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Schedule

• lec1: Introduction on big data, cloud computing & IoT

• Iec2: Parallel processing framework (e.g., MapReduce)

• lec3: Advanced parallel processing techniques (e.g., 
YARN, Spark)

• lec4: Cloud & Fog/Edge Computing

• lec5: Data reliability & data consistency

• lec6: Distributed file system & objected-based storage

• lec7: Metadata management & NoSQL Database

• lec8: Big Data Analytics
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The Block Paradigm



The Object Paradigm



File Access via Inodes
• Inodes contain file attributes



Object Access

• Metadata:
 Creation data/time; ownership; size …

• Attributes – inferred:
 Access patterns; content; indexes …

• Attributes – user supplied:
 Retention; QoS …



Object Autonomy
• Storage becomes autonomous

 Capacity planning

 Load balancing

 Backup

 QoS, SLAs

 Understand data/object grouping

 Aggressive prefetching

 Thin provisioning

 Search

 Compression/Deduplication

 Strong security, encryption

 Compliance/retention

 Availability/replication

 Audit

 Self healing



Data Sharing
homogeneous/heterogeneous



Data Migration
homogeneous/heterogeneous



Strong Security
Additional layer

• Strong security via 
external service
 Authentication

 Authorization

 …

• Fine granularity
 Per object
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Data Access (Block-based vs. Object-
based Device)

• Objects contain both data and attributes
 Operations: create/delete/read/write objects, get/set attributes



OSD Standards (1)

• ANSI INCITS T10 for OSD (the SCSI Specification, www.t10.org)

 ANSI INCITS 458

 OSD-1 is basic functionality

 Read, write, create objects and partitions

 Security model, Capabilities, manage shared secrets and 
working keys

 OSD-2 adds

 Snapshots

 Collections of objects

 Extended exception handling and recovery

 OSD-3 adds

 Device to device communication

 RAID-[1,5,6] implementation between/among devices



OSD Standards (2)



OSD Forms

• Disk array/server subsystem

 Example: custom-built HPC systems 
predominantly deployed in national 
labs

• Storage bricks for objects

 Example: commercial 
supercomputing offering

• Object Layer Integrated in Disk 
Drive



OSDs: like disks, only different



OSDs: like a file server, only different



OSD Capabilities (1)

• Unlike disks, where access is granted on an all or nothing 
basis, OSDs grant or deny access to individual objects 
based on Capabilities

• A Capability must accompany each request to read or 
write an object

 Capabilities are cryptographically signed by the Security 
Manager and verified (and enforced) by the OSD

 A Capability to access an object is created by the Security 
Manager, and given to the client (application server) accessing 
the object

 Capabilities can be revoked by changing an attribute on the 
object



OSD Capabilities (2)



OSD Security Model

• OSD and File Server know a secret key

 Working keys are periodically generated from a master key

• File server authenticates clients and makes access control 
policy decisions

 Access decision is captured in a capability that is signed with the 
secret key

 Capability identifies object, expire time, allowed operations, etc.

• Client signs requests using the capability signature as a 
signing key

 OSD verifies the signature before allowing access

 OSD doesn’t know about the users, Access Control Lists (ACLs), 
or whatever policy mechanism the File Server is using 
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Why not just OSD = file system?

• Scaling

 What if there’s more data than the biggest OSD can hold?

 What if too many clients access an OSD at the same time?

 What if there’s a file bigger than the biggest OSD can hold?

• Robustness

 What happens to data if an OSD fails?

 What happens to data if a Metadata Server fails? 

• Performance

 What if thousands of objects are access concurrently?

 What if big objects have to be transferred really fast?



