
Big Data and Internet Thinking

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

• User: wuct

• Password: wuct123456

• http://www.cs.sjtu.edu.cn/~wuct/bdit/

ftp://public.sjtu.edu.cn/

Schedule

• lec1: Introduction on big data, cloud computing & IoT

• Iec2: Parallel processing framework (e.g., MapReduce)

• lec3: Advanced parallel processing techniques (e.g.,
YARN, Spark)

• lec4: Cloud & Fog/Edge Computing

• lec5: Data reliability & data consistency

• lec6: Distributed file system & objected-based storage

• lec7: Metadata management & NoSQL Database

• lec8: Big Data Analytics

Collaborators

Contents

Metadata in DFS1

Metadata
• Metadata = structural information

 File/Objects: attributes in inode/onode

 Main problem for metadata in DFS: indexing

Metadata Server in DFS (Lustre)

Metadata Server in DFS (Ceph)

Metadata Server in DFS (GFS)

Metadata Server in DFS (HDFS)

NameNode Metadata in HDFS
• Metadata in Memory

 The entire metadata is in main memory

 No demand paging of meta-data

• Types of Metadata

 List of files

 List of Blocks for each file

 List of DataNodes for each block

 File attributes, e.g creation time, replication factor

• A Transaction Log

 Records file creations, file deletions. etc

Metadata level in DFS (Azure)
Partition Layer – Index Range Partitioning

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

zzzz zzzz zzzzz

• Split index into
RangePartitions based on
load

• Split at PartitionKey
boundaries

• PartitionMap tracks Index
RangePartition assignment
to partition servers

• Front-End caches the
PartitionMap to route user
requests

• Each part of the index is
assigned to only one
Partition Server at a time

Storage Stamp

Partition

Server
Partition

Server
Account

Name
Container

Name
Blob

Name

richard videos tennis

……… ……… ………

……… ……… ………

zzzz zzzz zzzzz

Account
Name

Container
Name

Blob
Name

harry pictures sunset

……… ……… ………

……… ……… ………

richard videos soccer

Partition

Server

Partition

Master

Front-End
Server

PS 2 PS 3

PS 1

A-H: PS1
H’-R: PS2
R’-Z: PS3

A-H: PS1
H’-R: PS2
R’-Z: PS3

Partition
Map

Blob Index

Partition

Map

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

……… ……… ………

……… ……… ………

harry pictures sunrise
A-H

R’-ZH’-R

Metadata level in DFS (Pangu)
Partition layer

Access Layer
Restful Protocol

LB
LVS

Partition Layer
Key-Value Engine

Persistent Layer
Pangu FS

Load Balancing

Protocol Manager &
Access Control

Partition & Index

Persistent, Redundancy
& Fault-Tolerance

Contents

ISAM & B+ Tree2

Tree Structures Indexes

• Recall: 3 alternatives for data entries k*:

• Data record with key value k

• <k, rid of data record with search key value k>

• <k, list of rids of data records with search key k>

• Choice is orthogonal to the indexing technique used to locate
data entries k*.

• Tree-structured indexing techniques support both range
searches and equality searches.

 ISAM (Indexed Sequential Access Method): static structure

 B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

Range Searches

• Choose``Find all students with gpa > 3.0’’

 If data is in sorted file, do binary search to find first such student,
then scan to find others.

 Cost of binary search can be quite high.

• Simple idea: Create an `index’ file.

 Level of indirection again!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

Can do binary search on (smaller) index file!

ISAM

• Index file may still be quite large. But we can apply
the idea repeatedly!

Leaf pages contain data entries

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

Comments on ISAM Data Pages

Index Pages

Overflow pages

• File creation: Leaf (data) pages allocated
sequentially, sorted by search key.
Then index pages allocated.
Then space for overflow pages.

• Index entries: <search key value, page id>; they `direct’
search for data entries, which are in leaf pages.

• Search: Start at root; use key comparisons to go to leaf.
Cost log F N ; F = # entries/index pg, N = # leaf pgs

• Insert: Find leaf where data entry belongs, put it there.
(Could be on an overflow page).

• Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

Static tree structure: inserts/deletes affect only leaf pages.

Example ISAM Tree

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

• Each node can hold 2 entries; no need for `next-
leaf-page’ pointers.

