

Event 2 = Add interest of 5%

Event 1 = Add $1000

1 2

Bal=2100 |~ | 4 3 S Bal=2050

Replicated Database
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What’'s NOSQL

= Stands for Not Only SQL
" Class of non-relational data storage systems

iz,

" Usually do not require a fixed table schema nor do they
use the concept of joins

= All NoSQL offerings relax one or more of the CAP/ACID
properties



NoSQL Databases

" To this end, a new class of databases emerged, which
mainly follow the BASE properties

= These were dubbed as NoSQL databases
= E.g., Amazon’s Dynamo and Google’s Bigtable

" Main characteristics of NoSQL databases include:
= No strict schema requirements
= No strict adherence to ACID properties
= Consistency is traded in favor of Availability
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Types of NoSQL Databases

" Here is a limited taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

f . mongo DB K
CouchDB




Document Store

=" Documents are stored in some standard format or
encoding (e.g., XML, JSON, PDF or Office Documents)

" These are typically referred to as Binary Large Objects
(BLOBS)

" Documents can be indexed

" This allows document stores to outperform traditional
file systems

" E.g., MongoDB and CouchDB (both can be queried
using MapReduce) boongors 2

CouchDB
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Types of NoSQL Databases

" Here is a limited taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

f ". E*\‘I'fjophjd tabase IIM’ DB
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Graph Databas‘es

= Data are represented as vertices and edges

Name: Alice

Name: Chess
Type: Group

= Graph databases are powerful for graph-like queries (e.g., find
the shortest path between two elements)

= E.g., Neodj and VertexDB 7@ Neog; Hy"""FIJB

@ the graph database
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Types of NoSQL Databases

" Here is a limited taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

Bmasops @ redis  sriak f




Key-Value Stores

" Keys are mapped to (possibly) more complex value
(e.g., lists)

= Keys can be stored in a hash table and can be
distributed easily

» Such stores typically support regular CRUD (create,
read, update, and delete) operations

" That is, no joins and aggregate functions

" E.g., Amazon DynamoDB and Apache Cassandra

& redis Friak DynamoDB




Types of NOSQL Databases

" Here is a limited taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

' f
Cassandra HBASE




Columnar Databases
" Columnar databases are a hybrid of RDBMSs and Key-

Value stores

= \alues are stored in groups of zero or more columns, but in
Column-Order (as opposed to Row-Order)

Record 1 Column A Column A =Group A

Alice 3 25 Bob
4 19 Carol 0

( |

[ |
Alice Bob Carol
3 | 4 0 25
19 45
J
Column Family {B, C}

Row-Order ) Cahbmnar (or Column-Order) Columnar with Locality Groups
o \'7a ues are queried by matching keys

Alice Bob Carol

A ¥

" E.g., HBase and Vertica

Cassandra HBASE
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Stop following me, you fucking freaks!

af § 5§ &

Key-Value Ocdered Key-Value Big Table Document, Graph soL
Fulk-Text Search

s s-a wu|
|

) )

.;--’-@.H'; 1-- | q.!

s
| #ployee” :
| "1 \
: "Mohana puu\

. / : "Delivery )
\ / “projects”™ : [ \

\

— N
,/
A

' \ Pan Tear /
) % a confidential word or nmblf'
/ \Qm-txon used as a -to/
—wh.n accessi
\‘P 8 and 15 character
“pumber and may D

Time Value
stamp

Column

Fanly Tenaces
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Google BigTa ble ©) Google Cloud

* BigTable is a distributed storage system for managing
structured data.

* Designed to scale to a very large size
* Petabytes of data across thousands of servers

e Used for many Google projects
* Web indexing, Personalized Search, Google Earth, Google
Analytics, Google Finance, ...

* Flexible, high-performance solution for all of Google’s
products



I\/Iot|vat|on of B|gTab\e £) Google Cloud

* Lots of (semi-)structured data at Google

* URLs:
* Contents, crawl metadata, links, anchors, pagerank, ...
e Per-user data:
» User preference settings, recent queries/search results, ...

