
Big Data and Internet Thinking

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/bdit/

ftp://public.sjtu.edu.cn/

Schedule

• lec1: Introduction on big data, cloud computing & IoT

• Iec2: Parallel processing framework (e.g., MapReduce)

• lec3: Advanced parallel processing techniques (e.g.,
YARN, Spark)

• lec4: Cloud & Fog/Edge Computing

• lec5: Data reliability & data consistency

• lec6: Distributed file system & objected-based storage

• lec7: Metadata management & NoSQL Database

• lec8: Big Data Analytics

Collaborators

Contents

Object-based Data Access1

The Block Paradigm

The Object Paradigm

File Access via Inodes
• Inodes contain file attributes

Object Access

• Metadata:
 Creation data/time; ownership; size …

• Attributes – inferred:
 Access patterns; content; indexes …

• Attributes – user supplied:
 Retention; QoS …

Object Autonomy
• Storage becomes autonomous

 Capacity planning

 Load balancing

 Backup

 QoS, SLAs

 Understand data/object grouping

 Aggressive prefetching

 Thin provisioning

 Search

 Compression/Deduplication

 Strong security, encryption

 Compliance/retention

 Availability/replication

 Audit

 Self healing

Data Sharing
homogeneous/heterogeneous

Data Migration
homogeneous/heterogeneous

Strong Security
Additional layer

• Strong security via
external service
 Authentication

 Authorization

 …

• Fine granularity
 Per object

Contents

Object-based Storage Devices2

Data Access (Block-based vs. Object-
based Device)

• Objects contain both data and attributes
 Operations: create/delete/read/write objects, get/set attributes

OSD Standards (1)

• ANSI INCITS T10 for OSD (the SCSI Specification, www.t10.org)

 ANSI INCITS 458

 OSD-1 is basic functionality

 Read, write, create objects and partitions

 Security model, Capabilities, manage shared secrets and
working keys

 OSD-2 adds

 Snapshots

 Collections of objects

 Extended exception handling and recovery

 OSD-3 adds

 Device to device communication

 RAID-[1,5,6] implementation between/among devices

OSD Standards (2)

OSD Forms

• Disk array/server subsystem

 Example: custom-built HPC systems
predominantly deployed in national
labs

• Storage bricks for objects

 Example: commercial
supercomputing offering

• Object Layer Integrated in Disk
Drive

OSDs: like disks, only different

OSDs: like a file server, only different

OSD Capabilities (1)

• Unlike disks, where access is granted on an all or nothing
basis, OSDs grant or deny access to individual objects
based on Capabilities

• A Capability must accompany each request to read or
write an object

 Capabilities are cryptographically signed by the Security
Manager and verified (and enforced) by the OSD

 A Capability to access an object is created by the Security
Manager, and given to the client (application server) accessing
the object

 Capabilities can be revoked by changing an attribute on the
object

OSD Capabilities (2)

OSD Security Model

• OSD and File Server know a secret key

 Working keys are periodically generated from a master key

• File server authenticates clients and makes access control
policy decisions

 Access decision is captured in a capability that is signed with the
secret key

 Capability identifies object, expire time, allowed operations, etc.

• Client signs requests using the capability signature as a
signing key

 OSD verifies the signature before allowing access

 OSD doesn’t know about the users, Access Control Lists (ACLs),
or whatever policy mechanism the File Server is using

Contents

Object-based File Systems3

Why not just OSD = file system?

• Scaling

 What if there’s more data than the biggest OSD can hold?

 What if too many clients access an OSD at the same time?

 What if there’s a file bigger than the biggest OSD can hold?

• Robustness

 What happens to data if an OSD fails?

 What happens to data if a Metadata Server fails?

• Performance

 What if thousands of objects are access concurrently?

 What if big objects have to be transferred really fast?