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

... then Deleting 42*, 51*, 97*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Note that 51 appears in index levels , but 51* not in leaf!

Pros, Cons & Usage

• Pros

 Simple and easy to implement

• Cons

 Unbalanced overflow pages

 Index redistribution

• Usage

 MS Access

 Berkeley DB

 MySQL (before 3.23) →MyISAM (not real ISAM)

B+ Tree: The Most Widely Used Index

• Insert/delete at log F N cost; keep tree height-balanced.
(F = fanout, N = # leaf pages)

• Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The parameter d
is called the order of the tree.

• Supports equality and range-searches efficiently.

Index Entries

Data Entries

("Sequence set")

(Direct search)

Example B+ Tree

• Search begins at root, and key comparisons direct
it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+ Tree in Practice

• Typical order: 100. Typical fill-factor: 67%.
• average fanout = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records

• Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
• Level 1 = 1 page = 8 Kbytes

• Level 2 = 133 pages = 1 Mbyte

• Level 3 = 17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

• Find correct leaf L.

• Put data entry onto L.
• If L has enough space, done!

• Else, must split L (into L and a new node L2)
• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
• To split index node, redistribute entries evenly, but push up

middle key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
• Tree growth: gets wider or one level taller at top.

Example B+ Tree - Inserting 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Example B+ Tree - Inserting 8*

Notice that root was split, leading to increase in height.

In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19*20* 22* 24* 27*29* 33* 34* 38* 39*

135

7*5* 8*

Inserting 8* into Example B+ Tree

• Observe how
minimum occupancy
is guaranteed in both
leaf and index pg
splits.

• Note difference
between copy-up and
push-up; be sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

…

…

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.
• If L is at least half-full, done!

• If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

• Merge could propagate to root, decreasing height.

Example Tree (including 8*)
Delete 19* and 20* ...

2* 3*

Root

17

24 30

14* 16* 19*20* 22* 24* 27*29* 33* 34* 38* 39*

135

7*5* 8*

• Deleting 19* is easy.

Example Tree (including 8*)
Delete 19* and 20* ...

• Deleting 19* is easy.

• Deleting 20* is done with re-distribution. Notice
how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22*24*

27

27* 29*

... And Then Deleting 24*

• Must merge.

• Observe `toss’ of index
entry (on right), and `pull
down’ of index entry
(below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17

Example of Non-leaf Re-distribution

• Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

• In contrast to previous example, can re-distribute entry
from left child of root to right child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

After Re-distribution

• Intuitively, entries are re-distributed by `pushing
through’ the splitting entry in the parent node.

• It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Prefix Key Compression

• Important to increase fan-out. (Why?)

• Key values in index entries only `direct traffic’; can
often compress them.

• E.g., If we have adjacent index entries with search key
values Dannon Yogurt, David Smith and Devarakonda
Murthy, we can abbreviate David Smith to Dav. (The other
keys can be compressed too ...)

• Is this correct? Not quite! What if there is a data entry Davey
Jones? (Can only compress David Smith to Davi)

• In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

• Insert/delete must be suitably modified.

Bulk Loading of a B+ Tree

• If we have a large collection of records, and we want
to create a B+ tree on some field, doing so by
repeatedly inserting records is very slow.

• Also leads to minimal leaf utilization --- why?

• Bulk Loading can be done much more efficiently.

• Initialization: Sort all data entries, insert pointer to
first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Bulk Loading (Contd.)

• Index entries for leaf pages
always entered into right-
most index page just above
leaf level. When this fills up,
it splits. (Split may go up
right-most path to the root.)

• Much faster than repeated
inserts, especially when one
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages

Summary of Bulk Loading

• Option 1: multiple inserts.
• Slow.

• Does not give sequential storage of leaves.

• Option 2: Bulk Loading
• Has advantages for concurrency control.

• Fewer I/Os during build.

• Leaves will be stored sequentially (and linked, of
course).

• Can control “fill factor” on pages.