* Geographic locations:
* Physical entities (shops, restaurants, etc.), roads, satellite
image data, user annotations, ...
* Scale is large
* Billions of URLs, many versions/page (~20K/version)
* Hundreds of millions of users, thousands or q/sec
* 100TB+ of satellite image data
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Design of B|gTab\e ©) Google Cloud

* Distributed multi-level map
* Fault-tolerant, persistent

* Scalable
* Thousands of servers
e Terabytes of in-memory data
* Petabyte of disk-based data
* Millions of reads/writes per second, efficient scans

 Self-managing

 Servers can be added/removed dynamically
* Servers adjust to load imbalance
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Building Blocks £) Google Cloud

 Building blocks:
* Google File System (GFS): Raw storage
e Scheduler: schedules jobs onto machines
* Lock service: distributed lock manager
 MapReduce: simplified large-scale data processing

* BigTable uses of building blocks:

e GFS: stores persistent data (SSTable file format for storage
of data)

* Scheduler: schedules jobs involved in BigTable serving
* Lock service: master election, location bootstrapping
* Map Reduce: often used to read/write BigTable data




BaSIC Data |V|Od€| Y Google Cloud

* A BigTable is a sparse, distributed persistent multi-
dimensional sorted map

(row, column, timestamp) -> cell contents

"contents:” "anchor:cnnsi.com" "anchor:my.look.ca"
| I | | I g : I |
| * | | ‘ ' . * |
IS — B [T 7 N Sn. . SRy, ;W TV —
I '_l " | — ~ | " l I
| e | ,'x" ’.x;:!!_—'-l.l.. - i . = = = =
"Com.cCnN.WWW" — —=RiT—"1d CNN" [=t, CNN.com" |=— tg
n v " |
L. i -~... ‘_116_____I ____________________________
| | | |
| | | |

* Good match for most Google applications



WebTabIe Example . £) Google Cloud

"contents:” "anchor:cnnsi.com" "anchor:my.look.ca"
| I | | I g : I |
| * | | ‘ ' . * |
IS — B [T 7 N Sn. . SRy, ;W TV —
I '_l " | — ~ | " l I
| e | ,'x" ’.x;:!!_—'-l.l.. - i . = = = =
"Com.cCnN.WWW" — —=RiT—"1d CNN" [=t, CNN.com" |=— tg
n v " |
L. i -~... ‘_116_____I ____________________________
| | | |
| | | |

* Want to keep copy of a large collection of web pages and
related information

* Use URLs as row keys
* Various aspects of web page as column names

 Store contents of web pages in the contents: column under
the timestamps when they were fetched.
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N _ . -3 : .
Rows Y Google Cloud
"contents:” "anchor:cnnsi.com" "anchor:my.look.ca"
| | |
| | | g : |
U T T .
: —J,—"H‘*ﬁﬂ**' s | l
"cCom.cnn.www" — > ‘merl***—* ~ Eal T "CNN" |= tg "CNN.com" |- tg
L. > ‘_ﬁllﬁ_____l ____________________________

* Name is an arbitrary string
* Access to data in a row is atomic
* Row creation is implicit upon storing data

* Rows ordered lexicographically

* Rows close together lexicographically usually on one or a small
number of machines

* Reads of short row ranges are efficient and typically require
communication with a small number of machines.



Columns Y Google Cloud

"contents:” "anchor:cnnsi.com" "anchor:my.look.ca"
| I | | I g : I |
| * | | ‘ ' . * |
IS — B [T 7 N Sn. . SRy, ;W TV —
I '_l " | — ~ | n' l I
| e | "x‘.x;:!!_—'-;l.. - {+ = = = =
"com.cnn.www" — = =R o CNN" [=t, CNN.com" |=— tg
n v " | Y
L. LU | e ‘_116_____I______:________: ________ o
| | | ' . |
| | I : ; '