General Principle
• Architecture

 File = one or more groups of objects

 Usually on different OSDs

 Clients access Metadata Servers to locate data

 Clients transfer data directly to/from OSDs

• Address

 Capacity

 Robustness

 Performance

Capacity
• Add OSDs

 Increase total system capacity

 Support bigger files

 Files can span OSDs if necessary or desirable

Robustness
• Add metadata servers

 Resilient metadata services

 Resilient security services

• Add OSDs

 Failed OSD affects small percentage
of system resources

 Inter-OSD mirroring and RAID

 Near-online file system checking

Advantage of Reliability
• Declustered Reconstruction

 OSDs only rebuild actual data
(not unused space)

 Eliminates single-disk rebuild
bottleneck

 Faster reconstruction to
provide high protection

Performance
• Add metadata servers

 More concurrent metadata
operations

 Getattr, Readdir, Create, Open, …

• Add OSDs

 More concurrent I/O operations

 More bandwidth directly between
clients and data

Additional Advantages
• Optimal data placement

 Within OSD: proximity of
related data

 Load balancing across OSDs

• System-wide storage pooling

 Across multiple file systems

• Storage tiering

 Per-file control over
performance and resiliency

Per-file tiering in OSDs: striping

Per-file tiering in OSDs: RAID-4/5/6

Per-file tiering in OSDs: mirroring(RAID-1)

Flat namespace

Hierarchical File System Vs. Flat Address Space

• Hierarchical file system organizes data in the form of files and directories

• Object-based storage devices store the data in the form of objects

 It uses flat address space that enables storage of large number of objects

 An object contains user data, related metadata, and other attributes

 Each object has a unique object ID, generated using specialized algorithm

Filenames/inodes

Hierarchical File System

Object IDs

Flat Address Space

Object Object

Object Object

Object Object

Data

Attributes

Object ID

Metadata

Object

Virtual View / Virtual File Systems

Traditional FS Vs. Object-based FS (1)

Traditional FS Vs. Object-based FS (2)

• File system layer in host manages

 Human readable namespace

 User authentication, permission checking, Access Control
Lists (ACLs)

 OS interface

• Object Layer in OSD manages

 Block allocation and placement

 OSD has better knowledge of disk geometry and
characteristic so it can do a better job of file
placement/optimization than a host-based file system

Accessing Object-based FS

• Typical Access

 SCSI (block), NFS/CIFS (file)

• Needs a client component

 Proprietary

 Standard

Standard→ NFS v4.1

• A standard file access protocol for OSDs

Scaling Object-based FS (1)

Scaling Object-based FS (2)

• App servers (clients) have direct access to storage to
read/write file data securely

 Contrast with SAN where security is lacking

 Contrast with NAS where server is a bottleneck

• File system includes multiple OSDs

 Grow the file system by adding an OSD

 Increase bandwidth at the same time

 Can include OSDs with different performance characteristics
(SSD, SATA, SAS)

• Multiple File Systems share the same OSDs

 Real storage pooling

Scaling Object-based FS (3)

• Allocation of blocks to Objects handled within OSDs

 Partitioning improves scalability

 Compartmentalized managements improves reliability
through isolated failure domains

• The File Server piece is called the MDS

 Meta-Data Server

 Can be clustered for scalability

Why Objects helps Scaling

• 90% of File System cycles are in the read/write path

 Block allocation is expensive

 Data transfer is expensive

 OSD offloads both of these from the file server

 Security model allows direct access from clients

• High level interfaces allow optimization

 The more function behind an API, the less often you have to use
the API to get your work done

• Higher level interfaces provide more semantics

 User authentication and access control

 Namespace and indexing

Object Decomposition

Object-based File Systems

• Lustre

 Custom OSS/OST model

 Single metadata server

• PanFS

 ANSI T10 OSD model

 Multiple metadata servers

• Ceph

 Custom OSD model

 CRUSH metadata distribution

• pNFS

 Out-of-band metadata service for NFSv4.1

 T10 Objects, Files, Blocks as data services

• These systems scale

 1000’s of disks (i.e., PB’s)

 1000’s of clients

 100’s GB/sec

 All in one file system

Lustre (1)

• Supercomputing focus emphasizing

 High I/O throughput

 Scalability in the Pbytes of data and billions of files

• OSDs called OSTs (Object Storage Targets)

• Only RAID-0 supported across Objects

 Redundancy inside OSTs

• Runs over many transports

 IP over ethernet

 Infiniband

• OSD and MDS are Linux based & Client Software supports Linux

 Other platforms under consideration

• Used in Telecom/Supercomputing Center/Aerospace/National
Lab

Lustre (2) Architecture

Lustre (3) Architecture-MDS

• Metadata Server (MDS)

 Node(s) that manage namespace, file
creation and layout, and locking.
Directory operations

 File open/close

 File status

 File creation

 Map of file object location

 Relatively expensive serial atomic
transactions to maintain consistency

• •Metadata Target (MDT)

 Block device that stores metadata

Lustre (3) Architecture-OSS

• Object Storage Server (OSS)
 Multiple nodes that manage network

requests for file objects on disk.