Contents

Log Structured Merge (LSM) Tree3

Structure of LSM Tree

• Two trees
• C0 tree: memory resident (smaller part)

• C1 tree: disk resident (whole part)

Rolling Merge (1)

• Merge new leaf nodes in C0 tree and C1 tree

Rolling Merge (2)
• Step 1: read the new leaf nodes from C1 tree, and store them as

emptying block in memory

• Step 2: read the new leaf nodes from C0 tree, and make merge
sort with the emptying block

Rolling Merge (3)
• Step 3: write the merge results into filling block, and delete the new leaf nodes in C0.

• Step 4: repeat step 2 and 3. When the filling block is full, write the filling block into
C1 tree, and delete the corresponding leaf nodes.

• Step 5: after all new leaf nodes in C0 and C1 are merged, finish the rolling merge
process.

Data temperature

• Data Type
• Hot/Warm/Cold Data → different trees

A LSM tree with multiple components

• Data Type
• Hottest data → C0 tree

• Hotter data → C1 tree

• ……

• Coldest data → CK tree

Rolling Merge among Disks

• Two emptying blocks and filling blocks

• New leaf nodes should be locked (write lock)

Search and deletion (based on temporal locality)

• Lastest Τ (0- Τ)
accesses are in C0
tree

• Τ - 2Τ accesses
are in C1 tree

• ……

Checkpointing
• Log Sequence Number (LSN0) of last insertion at Time T0

• Root addresses

• Merge cursor for each component

• Allocation information

Contents

Distributed Hash & DHT4

Definition of a DHT

• Hash table ➔ supports two operations
• insert(key, value)

• value = lookup(key)

• Distributed
• Map hash-buckets to nodes

• Requirements
• Uniform distribution of buckets

• Cost of insert and lookup should scale well

• Amount of local state (routing table size) should scale well

Fundamental Design Idea - I

• Consistent Hashing
• Map keys and nodes to an identifier space; implicit

assignment of responsibility

Identifiers
A C DB

Key

◼ Mapping performed using hash functions (e.g.,

SHA-1)

❑ Spread nodes and keys uniformly throughout

11111111110000000000

Fundamental Design Idea - II

• Prefix / Hypercube routing

Source

Destination

But, there are so many of them!

• Scalability trade-offs
• Routing table size at each node vs.

• Cost of lookup and insert operations

• Simplicity
• Routing operations

• Join-leave mechanisms

• Robustness

• DHT Designs
• Plaxton Trees, Pastry/Tapestry

• Chord

• Overview: CAN, Symphony, Koorde, Viceroy, etc.

• SkipNet

Plaxton Trees Algorithm (1)

9 A E 4 2 4 7 B

1. Assign labels to objects and nodes

Each label is of log2
b n digits

Object Node

- using randomizing hash functions

Plaxton Trees Algorithm (2)

2 4 7 B

2. Each node knows about other nodes with varying
prefix matches

Node

2 4 7 B

2 4 7 B

2 4 7 B2 4 7 B

3

1

5

3

6

8

A

C

2

2

2 4

2 42 4 7

2 4 7

Prefix match of length 0

Prefix match of length 1

Prefix match of length 2

Prefix match of length 3

Plaxton Trees Algorithm (3)
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

2 4 7 B

Node

9 A E 2

9 A 7 6

9 F 1 0

9 A E 4

Object

Store the object at each of these locations

Plaxton Trees Algorithm (4)
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

2 4 7 B

Node

9 A E 2

9 A 7 6

9 F 1 0

9 A E 4

Object

Store the object at each of these locations

log(n) steps to insert or locate object

Plaxton Trees Algorithm (5)
Why is it a tree?

2 4 7 B

9 F 1 0

9 A 7 6

9 A E 2

Object

Object

Object

Object

Plaxton Trees Algorithm (6)
Network Proximity

• Overlay tree hops could be totally unrelated to the
underlying network hops

USA

Europe

East Asia

• Plaxton trees guarantee constant factor
approximation!

• Only when the topology is uniform in some sense

Ceph Controlled Replication Under Scalable
Hashing (CRUSH) (1)
• CRUSH algorithm: pgid→ OSD ID?

• Devices: leaf nodes (weighted)

• Buckets: non-leaf nodes (weighted, contain any number of devices/buckets)

CRUSH (2)

• A partial view of a four-
level cluster map
hierarchy consisting of
rows, cabinets, and
shelves of disks.