 Columns have two-level name structure:
e family:optional_qualifier

e Column family
* Unit of access control
* Has associated type information

e Qualifier gives unbounded columns
* Additional levels of indexing, if desired
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Timestamps £) Google Cloud
"contents:” "anchor:cnnsi.com" "anchor:my.look.ca"
| | |
| | | , . |
I N "N NN O T NS W T
| Tl:—':—"‘ﬁl‘—'nﬂ*—." - |, | " " |
"com.chn.www" — —<htfil>—"1g . "CNN" |= tg CNN.com" |=— tg
L. ” htm%)"'"‘_ﬁllﬁ_____l______:________: ________ T
| | | - . |
| | I : ; '

e Used to store different versions of data in a cell

* New writes default to current time, but timestamps for writes can also
be set explicitly by clients

* Lookup options:
* “Return most recent K values”
* “Return all values in timestamp range (or all values)”

e Column families can be marked w/ attributes:
* “Only retain most recent K values in a cell”
* “Keep values until they are older than K seconds”
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AP ACH
H Base HERCE
* Google’s BigTable was first “blob-based” storage
system

* Yahoo! Open-sourced it =2 Hbase (2007)
* Major Apache project today

* Facebook uses HBase internally —

* API
* Get/Put(row)
* Scan(row range, filter) —range queries
* MultiPut

O'REILLY"




HERSE AR

Small group of servers running
Zab, a Paxos-like protocol

g | OoOg ONOO O || 0oOQod
S | COoO000 || DO00o0 ([*O00dod || ooOodoo
§ | 000000 || 00Doo0 || 000000 (| Do00og

DataNode DataNode




HBase Storage H|erarchy

e HBase Table

 Split it into multiple regions: replicated across servers

* One Store per ColumnFamily (subset of columns with similar query
patterns) per region

* Memstore for each Store: in-memory updates to Store; flushed to
disk when full

» StoreFiles for each store for each region: where the data lives
- Blocks

* HFile
» SSTable from Google’s BigTable
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File Info _ Trailer

Column
Family

N, ' Ethnicity
SSN:000-00-0000 o0



Strong Consistency: HBase

Write-Ahead Log
: ST
|
I . N
| BEE)
I
|
|
|
|
|
| |
| ) afals!
Client i g —
s | ) 3
) <
-putg (BTS2
- delete() KevValue' o
- lncr() ey faues
> :
I
I
I
I
I
Write to HLog 4
before writing
to MemStore |
Can recover :
I

from failure

HRegion

HRegion

A P ACHE

HBRASE

( MemStore ) Store
[ StoreFile ] [_StoreFile_] -
HFile| J{_|HFile| |

( MemStore ) Store
StoreFile

Store

|-

(_ MemStore )

|

StoreFile
HFile

StoreFile
| HFile
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Log Replay HEACE

* After recovery from failure, or upon bootup
(HRegionServer/HMaster)

e Replay any stale logs (use timestamps to find out where the
database is w.r.t. the logs)

* Replay: add edits to the MemStore

* Why one HLog per HRegionServer rather than per
region?
* Avoids many concurrent writes, which on the local file
system may involve many disk seeks
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Cross-data center replication

(" Master Cluster HLog
Synchronous Call .' /
(" VY| OoooOooOODO@OO0
HRegionServer
- J
4 N
Synchronous Call
HRegionServer  OE0DE0EO0EO0EO0E Slave Cluster Zookeeper actually a file
? " system for control information
1. /nbase/replication/state
4 ) 2. Ihbase/replication/peers
; ) /<peer cluster number>
HRegionServer Synchronous Call , P o
, x 3. /hbase/replication/rs/<hlog>
e . OoDoDOoooooooo Slave Cluster | —
' e skl 1

/hbase/replication/...

hlog-...-ts1 -> offset
hlog-...-ts2
hlog-...-ts3
hlog-...-ts4

hlog-...-ts5




Dynamo: Amazon’s Highly Available
Key-value Store

Architecture

aws

Client Requests

~

R T S Page
MWW - W e

el

| Request Routing I

/ \ Aggre ator
f:y g 3

Request Routing

Dynamo instances Other datastores
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Dynamo: The biépmture "