General Principle
• Architecture

 File = one or more groups of objects

 Usually on different OSDs

 Clients access Metadata Servers to locate data

 Clients transfer data directly to/from OSDs

• Address

 Capacity

 Robustness

 Performance



Capacity
• Add OSDs

 Increase total system capacity

 Support bigger files

 Files can span OSDs if necessary or desirable



Robustness
• Add metadata servers

 Resilient metadata services

 Resilient security services

• Add OSDs

 Failed OSD affects small percentage 
of system resources

 Inter-OSD mirroring and RAID

 Near-online file system checking



Advantage of Reliability
• Declustered Reconstruction

 OSDs only rebuild actual data 
(not unused space)

 Eliminates single-disk rebuild 
bottleneck

 Faster reconstruction to 
provide high protection



Performance
• Add metadata servers

 More concurrent metadata 
operations

 Getattr, Readdir, Create, Open, …

• Add OSDs

 More concurrent I/O operations

 More bandwidth directly between 
clients and data



Additional Advantages
• Optimal data placement

 Within OSD: proximity of 
related data

 Load balancing across OSDs

• System-wide storage pooling

 Across multiple file systems

• Storage tiering

 Per-file control over 
performance and resiliency



Per-file tiering in OSDs: striping



Per-file tiering in OSDs: RAID-4/5/6



Per-file tiering in OSDs: mirroring(RAID-1)



Flat namespace



Hierarchical File System Vs. Flat Address Space

• Hierarchical file system organizes data in the form of files and directories

• Object-based storage devices store the data in the form of objects

 It uses flat address space that enables storage of large number of objects

 An object contains user data, related metadata, and other attributes

 Each object has a unique object ID, generated using specialized algorithm

Filenames/inodes

Hierarchical File System

Object IDs

Flat Address Space

Object Object

Object Object

Object Object

Data

Attributes

Object ID

Metadata

Object



Virtual View / Virtual File Systems



Traditional FS Vs. Object-based FS (1)



Traditional FS Vs. Object-based FS (2)

• File system layer in host manages

 Human readable namespace

 User authentication, permission checking, Access Control 
Lists (ACLs)

 OS interface

• Object Layer in OSD manages

 Block allocation and placement

 OSD has better knowledge of disk geometry and 
characteristic so it can do a better job of file 
placement/optimization than a host-based file system



Accessing Object-based FS

• Typical Access

 SCSI (block), NFS/CIFS (file)

• Needs a client component

 Proprietary

 Standard



Standard→ NFS v4.1

• A standard file access protocol for OSDs



Scaling Object-based FS (1)



Scaling Object-based FS (2)

• App servers (clients) have direct access to storage to 
read/write file data securely

 Contrast with SAN where security is lacking

 Contrast with NAS where server is a bottleneck

• File system includes multiple OSDs

 Grow the file system by adding an OSD

 Increase bandwidth at the same time

 Can include OSDs with different performance characteristics 
(SSD, SATA, SAS)

• Multiple File Systems share the same OSDs

 Real storage pooling



Scaling Object-based FS (3)

• Allocation of blocks to Objects handled within OSDs

 Partitioning improves scalability

 Compartmentalized managements improves reliability 
through isolated failure domains

• The File Server piece is called the MDS

 Meta-Data Server

 Can be clustered for scalability



Why Objects helps Scaling

• 90% of File System cycles are in the read/write path

 Block allocation is expensive

 Data transfer is expensive

 OSD offloads both of these from the file server

 Security model allows direct access from clients

• High level interfaces allow optimization

 The more function behind an API, the less often you have to use 
the API to get your work done

• Higher level interfaces provide more semantics

 User authentication and access control

 Namespace and indexing



Object Decomposition



Object-based File Systems

• Lustre

 Custom OSS/OST model

 Single metadata server

• PanFS

 ANSI T10 OSD model

 Multiple metadata servers

• Ceph

 Custom OSD model

 CRUSH metadata distribution

• pNFS

 Out-of-band metadata service for NFSv4.1

 T10 Objects, Files, Blocks as data services

• These systems scale

 1000’s of disks (i.e., PB’s)

 1000’s of clients

 100’s GB/sec

 All in one file system



Lustre (1)