CRUSH (3)
• Reselection behavior of select(6,disk) when device r = 2 (b) is rejected, where

the boxes contain the CRUSH output R of n = 6 devices numbered by rank. The
left shows the “first n” approach in which device ranks of existing devices
(c,d,e,f) may shift. On the right, each rank has a probabilistically independent
sequence of potential targets; here fr = 1 , and r′ =r+ frn=8 (device h).

CRUSH (4)

• Data movement in a binary hierarchy due to a node addition
and the subsequent weight changes.

CRUSH (5)

• Four types of Buckets

 Uniform buckets

 List buckets

 Tree buckets

 Straw buckets

• Summary of mapping speed and data reorganization efficiency of
different bucket types when items are added to or removed from
a bucket.

CRUSH (6)

• Node labeling strategy used for the binary tree comprising
each tree bucket

Contents

Motivation of NoSQL Databases5

Big Data→Scaling Traditional Databases

▪ Traditional RDBMSs can be either scaled:
▪ Vertically (or Scale Up)

▪ Can be achieved by hardware upgrades (e.g., faster CPU, more
memory, or larger disk)

▪ Limited by the amount of CPU, RAM and disk that can be configured
on a single machine

▪ Horizontally (or Scale Out)
▪ Can be achieved by adding more machines

▪ Requires database sharding and probably replication

▪ Limited by the Read-to-Write ratio and communication overhead

Big Data→Improving the Performance of
Traditional Databases

Input data: A large file

Machine 1

Chunk1 of input data

Machine 2

Chunk3 of input data

Machine 3

Chunk5 of input data

Chunk2 of input data Chunk4 of input data Chunk5 of input data

E.g., Chunks 1, 3 and 5 can be accessed in parallel

▪ Data is typically striped to allow for concurrent/parallel
accesses

Why Replicating Data?
▪ Replicating data across servers helps in:
▪ Avoiding performance bottlenecks

▪ Avoiding single point of failures

▪ And, hence, enhancing scalability and availability

Main Server

Replicated Servers

But, Consistency Becomes a Challenge

▪ An example:
▪ In an e-commerce application, the bank database has

been replicated across two servers

▪Maintaining consistency of replicated data is a challenge

Bal=1000 Bal=1000

Replicated Database

Event 1 = Add $1000 Event 2 = Add interest of 5%

Bal=2000

1 2

Bal=10503 Bal=20504Bal=2100

Contents

Introduction to NoSQL Databases6

What’s NoSQL

▪ Stands for Not Only SQL

▪ Class of non-relational data storage systems

▪Usually do not require a fixed table schema nor do they
use the concept of joins

▪ All NoSQL offerings relax one or more of the CAP/ACID
properties

NoSQL Databases
▪ To this end, a new class of databases emerged, which

mainly follow the BASE properties
▪ These were dubbed as NoSQL databases

▪ E.g., Amazon’s Dynamo and Google’s Bigtable

▪Main characteristics of NoSQL databases include:
▪ No strict schema requirements

▪ No strict adherence to ACID properties

▪ Consistency is traded in favor of Availability

Types of NoSQL Databases

NoSQL Databases

Document
Stores

Graph
Databases

Key-Value
Stores

Columnar
Databases

▪Here is a limited taxonomy of NoSQL databases:

Document Stores
▪ Documents are stored in some standard format or

encoding (e.g., XML, JSON, PDF or Office Documents)
▪ These are typically referred to as Binary Large Objects

(BLOBs)

▪ Documents can be indexed
▪ This allows document stores to outperform traditional

file systems

▪ E.g., MongoDB and CouchDB (both can be queried
using MapReduce)

Types of NoSQL Databases

NoSQL Databases

Document
Stores

Graph
Databases

Key-Value
Stores

Columnar
Databases

▪Here is a limited taxonomy of NoSQL databases:

Graph Databases
▪ Data are represented as vertices and edges

▪ Graph databases are powerful for graph-like queries (e.g., find
the shortest path between two elements)

▪ E.g., Neo4j and VertexDB

Id: 1
Name: Alice

Age: 18

Id: 2
Name: Bob

Age: 22

Id: 3
Name: Chess
Type: Group

Types of NoSQL Databases

NoSQL Databases

Document
Stores

Graph
Databases

Key-Value
Stores

Columnar
Databases

▪Here is a limited taxonomy of NoSQL databases:

Key-Value Stores
▪ Keys are mapped to (possibly) more complex value

(e.g., lists)

▪ Keys can be stored in a hash table and can be
distributed easily

▪ Such stores typically support regular CRUD (create,
read, update, and delete) operations
▪ That is, no joins and aggregate functions

▪ E.g., Amazon DynamoDB and Apache Cassandra

Types of NoSQL Databases

NoSQL Databases

Document
Stores

Graph
Databases

Key-Value
Stores

Columnar
Databases

▪Here is a limited taxonomy of NoSQL databases:

Columnar Databases
▪ Columnar databases are a hybrid of RDBMSs and Key-

Value stores
▪ Values are stored in groups of zero or more columns, but in

Column-Order (as opposed to Row-Order)

▪ Values are queried by matching keys

▪ E.g., HBase and Vertica

Alice 3 25 Bob
4 19 Carol 0

45

Record 1

Row-Order

Alice
3 25

Bob
4

19

Carol
0

45

Column A

Columnar (or Column-Order)

Alice
3 25

Bob
4 19

Carol

0 45

Columnar with Locality Groups

Column A = Group A

Column Family {B, C}

Revolution of Databases

Contents

Typical NoSQL Databases7

Google BigTable

• BigTable is a distributed storage system for managing
structured data.

• Designed to scale to a very large size
• Petabytes of data across thousands of servers

• Used for many Google projects
• Web indexing, Personalized Search, Google Earth, Google

Analytics, Google Finance, …

• Flexible, high-performance solution for all of Google’s
products

Motivation of BigTable

• Lots of (semi-)structured data at Google
• URLs:

• Contents, crawl metadata, links, anchors, pagerank, …

• Per-user data:
• User preference settings, recent queries/search results, …

• Geographic locations:
• Physical entities (shops, restaurants, etc.), roads, satellite

image data, user annotations, …

• Scale is large
• Billions of URLs, many versions/page (~20K/version)
• Hundreds of millions of users, thousands or q/sec
• 100TB+ of satellite image data

Design of BigTable

• Distributed multi-level map

• Fault-tolerant, persistent

• Scalable
• Thousands of servers

• Terabytes of in-memory data

• Petabyte of disk-based data

• Millions of reads/writes per second, efficient scans

• Self-managing
• Servers can be added/removed dynamically

• Servers adjust to load imbalance

Building Blocks

• Building blocks:
• Google File System (GFS): Raw storage
• Scheduler: schedules jobs onto machines
• Lock service: distributed lock manager
• MapReduce: simplified large-scale data processing

• BigTable uses of building blocks:
• GFS: stores persistent data (SSTable file format for storage

of data)
• Scheduler: schedules jobs involved in BigTable serving
• Lock service: master election, location bootstrapping
• Map Reduce: often used to read/write BigTable data

Basic Data Model

• A BigTable is a sparse, distributed persistent multi-
dimensional sorted map

(row, column, timestamp) -> cell contents

• Good match for most Google applications

WebTable Example

• Want to keep copy of a large collection of web pages and
related information

• Use URLs as row keys

• Various aspects of web page as column names

• Store contents of web pages in the contents: column under
the timestamps when they were fetched.

Rows

• Name is an arbitrary string
• Access to data in a row is atomic

• Row creation is implicit upon storing data

• Rows ordered lexicographically
• Rows close together lexicographically usually on one or a small

number of machines

• Reads of short row ranges are efficient and typically require
communication with a small number of machines.

Columns

• Columns have two-level name structure:
• family:optional_qualifier

• Column family
• Unit of access control
• Has associated type information

• Qualifier gives unbounded columns
• Additional levels of indexing, if desired

Timestamps

• Used to store different versions of data in a cell
• New writes default to current time, but timestamps for writes can also

be set explicitly by clients

• Lookup options:
• “Return most recent K values”
• “Return all values in timestamp range (or all values)”

• Column families can be marked w/ attributes:
• “Only retain most recent K values in a cell”
• “Keep values until they are older than K seconds”

HBase

• Google’s BigTable was first “blob-based” storage
system

• Yahoo! Open-sourced it → Hbase (2007)

• Major Apache project today

• Facebook uses HBase internally

• API
• Get/Put(row)