Eventual

Easy usage Load-balancing Replication consistency

Easy Failure-

. Scalabilit
management detection y

High availability
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Easy usage: Interface amazon
DynamoDB
* get(key)

* return single object or list of objects with conflicting
version and context

 put(key, context, object)
 store object and context under key

* Context encodes system meta-data, e.g. version
number



Data Pa rt|t|on|ng DamazonDB
ynamo

* Based on consistent hashing
* Hash key and put on responsible node

/.\

15 0
/14 2

/ 13 3
12
11 5
10 6
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Load balancing Darngﬁ)gDB
y

* Load
 Storage bits
* Popularity of the item
* Processing required to serve the item

* Consistent hashing may lead to imbalance
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Adding nodes " amazon

DynamoDB
* A new node X added to system

e X is assigned key ranges w.r.t. its virtual servers
* For each key range, it transfers the data items
v v

Node A Node G

Node A

X=Data\(X,B)
Data=Data\(A,X)
Drop G

Node G

Data: (A, B]

Node B Node A X= B\(X, B)

Node C Node B

Data: (C, D]




Removing nodes amazon
DynamoDB

* Reallocation of keys is a reverse process of adding
nodes
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Implementation details amazon
DynamoDB

* Local persistence
* BDS, MySQL, etc.

* Request coordination

* Read operation
* Create context
* Syntactic reconciliation
* Read repair
* Write operation
* Read-your-writes
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Apache Cassandra BT¥

cassandra

* Originally designed at Facebook (July 2008)
* Open-sourced
* Some of its myriad users:

7\ Adobe AD @1 le

v Symantec.

eV =
D

Eben Hewitt

0
)
m
c
=
ey

ERICSSON 2 L




YEZAAY

GHAT J1AO TONG UNIVERSITY

Read operation BTE

cassandra

Query| |Result

—
v

Cassandra Cluster

Closest replica Result

L 2

_ Igest Query _
Digest Res} Digl it Response

Replica B Replica C
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Facebook Inbox Search BT¥

cassandra

e Cassandra developed to address this problem.
* 50+TB of user messages data in 150 node cluster on

which Cassandra is tested.

e Search user index of all messages in 2 ways.

e Term search : search by a key word

* Interactions search : search by a user id

Latency Stat | Search Interactions

Min 7.69 ms 7.78 ms
Median 15.69 ms 18.27 ms
Max 26.13 ms 44.41 ms
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Facebook Inbox Search > %

cassandra

* MySQL > 50 GB Data
Writes Average : ~300 ms
Reads Average : ~350 ms

e Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

e Stats provided by Authors using facebook data.




Comparlson using YCSB

e Cassandra, HBase and PNUTS were able to grow elastically while
the workload was executing.

Z [%a»’

cassandra

e PNUTS and Cassandra scaled well as the number of

* servers and workload increased proportionally. HBase’s
performance was more erratic as the system scaled.

70
60

50

Read latency (ms)

- [N

40

30 |

Cassandra ——

:. HBabe ------- Poerennr
? PNUTS ........ ke 1
*

0

2000 4000 6000 8000 10000 12000 14000

Throughput (ops/sec)

(a)

Update latency (ms)

80

70 |

30 ¢

Cassandra ————
HBase - PG oounase

LV VIR dnnn

0

2000 4000 6000 80()() IOO()(H"OO()MU()O
Throughput (ops/sec)

(b)
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Structure <;1§g§?

cassandra

keyspace

column family

settings
(eg, | column
partitioner) settings (eg,
comparator,
type [Std])
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Keyspace & Gl &
cassandra
= database
* typically one per application

* some settings are configurable only per keyspace
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Column Family (CF) BT E
cassandra
e group records of similar kind
* not same kind, because CFs are sparse tables

* ex.
* User
e Address
* Tweet
e PointOfInterest
* HotelRoom
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Column Family (CF) ‘ _/,,W

cassandra

nickname=
user=eben The
Situation

user=alison
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JSON(JavaScript ObJect Notatlon) ke G &
notation cassandra