• Object Storage Target (OST)
 Block device that stores file objects

Lustre (4) Simplest Lustre File System

Lustre (5) File Operation

• When a compute node needs to create or access a file, it requests the
associated storage locations from the MDS and the associated MDT.

• I/O operations then occur directly with the OSSs and OSTs associated
with the file bypassing the MDS.

• For read operations, file data flows from the OSTs to the compute node.

Lustre (6) File I/Os

• Single stream

• Single stream
through a master

• Parallel

Lustre (7) File Striping

• A file is split into segments and consecutive segments are stored
on different physical storage devices (OSTs).

Lustre (8) Aligned and Unaligned Stripes

• Aligned stripes is where each segment fits fully onto a single OST.
Processes accessing the file do so at corresponding stripe boundaries.

• Unaligned stripes means some file segments are split across OSTs.

Lustre (9) Striping Example

Lustre (10) Advantages/Disadvantages

• Striping will not benefit ALL applications

Ceph (1)
• What is Ceph?

Ceph is a distributed file system that provides excellent
performance, scalability and reliability.

Features

Decoupled data and
metadata

Dynamic distributed
metadata management

Reliable autonomic
distributed object storage

Goals

Easy scalability to peta-
byte capacity

Adaptive to varying
workloads

Tolerant to node failures

Ceph (2) – Architecture

• Decoupled Data and Metadata

Ceph (3) – Architecture

Ceph (4) – Components

Object
Storage
cluster

Clients

Metadata
Server
cluster

Cluster
monitor

Metadata I/O

Ceph (5) - Components

Meta Data
cluster

Clients

Object
Storage
cluster

Capability
Management

CRUSH is used to
map Placement

Group (PG) to OSD.

Ceph (6) – Components
• Client Synchronization

POSIX

Semantics

Relaxed
Consistency

 Synchronous I/O.
performance killer

 Solution: HPC extensions
to POSIX

 Default: Consistency /
correctness

 Optionally relax

 Extensions for both data
and metadata

Ceph (7) – Namespace Operations

Ceph optimizes for most
common meta-data
access scenarios

(readdir followed by stat)

But by default “correct”
behavior is provided at
some cost.

Stat operation on a file
opened by multiple
writers

Applications for which
coherent behavior is
unnecessary use
extensions

Namespace
Operations

Ceph (8) – Metadata

Per-MDS
journals

Eventually
pushed to

OSD

Sequential
Update

More efficient

Reducing re-
write workload.

Optimized on-
disk storage

layout for future
read access

Easier failure
recovery. Journal

can be
rescanned for

recovery.

• Metadata Storage
• Advantages

Ceph (9) – Metadata
• Dynamic Sub-tree Partitioning

▪ Adaptively distribute cached metadata hierarchically across a set of
nodes.

▪ Migration preserves locality.

▪ MDS measures popularity of metadata.

Ceph (10) – Metadata

• Traffic Control for metadata access

• Challenge
• Partitioning can balance workload but can’t deal with

hot spots or flash crowds

• Ceph Solution
✓ Heavily read directories are selectively replicated

across multiple nodes to distribute load

✓ Directories that are extra large or experiencing heavy
write workload have their contents hashed by file name
across the cluster

Ceph (11) – Distributed Object Storage

Ceph (11) – CRUSH

• CRUSH(x) → (osdn1, osdn2, osdn3)

• Inputs
• x is the placement group

• Hierarchical cluster map

• Placement rules

• Outputs a list of OSDs

• Advantages
• Anyone can calculate object location

• Cluster map infrequently updated

Ceph (12) – Replication

• Objects are replicated on OSDs within same PG
• Client is oblivious to replication

Ceph (13) – Conclusion
• Strengths:

• Easy scalability to peta-byte capacity

• High performance for varying work loads

• Strong reliability

• Weaknesses:
• MDS and OSD Implemented in user-space

• The primary replicas may become bottleneck to heavy
write operation

• N-way replication lacks storage efficiency

• References
• Ceph: A Scalable, High Performance Distributed File System.