• Scan(row range, filter) – range queries

• MultiPut

HBase Architecture

Small group of servers running

Zab, a Paxos-like protocol

HDFS

HBase Storage Hierarchy

• HBase Table
• Split it into multiple regions: replicated across servers

• One Store per ColumnFamily (subset of columns with similar query
patterns) per region

• Memstore for each Store: in-memory updates to Store; flushed to
disk when full

• StoreFiles for each store for each region: where the data lives

- Blocks

• HFile
• SSTable from Google’s BigTable

HFile

SSN:000-00-0000

(For a census table example)

Demographic
Ethnicity

Strong Consistency: HBase
Write-Ahead Log

Write to HLog

before writing

to MemStore

Can recover

from failure

Log Replay

• After recovery from failure, or upon bootup
(HRegionServer/HMaster)

• Replay any stale logs (use timestamps to find out where the
database is w.r.t. the logs)

• Replay: add edits to the MemStore

• Why one HLog per HRegionServer rather than per
region?

• Avoids many concurrent writes, which on the local file
system may involve many disk seeks

Cross-data center replication

HLog

Zookeeper actually a file

system for control information

1. /hbase/replication/state

2. /hbase/replication/peers

/<peer cluster number>

3. /hbase/replication/rs/<hlog>

Dynamo: Amazon’s Highly Available
Key-value Store

Architecture

Dynamo: The big picture

Easy usage Load-balancing Replication

High availability
Easy

management
Failure-

detection

Eventual
consistency

Scalability

Easy usage: Interface

• get(key)
• return single object or list of objects with conflicting

version and context

• put(key, context, object)
• store object and context under key

• Context encodes system meta-data, e.g. version
number

Data Partitioning

0
1

2

15

14

13 3

12

11

4

5

6

9 8
7

10

• Based on consistent hashing

• Hash key and put on responsible node

Load balancing

• Load
• Storage bits

• Popularity of the item

• Processing required to serve the item

• …

• Consistent hashing may lead to imbalance

Adding nodes

• A new node X added to system

• X is assigned key ranges w.r.t. its virtual servers

• For each key range, it transfers the data items

Data: (A, X]

Data: (A, B]

Data: (B, C]

Node GNode A

Node ANode B

Data: (C, D]

Node BNode C

C

D

A

G

F

E

B

Node GNode A

X=B\(X,B)
B=B\(A,X)
Drop A

X=Data\(X,B)
Data=Data\(A,X)
Drop G

X

Removing nodes

• Reallocation of keys is a reverse process of adding
nodes

Implementation details

• Local persistence
• BDS, MySQL, etc.

• Request coordination
• Read operation

• Create context

• Syntactic reconciliation

• Read repair

• Write operation
• Read-your-writes

Apache Cassandra

• Originally designed at Facebook (July 2008)

• Open-sourced

• Some of its myriad users:

Read operation

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if
digests differ

Facebook Inbox Search

• Cassandra developed to address this problem.

• 50+TB of user messages data in 150 node cluster on
which Cassandra is tested.

• Search user index of all messages in 2 ways.

• Term search : search by a key word

• Interactions search : search by a user id

Latency Stat Search Interactions Term Search

Min 7.69 ms 7.78 ms

Median 15.69 ms 18.27 ms

Max 26.13 ms 44.41 ms

Facebook Inbox Search

• MySQL > 50 GB Data
Writes Average : ~300 ms
Reads Average : ~350 ms

• Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

• Stats provided by Authors using facebook data.

Comparison using YCSB

• Cassandra, HBase and PNUTS were able to grow elastically while
the workload was executing.

• PNUTS and Cassandra scaled well as the number of

• servers and workload increased proportionally. HBase’s
performance was more erratic as the system scaled.