User {
123 : { email: alison@foo.com,

icon: ~EH¥ & 1,

456 : { email: eben@bar.com,
location: The Danger Zone}



A column has 3 part CTE
cassandra
1. name
*  byte[]
« determines sort order
e usedin queries

* indexed
2. value
* byte|]

 you don’t query on column values

3. timestamp

* long (clock)
e |last write wins conflict resolution



super column 'M/% &

cassandra

Super Column

name: byte[] +»{ cols: Map<byte[], IColumn>

super columns group columns under a common name
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super column family 5% wf:%

cassandra

/ <<SCF>>PointOfinterest

<<SC>>Central <<SC>>
Park Empire State Bldg
- desc=Great
waik In.
I 102" floor!

<<SC>>
Phoenix

/00




super column family arpy &
cassandra
super column family
/
PointOfInterest {
key: 85255 { column

/
Phoenix Zoo { phone: 480-555-5555, desc: [They have animals here. },

Spring Training { phone: 623-333-3333, desc: Fun for baseball fans. },
}, //end phx

/key |
key: 10019 { /super cotumn /ﬂexible schema
dentral Park {|{desc: Walk around. It's pt»retty.} ,

Empire State Building { phone: 212-777-7777,
desc: Great view from 102nd floor. }

}//end nyc
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What is Redis

* an in-memory key-value store, with persistence
* open source, written in C

 “can handle up to 232 keys, and was tested in practice to handle
at least 250 million of keys per instance.”
http://redis.io/topics/faq
* History
* REmote Dlctionary Server, released in Mar. 2009

d. Open source, iIn-memory , data structure store
reails .
used as a NoSQL database, a caching layer or a

message broker
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Redis Tops Database Popularity Ranking

&P redis

(3/crowp ... #1 NoSQL in User Satisfaction and Market Presence
Edstackshare ... #1 NoSQL among Top 10 Data Stores
VADATADOG ... #1 database on Docker
© clusteriy @pevops #1 NoSQL database deployed in containers
| DB-encines [ #1 in growth among top 3 NoSQL databases

......... #1 database in skill demand
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Redis: the cloud native database é redis

GAME A new database concept based on Data Structures & Lua scripting
CHANGER

Data structures used by developers like “Lego” building blocks

Sorted Sets

Lists

HIGH World’s fastest & most powerful database:
PERFORMANCE 1.5M ops/sec @ <1msec with a single cloud instance

Hyperlog-logs

DYNAMIC Largest open source community among the NoSQL databases.

COMMUNITY Compatible with most programming languages and environments. e
€05

Indexes

IOBORORE
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Redis: offered thecloud service over é redis
laaS and PaaS

4 Clouds, 45 data centers across the world

amazon Google

! SOFTLAY=R'
webservices™

an IBM Company

10 partner channels
” . Pivotal
heroku, - Azure Store @) BlueMix Bl Web Services G

OPENSHIFT

IBM Cloud / marketplace \;'_.,- EF appfog dotCloud

awsmarketplace
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How many servers to get 1M
writes/sec?

350
300
300
250
200
150
100
50 50
50
. 2
O ¥ 3
« Cassandra P BN redislabs

."I,
In-memory databases




ReaI world write mtenswe app

Application Requests Per Second

40,000

35,000

30,000

25,000 -

20,000 -

15,000

10,000

5,000

0

NS

NoSQL Performance Benchmark

394.42
i 381.31

*

372.31

Q Couchbase Cw DATAST H:;,.! redislabs

cassandra

B Application Requests/Sec

=8=Application Latency (msec)

450
400
350
300
250
200
150
100
50

Latency in Milliseconds
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Spark with Redis

100 Spark Benchmark

10C 943 95 947

x40

316 322 324 314 317 315
HDFS Tachyon Spark Process Redis

RDD SQL (Instants Dataframe) SQL (Observations Dataframe)
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How to use Redis?