In Proc. of OSDI’06

Contents

Object-based Storage in Cloud4

Web Object Features

• RESTful API (i.e., web-based)

• Security/Authentication tied to Billing

• Metadata capabilities

• Highly available

• Loosely consistent

• Data Storage

 Blobs

 Tables

 Queues

• Other related APIs (compute, search, etc.)

 Storage API is relatively simple in comparison

Simple HTTP example

HTTP and objects

• Request specifies method and object:

 Operation: GET, POST, PUT, HEAD, COPY

 Object ID (/index.html)

• Parameters use MIME format borrowed from email

 Content-type: utf8;

 Set-Cookie: tracking=1234567;

• Add a data payload

 Optional

 Separated from parameters with a blank line (like email)

• Response has identical structure

 Status line, key-value parameters, optional data payload

This is a method
call on an object

These are
parameters

This is data

OpenStack REST API for Storage

• GET v1/account HTTP/1.1

 Login to your account

• HEAD v1/account HTTP/1.1

 List account metadata

• PUT v1/account/container HTTP/1.1

 Create container

• PUT v1/account/container/object HTTP/1.1

 Create object

• GET v1/account/container/object HTTP/1.1

 Read object

• HEAD v1/account/container/object HTTP/1.1

 Read object metadata

Create an object

Update metadata

Ali OSS (1)

• Access URL: http://<bucket>.oss-cn-beijing.aliyuncs.com/<object>

Access Layer
Restful Protocol

LB
LVS

Partition Layer
Key-Value Engine

Persistent Layer
Pangu FS

Load Balancing

Protocol Manager &
Access Control

Partition & Index

Persistent, Redundancy
& Fault-Tolerance

Ali OSS (2) Architecture

• WS: Web Server PM: Protocol Manager

Persistent
Layer

M

M

MPaxos
OS

OS

OS

OS
OS

Nuwa
LockService

KVServer KVServer KVServer

KVMaster

WS+PM WS+PM WS+PM WS+PM

Access Layer（RESTful API）

Partition Layer（LSM Tree）

Request ACK

Ali OSS (3) Partition Layer

• Append/Dump/Merge

MemFile
Block
Cache

Block Index Cache Bloomfilter Cache

Memory

Pangu

Youchao Files
Redo Log File

Log Data Files

Ali OSS (4) Partition Layer

• Read/Write Process

MemFile

Redo Log
File

Memory

Read

Youchao
FilesDump memfile

to youchao file

Write

Pangu

Merge

Ali OSS (5) Persistent Layer

• Write Pangu Normal File

PaxosPangu client

M

M

M

OS OS OS OS

Create Chunk

Chunk Location

A
p

p
en

d
 D

at
a

A
C

K

Append Append

ACK ACK

Ali OSS (6) Persistent Layer

• Write Pangu Log File

PaxosPangu client

M

M

M

OS OS OS OS

Create Chunk

Chunk Location

Fl
u

sh
 D

at
a

A
C

K

The Evolution of Data Storage

Contents

Google File System (GFS)5

Why build GFS?

• Node failures happen frequently

• Files are huge – multi-GB

• Most files are modified by appending at the end

 Random writes (and overwrites) are practically non-existent

• High sustained bandwidth is more important than low
latency

 Place more priority on processing data in bulk

Typical workloads on GFS

• Two kinds of reads: large streaming reads & small random reads

 Large streaming reads usually read 1MB or more

 Oftentimes, applications read through contiguous regions in the file

 Small random reads are usually only a few KBs at some arbitrary
offset

• Also many large, sequential writes that append data to files

 Similar operation sizes to reads

 Once written, files are seldom modified again

 Small writes at arbitrary offsets do not have to be efficient

• Multiple clients (e.g. ~100) concurrently appending to a single file

 e.g. producer-consumer queues, many-way merging

Interface

• Not POSIX-compliant, but supports typical file system operations:
create, delete, open, close, read, and write