Structure

keyspace

settings
(eg,

partitioner)

column family

settings (eg,
comparator,
type [Std])

column

name value clock

Keyspace

• ~= database

• typically one per application

• some settings are configurable only per keyspace

Column Family (CF)

• group records of similar kind

• not same kind, because CFs are sparse tables

• ex:
• User

• Address

• Tweet

• PointOfInterest

• HotelRoom

Column Family (CF)

n=
42

user=eben
key
123

key
456

user=alison
icon=

nickname=
The

Situation

JSON(JavaScript Object Notation)-like
notation

User {

123 : { email: alison@foo.com,

icon: },

456 : { email: eben@bar.com,

location: The Danger Zone}

}

A column has 3 parts

1. name
• byte[]

• determines sort order

• used in queries

• indexed

2. value
• byte[]

• you don’t query on column values

3. timestamp
• long (clock)

• last write wins conflict resolution

super column

super columns group columns under a common name

super column family

<<SCF>>PointOfInterest

<<SC>>Central
Park

10017

<<SC>>
Empire State Bldg

<<SC>>
Phoenix

Zoo
85255

desc=Fun to
walk in.

phone=212.
555.11212

desc=Great
view from

102nd floor!

super column family

PointOfInterest {

key: 85255 {

Phoenix Zoo { phone: 480-555-5555, desc: They have animals here. },

Spring Training { phone: 623-333-3333, desc: Fun for baseball fans. },

}, //end phx

key: 10019 {

Central Park { desc: Walk around. It's pretty.} ,

Empire State Building { phone: 212-777-7777,

desc: Great view from 102nd floor. }

} //end nyc

}

s

super column

super column family

flexible schema

key

column

What is Redis

• an in-memory key-value store, with persistence

• open source, written in C

• “can handle up to 232 keys, and was tested in practice to handle
at least 250 million of keys per instance.”
http://redis.io/topics/faq

• History

• REmote DIctionary Server, released in Mar. 2009

Redis Tops Database Popularity Ranking

Redis: the cloud native database

Redis: offered the cloud service over
IaaS and PaaS

How many servers to get 1M
writes/sec?

Real world write intensive app

Spark with Redis

How to use Redis?

Logical Data Model (1)

• Data Model

• Key
• Printable ASCII

• Value
• Primitives

• Strings

• Containers (of strings)

• Hashes

• Lists

• Sets

• Sorted Sets

Logical Data Model (2)

• Data Model

• Key
• Printable ASCII

• Value
• Primitives

• Strings

• Containers (of strings)

• Hashes

• Lists

• Sets

• Sorted Sets

Logical Data Model (3)

• Data Model

• Key
• Printable ASCII

• Value
• Primitives

• Strings

• Containers (of strings)

• Hashes

• Lists

• Sets

• Sorted Sets

Logical Data Model (4)

• Data Model

• Key
• Printable ASCII

• Value
• Primitives

• Strings

• Containers (of strings)

• Hashes

• Lists

• Sets

• Sorted Sets

Logical Data Model (5)

• Data Model

• Key
• Printable ASCII

• Value
• Primitives

• Strings

• Containers (of strings)

• Hashes

• Lists

• Sets

• Sorted Sets

Shopping Cart Example

MongoDB

• Developed by 10gen in Feb. 2009

• It is a NoSQL database

• A document-oriented database

• Open Source, Cost Effective

MongoDB

Demand for
MongoDB, the
document-oriented
NoSQL database,
saw the biggest
spike with over
200% growth in
2011.

#2 ON INDEED’S FASTEST GROWING JOBS JASPERSOFT BIGDATA INDEX

451 GROUP
“MONGODB INCREASING ITS DOMINANCE”GOOGLE SEARCHES

MongoDB is fast and scalable

Better data locality

Relational MongoDB

In-Memory

Caching
Distributed Architecture

Horizontal Scaling

R
ep

lic
at

io
n

 /
H

A

MongoDB is

General
Purpose

Easy to
Use

Fast &
Scalable

Sophisticated
query language

Full featured
indexes

Rich data model

Simple to setup
and manage

Native language
drivers in all

popular
languages

Easy mapping to
object oriented

code

Dynamically add
/ remove

capacity with no
downtime

Auto-sharding
built in

Operates at in-
memory speed

wherever
possible

Why MongoDB?

• All the modern applications deals with huge data.

• Development with ease is possible with mongoDB.

• Flexibility in deployment.

• Rich Queries.

• Older database systems may not be compatible with
the design.

And it’s a document oriented storage: Data is stored in
the form of JSON Style.

Why MongoDB?

• All the modern applications deals with huge data.

• Development with ease is possible with mongoDB.

• Flexibility in deployment.

• Rich Queries.

• Older database systems may not be compatible with
the design.