Without Redis With Redis

Application | Application
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 Data Model

* Key
* Printable ASCII

* Value

* Primitives
e Strings

e Containers (of strings)
* Hashes
* Lists
* Sets
* Sorted Sets

Logical Data I\/Iodel (1 )‘

Redis Key

Value: Redis String

String Array (512MB max)




) FEXALY

AL JIAO TONG

Log|cal Data I\/Iodel (2 )‘

 Data Model

* Key
* Printable ASCII

* Value

* Primitives
* Strings

e Containers (of strings)
* Hashes
* Lists
* Sets
* Sorted Sets

Redis Key

Value: Redis Hash :

Field 1

Field 2

Value 1

Field 3

Value 2

Field 4

Value 3

Value 4
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 Data Model

* Key
* Printable ASCII

* Value

* Primitives
* Strings

e Containers (of strings)
* Hashes
* Lists
* Sets
* Sorted Sets

Logical Data I\/Iodel (3 )‘

Redis Key

h 4

Value: Redis List

HEAD < » Valuel
‘ r'y
|
Y
Value2 |« » Value3
A
A 4
Value4 < > TAIL
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Log|cal Data I\/Iodel (4 )‘

 Data Model

* Key
* Printable ASCII

* Value

* Primitives
* Strings

e Containers (of strings)
* Hashes
* Lists
* Sets
* Sorted Sets

Redis Key

\ 4

Value: Redis Set

Value 3

Value 2

Value 4

Value 1
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Logical Data Model (5 )‘

 Data Model

* Key
* Printable ASCII

* Value

* Primitives
* Strings

e Containers (of strings)
* Hashes
* Lists
* Sets
e Sorted Sets

Redis Key

Value: Redis Sorted'Set

Score 100 |*

Score 50
Value 3

Value 2

Score 300

Value 4

A

Y
Score 300
Value 1
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Shoppmg Cart Example

Relational Model

&P redis

Redis Model

carts set carts james (1 3)
CartlD |User set carts chris (2)
| iames hash cart 1 |
2 chris user : "james"
- ; lames product 28 : 1

cart lines product 372: 2
Cart Product Qty }

1 28 1 hash cart 2 |

1 372 5 user  : "chris"
2 15 | product 15 : 1

2 160 5 product 160: 5
2 201 7 product 201:7

|
UPDATE cart Iines ’

SET Qty=Qty+2
WHERE Cart=1 AND Product=28

HINCRBY cart 1 product 28 2
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MongoDB

) mongo

* Developed by 10gen in Feb. 2009

* [t is a NoSQL database 10gen MongoDB
. company
A document-oriented database
* Open Source, Cost Effective
SRR vmware DAL #Gazzang
| 9 redhat
Omongoma - Fus ONGiO g " ‘
mongo zend pentah
amazon . |
@] websevices: @ Joyent CAN®NICAL (9
Ensing
bt £J Windows Azure JJ ASPERSOFT m‘k,.’!?‘,’,ff




YiEZALY
g SHANGHAT JIAO TONG UNIVERSITY
MongoDB

) mongo

#2 ON INDEED’S FASTEST GROWING JOBS JASPERSOFT BIGDATA INDEX

Top Job Trends
5 | Job Trends from Indeed.com - MOST POPULAR BIG DATA SOURCES Demand for
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I\/IongoDB s fast and scalable

) mongo

Better data locality In-Memory
Caching

Distributed Architecture

Relational MongoDB
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MongoDB is

General st
Rich data model Full featured Sophisticated

Pu rpose indexes qguery language

. Native language
Easy to Easy mapping to drivers in all Simple to setup

object oriented
code

popular and manage
languages

Use

Operates at in- Dynamically add
Fast & memory speed Auto-sharding / remove
Scalable wherever built in capacity with no
possible downtime




Gl LrE X4 LK
&) FIEXALE
\\W‘_:_f)’ SHANGHAT JLAO TONG UNIVERSITY

Why MongoDB? ‘ v—

* All the modern applications deals with huge data.
* Development with ease is possible with mongoDB.
* Flexibility in deployment.

* Rich Queries.