• snapshot: creates a copy of a file or a directory tree at low cost

• record append: allow multiple clients to append data to the
same file concurrently

 At least the very first append is guaranteed to be atomic

GFS Architecture (1)

GFS Architecture (2)

• Very important: data flow is decoupled from control flow

 Clients interact with the master for metadata operations

 Clients interact directly with chunkservers for all files operations

 This means performance can be improved by scheduling expensive
data flow based on the network topology

• Neither the clients nor the chunkservers cache file data

 Working sets are usually too large to be cached, chunkservers can use
Linux’s buffer cache

The Master Node (1)

• Responsible for all system-wide activities

 managing chunk leases, reclaiming storage space, load-balancing

• Maintains all file system metadata

 Namespaces, ACLs, mappings from files to chunks, and current
locations of chunks

 all kept in memory, namespaces and file-to-chunk mappings are also
stored persistently in operation log

• Periodically communicates with each chunkserver in HeartBeat
messages

 This let’s master determines chunk locations and assesses state of the
overall system

 Important: The chunkserver has the final word over what chunks it
does or does not have on its own disks – not the master

The Master Node (2)

• For the namespace metadata, master does not use any per-
directory data structures – no inodes! (No symlinks or hard links,
either.)

 Every file and directory is represented as a node in a lookup
table, mapping pathnames to metadata. Stored efficiently using
prefix compression (< 64 bytes per namespace entry)

• Each node in the namespace tree has a corresponding read-write
lock to manage concurrency

 Because all metadata is stored in memory, the master can
efficiently scan the entire state of the system periodically in the
background

 Master’s memory capacity does not limit the size of the system

The Operation Log

• Only persistent record of metadata

• Also serves as a logical timeline that defines the serialized order of
concurrent operations

• Master recovers its state by replaying the operation log

 To minimize startup time, the master checkpoints the log
periodically

 The checkpoint is represented in a B-tree like form, can be
directly mapped into memory, but stored on disk

 Checkpoints are created without delaying incoming requests
to master, can be created in ~1 minute for a cluster with a
few million files

Why a Single Master? (1)

• The master now has global knowledge of the whole system, which
drastically simplifies the design

• But the master is (hopefully) never the bottleneck

 Clients never read and write file data through the master; client
only requests from master which chunkservers to talk to

 Master can also provide additional information about
subsequent chunks to further reduce latency

 Further reads of the same chunk don’t involve the master,
either

Why a Single Master? (2)

• Master state is also replicated for reliability on multiple machines,
using the operation log and checkpoints

 If master fails, GFS can start a new master process at any of
these replicas and modify DNS alias accordingly

 “Shadow” masters also provide read-only access to the file
system, even when primary master is down

 They read a replica of the operation log and apply the same
sequence of changes

 Not mirrors of master – they lag primary master by fractions
of a second

 This means we can still read up-to-date file contents while
master is in recovery!

Chunks and Chunkservers

• Files are divided into fixed-size chunks, which has an immutable,
globally unique 64-bit chunk handle

 By default, each chunk is replicated three times across multiple
chunkservers (user can modify amount of replication)

• Chunkservers store the chunks on local disks as Linux files

 Metadata per chunk is < 64 bytes (stored in master)

 Current replica locations

 Reference count (useful for copy-on-write)

 Version number (for detecting stale replicas)

Chunk Size

• 64 MB, a key design parameter (Much larger than most file systems.)