And it’s a document oriented storage: Data is stored in
the form of JSON Style.

MongoDB Architecture

Architecture :
Database

Container

Document

Document (JSON) Structure
• [

• {

• "Name": "Tom",

• "Age": 30,

• "Role": "Student",

• "University": "CU",

}

{

• "Name": “Sam",

• "Age": 32,

• "Role": "Student",

• "University": “OU",

}

]

• The document has simple structure
and very easy to understand the
content

• JSON(JavaScript Object Notation) is
smaller, faster and lightweight
compared to XML.

• For data delivery between servers
and browsers, JSON is a better choice

• Easy in parsing, processing, validating
in all languages

• JSON can be mapped more easily into
object oriented system.

Differences between XML and
JSON

XML JSON

It is a markup language. It is a way of representing objects.

This is more verbose than JSON. This format uses less words.

It is used to describe the structured data. It is used to describe unstructured data which
include arrays.

JavaScript functions like eval(), parse()
doesn’t work here.

When eval method is applied to JSON it
returns the described object.

Example:
<car> <company>Volkswagen</company>
<name>Vento</name>
<price>800000</price> </car>

{
"company": Volkswagen,
"name": "Vento",
"price": 800000

}

Why JSON?

• JSON is faster and easier than XML when you are using it in AJAX
web applications:

• Steps involved in exchanging data from web server to browser
involves:

Using XML

1. Fetch an XML document from web server.

2. Use the XML DOM to loop through the document.

3. Extract values and store in variables.

4. It also involves type conversions.

Using JSON

1. Fetch a JSON string.

2. Parse the JSON string using eval() or parse() JavaScript functions.

The insert() Method

• To insert data into MongoDB
collection, you need to use
MongoDB's insert() or save() method.

• The basic syntax of insert() command
is as follows −

“db.COLLECTION_NAME.insert(docum
ent)”

db.StudentRecord.insert (

{
"Name": "Tom",
"Age": 30,
"Role": "Student",
"University": "CU",
},

{
"Name": “Sam",
"Age": 22,
"Role": "Student",
"University": “OU",

}

)

The find() Method

• To query data from MongoDB collection, you
need to use MongoDB's find() method.

• The basic syntax of find() method is as follows

“db.COLLECTION_NAME.find()”

• find() method will display all the documents in
a non-structured way.

• To display the results in a formatted way, you
can use pretty() method.

“db.mycol.find().pretty() “

db.StudentRecord
.find().pretty()

The remove() Method

• MongoDB's remove() method is used to
remove a document from the collection.
remove() method accepts two parameters.
One is deletion criteria and second is
justOne flag.

• deletion criteria − (Optional) deletion
criteria according to documents will be
removed.

• justOne − (Optional) if set to true or 1,
then remove only one document.

• Syntax

• db.COLLECTION_NAME.remove(DELLETIO
N_CRITTERIA)

Remove based on
DELETION_CRITERIA

db.StudentRecord.remove({"
Name": "Tom})

Remove Only One:-Removes
first record

db.StudentRecord.remove(D
ELETION_CRITERIA,1)

Remove all Records

db.StudentRecord.remove()

MongoDB is easy to use

START TRANSACTION;

INSERT INTO contacts VALUES

(NULL, ‘joeblow’);

INSERT INTO contact_emails VALUES

(NULL, ”joe@blow.com”,

LAST_INSERT_ID()),

(NULL, “joseph@blow.com”,

LAST_INSERT_ID());

COMMIT;

MongoDB

db.contacts.save({

userName: “joeblow”,

emailAddresses: [

“joe@blow.com”,

“joseph@blow.com”] });

MySQL

Schema Free

• MongoDB does not need any pre-defined data schema

• Every document could have different data!

name: “jeff”,
eyes: “blue”,
loc: [40.7, 73.4],
boss: “ben”}

{name: “brendan”,
aliases: [“el diablo”]}

name: “ben”,
hat: ”yes”}

{name: “matt”,
pizza: “DiGiorno”,
height: 72,
loc: [44.6, 71.3]}

{name: “will”,

eyes: “blue”,

birthplace: “NY”,

aliases: [“bill”, “la

ciacco”],

loc: [32.7, 63.4],

boss: ”ben”}

Thank you!