* Older database systems may not be compatible with
the design.

And it’s a document oriented storage: Data is stored in
the form of JSON Style.
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Why MongoDB? ‘ v—

* All the modern applications deals with huge data.
* Development with ease is possible with mongoDB.
* Flexibility in deployment.

* Rich Queries.

* Older database systems may not be compatible with
the design.

And it’s a document oriented storage: Data is stored in
the form of JSON Style.
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Architecture :

Database

Document

Container
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Document (JSON) Structure

. mongo
"Name": "Tom",

* The document has simple structure [ IR
and very easy to understand the
content

* JSON(JavaScript Object Notation) is
smaller, faster and lightweight }
compared to XML. {

"Role": "Student",
"University": "CU",

* For data delivery between servers * "Name™: “Sam”,
and browsers, JSON is a better choice [0 .08

e Easy in parsing, processing, validating [ ST L
in all languages *  "University": “OU",

* JSON can be mapped more easily into
object oriented system.
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leferences between XI\/IL and
JSON

) mongo

It is @ markup language. It is a way of representing objects.
This is more verbose than JSON. This format uses less words.
It is used to describe the structured data. It is used to describe unstructured data which

include arrays.

JavaScript functions like eval(), parse() When eval method is applied to JSON it
doesn’t work here. returns the described object.
Example:
<car> <company>Volkswagen</company> {
<name>Vento</name> "company": Volkswagen,
<price>800000</price> </car> "name": "Vento",
"price": 800000
}



* JSON is faster and easier than XML when you are using it in AJAX
web applications:

. §tep|s involved in exchanging data from web server to browser
involves:

Using XML

1. Fetch an XML document from web server.

2. Use the XML DOM to loop through the document.

3. Extract values and store in variables.

4. It also involves type conversions.

Using JSON

1. Fetch a JSON string.

2. Parse the JSON string using eval() or parse() JavaScript functions.
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The insert() Method

. mongo

e To insert data into MongoDB db.StudentRecord.insert (
collection, you need to use
MongoDB's insert() or save() method. |

"Name": "Tom",
"Age": 30,

"Role": "Student",
"University": "CU",

* The basic syntax of insert() command b
is as follows - s e
Name": “Sam",
"Age": 22,
. IIR I II: IIS d II’
“db.COLLECTION_NAME.insert(docum Unvers iy “oU

ent)” }




The find() Method
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To query data from MonﬁoDB collection, you
need to use MongoDB's find() method.

The basic syntax of find() method is as follows
“db.COLLECTION_NAME.find()”

find() method will display all the documents in
a non-structured way.

To display the results in a formatted way, you
can use pretty() method.

“db.mycol.find().pretty() “

) mongo

db.StudentRecord

find().pretty()
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The remove() Method

 MongoDB's remove() method is used to
remove a document from the collection.

remove() method accepts two parameters.

One is deletion criteria and second is
justOne flag.

 deletion criteria - (Optional) deletion
criteria according to documents will be
removed.

e justOne - (Optional) if set to true or 1,
then remove only one document.

* Syntax

* db.COLLECTION_NAME.remove(DELLETIO
N_CRITTERIA)

db.StudentRecord.remove({"
Name": "Tom})

db.StudentRecord.remove(D
ELETION_CRITERIA,1)

db.StudentRecord.remove()
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.
MongoDB is easy to use

MySQL

START TRANSACTION;

INSERT INTO contacts VALUES
(NULL, ‘joeblow’);

INSERT INTO contact_emails VALUES

( NULL, ”joe@blow.com”,
LAST_INSERT_ID() ),
( NULL, “joseph@blow.com”,
LAST_INSERT_ID() );
COMMIT;

MongoDB

db.contacts.save( {

userName: “joeblow”,

emailAddresses: [
“joe@blow.com”,
“joseph@blow.com” ] } );
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Schema Free

) mongo

* MongoDB does not need any pre-defined data schema

* Every document could have different data!

name: nName: \

eyes: aliases
birthplace:
aliases

loc:

boss:




Thank you!
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