• Disadvantages:

 Wasted space due to internal fragmentation

 Small files consist of a few chunks, which then get lots of traffic from
concurrent clients

 This can be mitigated by increasing the replication factor

• Advantages:

 Reduces clients’ need to interact with master (reads/writes on the
same chunk only require one request)

 Since client is likely to perform many operations on a given chunk,
keeping a persistent TCP connection to the chunkserver reduces
network overhead

 Reduces the size of the metadata stored in master → metadata can
be entirely kept in memory

Consistency Model

• Terminology:

 consistent: all clients will always see the same data, regardless of
which replicas they read from

 defined: same as consistent and, furthermore, clients will see what
the modification is in its entirety

• Guarantees:

Data Modification in GFS

• After a sequence of modifications, if successful, then modified
file region is guaranteed to be defined and contain data written
by last modification

• GFS applies modification to a chunk in the same order on all its
replicas

• A chunk is lost irreversibly if and only if all its replicas are lost
before the master node can react, typically within minutes

 even in this case, data is lost, not corrupted

Record Appends

• A modification operation that guarantees that data (the “record”)
will be appended atomically at least once – but at the offset of
GFS’s choosing

 The offset chosen by GFS is returned to the client so that the
application is aware

• GFS may insert padding or record duplicates in between different
record append operations

• Preferred that applications use this instead of write

 Applications should also write self-validating records (e.g.
checksumming) with unique IDs to handle
padding/duplicates

GFS Write Control and Data Flow (1)

• If the master receives a modification operation for a particular chunk:

 Master finds the chunkservers that have the chunk and grants a chunk
lease to one of them

 This server is called the primary, the other servers are called secondaries

 The primary determines the serialization order for all of the chunk’s
modifications, and the secondaries follow that order

 After the lease expires (~60 seconds), master may grant primary status
to a different server for that chunk

 The master can, at times, revoke a lease (e.g. to disable modifications
when file is being renamed)

 As long as chunk is being modified, the primary can request an extension
indefinitely

 If master loses contact with primary, that’s okay: just grant a new lease
after the old one expires

GFS Write Control and Data Flow (2)

• 1. Client asks master for all
chunkservers (including all
secondaries)

• 2. Master grants a new lease on
chunk, increases the chunk version
number, tells all replicas to do the
same. Replies to client. Client no
longer has to talk to master

• 3. Client pushes data to all servers,
not necessarily to primary first

• 4. Once data is acked, client sends
write request to primary. Primary
decides serialization order for all
incoming modifications and applies
them to the chunk

GFS Write Control and Data Flow (3)

• 5. After finishing the modification,
primary forwards write request and
serialization order to secondaries,
so they can apply modifications in
same order. (If primary fails, this
step is never reached.)

• 6. All secondaries reply back to the
primary once they finish the
modifications

• 7. Primary replies back to the client,
either with success or error

 If write succeeds at primary but

fails at any of the secondaries,
then we have inconsistent state
→ error returned to client

 Client can retry steps (3) through (7)

Contents

Hadoop File System (HDFS)6

Hadoop History

• Dec 2004 – Google GFS paper published

• July 2005 – Nutch uses MapReduce

• Feb 2006 – Starts as a Lucene subproject

• Apr 2007 – Yahoo! on 1000-node cluster

• Jan 2008 – An Apache Top Level Project

• May 2009 – Hadoop sorts Petabyte in 17 hours

• Aug 2010 – World’s Largest Hadoop cluster at Facebook

 2900 nodes, 30+ PetaByte

Hadoop Commodity Hardware

• Typically in 2 level architecture

 Nodes are commodity PCs

 20-40 nodes/rack

 Uplink from rack is 4 gigabit

 Rack-internal is 1 gigabit

Goals of Hadoop Distributed
File System (HDFS)

• Very Large Distributed File System

 10K nodes, 1 billion files, 100 PB

• Assumes Commodity Hardware

 Files are replicated to handle hardware failure

 Detect failures and recovers from them

• Optimized for Batch Processing

 Data locations exposed so that computations can move to
where data resides

 Provides very high aggregate bandwidth

• User Space, runs on heterogeneous OS

Basic of HDFS

• Single Namespace for entire cluster

• Data Coherency

 Write-once-read-many access model

 Client can only append to existing files

• Files are broken up into blocks

 Typically 128 - 256 MB block size

 Each block replicated on multiple DataNodes

• Intelligent Client

 Client can find location of blocks

 Client accesses data directly from DataNode

HDFS Architecture (1)

HDFS Architecture (2)

Namenode→Metadata

• Meta-data in Memory

 The entire metadata is in main memory

 No demand paging of meta-data

• Types of Metadata

 List of files

 List of Blocks for each file & file attributes

• A Transaction Log

 Records file creations, file deletions, etc.

Datanode

• A Block Server

 Stores data in the local file system (e.g. ext3)

 Stores meta-data of a block (e.g. CRC32)

 Serves data and meta-data to Clients

 Periodic validation of checksums

• Block Report

 Periodically sends a report of all existing blocks to the
NameNode (heartbeats)

• Facilitates Pipelining of Data

 Forwards data to other specified DataNodes

Block Placement

• Current Strategy

 One replica on local node

 Second replica on a remote rack

 Third replica on same remote rack

 Additional replicas are randomly placed

• Clients read from nearest replica

• Pluggable policy for placing block replicas

 Co-locate datasets that are often used together

Block Replication

HDFS Read

• To read a block, the client requests the list of replica locations
from the NameNode

• Then pulling data from a replica on one of the DataNodes

Data Pipelining

• Client writes block to the first
DataNode

 The first DataNode forwards
the data to the next

• DataNode in the Pipeline, and so
on

 When all replicas are written,
the Client moves on to write
the next block in file

• Not good for latency sensitive
applications

HDFS Write

• To write a block of a file, the client requests a list of candidate
DataNodes from the NameNode, and organizes a write pipeline.

Namenode failure

• A Single Point of Failure

• Transaction Log stored in multiple directories

 A directory on the local file system

 A directory on a remote file system (NFS/CIFS)

• This is a problem with 24 x 7 operations

 AvatarNode comes to the rescue

NameNode High Availability
Challenges
• DataNodes send block location

information to only one
NameNode

• NameNode needs block
locations in memory to serve
clients

• The in-memory metadata for
100 million files could be 60
GB, huge!

NameNode High Availability
AvatarNode
• Active-Standby Pair

 Coordinated via zookeeper

 Failover in few seconds

 Wrapper over NameNode

• Active AvatarNode

 Writes transaction log to filer

• Standby AvatarNode

 Reads transactions from filer

 Latest metadata in memory

Rebalancer

• Goal: % disk full on DataNodes should be similar

 Usually run when new DataNodes are added

 Cluster is online when Rebalancer is active

 Rebalancer is throttled to avoid network congestion

• Disadvantages

 Does not rebalance based on access patterns or load

 No support for automatic handling of hotspots of data

HDFS RAID

• Triplicate every data block

• Background encoding

 Combine third replica of
blocks from a single file to
create parity block

 Remove third replica

• RaidNode

 Auto fix of failed replicas

• Reed Solomon encoding for
old files

Contents

Microsoft Azure7

Microsoft Azure Storage
• Blobs – File system in the cloud

• Tables – Massively scalable structured storage

• Queues – Reliable storage and delivery of messages

• Drives – Durable NTFS volumes for Windows Azure applications

Windows Azure Storage Stamps

Storage Stamp

LB

Storage
Location
Service

Access blob storage via the URL: http://<account>.blob.core.windows.net/

Data access

Partition Layer

Front-Ends

Stream Layer

Intra-stamp replication
Storage Stamp

LB

Partition Layer

Front-Ends

Stream Layer

Intra-stamp replication

Inter-stamp (Geo) replication

Storage Stamp Architecture – Stream Layer
• Append-only distributed file system

• All data from the Partition Layer is stored into files (extents) in the Stream layer

• An extent is replicated 3 times across different fault and upgrade domains

• With random selection for where to place replicas for fast MTTR

• Checksum all stored data

• Verified on every client read

• Scrubbed every few days

• Re-replicate on disk/node/rack failure or checksum mismatch

M

Extent Nodes (EN)

Paxos

M

M
Stream

Layer

(Distributed

File System)

Storage Stamp Architecture – Partition Layer
• Provide transaction semantics and strong consistency for Blobs, Tables and Queues

• Stores and reads the objects to/from extents in the Stream layer

• Provides inter-stamp (geo) replication by shipping logs to other stamps

• Scalable object index via partitioning

M

Extent Nodes (EN)

Paxos

M

M

Partition

Server

Partition

Server

Partition

Server

Partition

Server

Partition

Master
Lock

Service

Partition Layer

Stream

Layer

Storage Stamp Architecture – Front End Layer
• Stateless Servers

• Authentication + authorization

• Request routing

M

Extent Nodes (EN)

Paxos

Front End

Layer
FE

M

M

Partition

Server

Partition

Server

Partition

Server

Partition

Server

Partition

Master

FE FE FE FE

Lock

Service

Partition Layer

Stream

Layer

Storage Stamp Architecture – Request

M

Extent Nodes (EN)

Paxos

Front End

Layer
FE

Incoming Write Request

M

M

Partition

Server

Partition

Server

Partition

Server

Partition

Server

Partition

Master

FE FE FE FE

Lock

Service

Ack

Partition Layer

Stream

Layer

Partition Layer – Scalable Object Index

• 100s of Billions of blobs, entities, messages across all
accounts can be stored in a single stamp
• Need to efficiently enumerate, query, get, and update them

• Traffic pattern can be highly dynamic

• Hot objects, peak load, traffic bursts, etc

• Need a scalable index for the objects that can
• Spread the index across 100s of servers

• Dynamically load balance

• Dynamically change what servers are serving each part of
the index based on load

Scalable Object Index via Partitioning

• Partition Layer maintains an internal Object Index
Table for each data abstraction
• Blob Index: contains all blob objects for all accounts in a stamp

• Table Entity Index: contains all entities for all accounts in a stamp

• Queue Message Index: contains all messages for all accounts in a
stamp

• Scalability is provided for each Object Index
• Monitor load to each part of the index to determine hot spots

• Index is dynamically split into thousands of Index RangePartitions
based on load

• Index RangePartitions are automatically load balanced across
servers to quickly adapt to changes in load

Partition Layer – Index Range Partitioning

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

zzzz zzzz zzzzz

• Split index into
RangePartitions based on
load

• Split at PartitionKey
boundaries

• PartitionMap tracks Index
RangePartition assignment
to partition servers

• Front-End caches the
PartitionMap to route user
requests

• Each part of the index is
assigned to only one
Partition Server at a time

Storage Stamp

Partition

Server
Partition

Server
Account

Name
Container

Name
Blob

Name

richard videos tennis

……… ……… ………

……… ……… ………

zzzz zzzz zzzzz

Account
Name

Container
Name

Blob
Name

harry pictures sunset

……… ……… ………

……… ……… ………

richard videos soccer

Partition

Server

Partition

Master

Front-End
Server

PS 2 PS 3

PS 1

A-H: PS1
H’-R: PS2
R’-Z: PS3

A-H: PS1
H’-R: PS2
R’-Z: PS3

Partition
Map

Blob Index

Partition

Map

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

……… ……… ………

……… ……… ………

harry pictures sunrise
A-H

R’-ZH’-R

Each RangePartition – Log Structured Merge Tree

Checkpoint
File Table

Checkpoint
File Table

Checkpoint
File Table

Blob Data Blob Data Blob Data

Commit Log Stream

Metadata log Stream

Writes Read/Query

Stream Layer

• Append-Only Distributed File System

• Streams are very large files
• Has file system like directory namespace

• Stream Operations
• Open, Close, Delete Streams

• Rename Streams

• Concatenate Streams together

• Append for writing

• Random reads

Stream Layer Concepts

Extent E2 Extent E3

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

Block
• Min unit of write/read

• Checksum

• Up to N bytes (e.g. 4MB)

Extent
• Unit of replication

• Sequence of blocks

• Size limit (e.g. 1GB)

• Sealed/unsealed

Stream
• Hierarchical namespace

• Ordered list of pointers to
extents

• Append/Concatenate

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

Extent E4

Stream //foo/myfile.data

Ptr E1 Ptr E2 Ptr E3 Ptr E4

Extent E1

Creating an Extent

SM
SMStream

Master

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN

Create Stream/Extent

Allocate Extent replica set

Primary Secondary A Secondary B

EN1 Primary
EN2, EN3 Secondary

Replication Flow

SM
SM

SM

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN

Append

Primary Secondary A Secondary B

Ack

EN1 Primary
EN2, EN3 Secondary

Thank you!