• Supercomputing focus emphasizing

 High I/O throughput

 Scalability in the Pbytes of data and billions of files

• OSDs called OSTs (Object Storage Targets)

• Only RAID-0 supported across Objects

 Redundancy inside OSTs

• Runs over many transports

 IP over ethernet

 Infiniband

• OSD and MDS are Linux based & Client Software supports Linux

 Other platforms under consideration

• Used in Telecom/Supercomputing Center/Aerospace/National 
Lab



Lustre (2) Architecture



Lustre (3) Architecture-MDS

• Metadata Server (MDS)

 Node(s) that manage namespace, file 
creation and layout, and locking. 
Directory operations

 File open/close

 File status

 File creation

 Map of file object location

 Relatively expensive serial atomic 
transactions to maintain consistency

• •Metadata Target (MDT)

 Block device that stores metadata



Lustre (3) Architecture-OSS

• Object Storage Server (OSS)
 Multiple nodes that manage network 

requests for file objects on disk.

• Object Storage Target (OST)
 Block device that stores file objects



Lustre (4) Simplest Lustre File System



Lustre (5) File Operation

• When a compute node needs to create or access a file, it requests the 
associated storage locations from the MDS and the associated MDT.

• I/O operations then occur directly with the OSSs and OSTs associated 
with the file bypassing the MDS.

• For read operations, file data flows from the OSTs to the compute node.



Lustre (6) File I/Os

• Single stream

• Single stream 
through a master

• Parallel



Lustre (7) File Striping

• A file is split into segments and consecutive segments are stored 
on different physical storage devices (OSTs).



Lustre (8) Aligned and Unaligned Stripes

• Aligned stripes is where each segment fits fully onto a single OST. 
Processes accessing the file do so at corresponding stripe boundaries.

• Unaligned stripes means some file segments are split across OSTs.



Lustre (9) Striping Example



Lustre (10) Advantages/Disadvantages

• Striping will not benefit ALL applications



Ceph (1)
• What is Ceph?

Ceph is a distributed file system that provides excellent 
performance, scalability and reliability.

Features

Decoupled data and 
metadata

Dynamic distributed 
metadata management

Reliable autonomic 
distributed object storage

Goals

Easy scalability to peta-
byte capacity

Adaptive to varying 
workloads

Tolerant  to node failures



Ceph (2) – Architecture

• Decoupled Data and Metadata



Ceph (3) – Architecture



Ceph (4) – Components

Object
Storage
cluster

Clients

Metadata
Server
cluster

Cluster
monitor

Metadata I/O



Ceph (5) - Components

Meta Data
cluster

Clients

Object 
Storage
cluster

Capability 
Management

CRUSH is used to 
map Placement 

Group (PG) to OSD.



Ceph (6) – Components
• Client Synchronization

POSIX

Semantics

Relaxed 
Consistency

 Synchronous I/O.
performance killer

 Solution: HPC extensions 
to POSIX 

 Default: Consistency / 
correctness

 Optionally relax

 Extensions for both data 
and metadata



Ceph (7) – Namespace Operations

Ceph optimizes for most 
common meta-data 
access scenarios 

(readdir followed by stat)

But by default “correct” 
behavior is provided at 
some cost.

Stat operation on a file 
opened by multiple 
writers

Applications for which 
coherent behavior is 
unnecessary use 
extensions

Namespace 
Operations



Ceph (8) – Metadata

Per-MDS 
journals

Eventually 
pushed to 

OSD

Sequential 
Update

More efficient

Reducing re-
write workload. 

Optimized on-
disk storage 

layout for future 
read access

Easier failure 
recovery. Journal 

can be 
rescanned for 

recovery.

• Metadata Storage
• Advantages



Ceph (9) – Metadata
• Dynamic Sub-tree Partitioning

▪ Adaptively distribute cached metadata hierarchically across a set of 
nodes.

▪ Migration preserves locality.

▪ MDS measures popularity of metadata.



Ceph (10) – Metadata

• Traffic Control for metadata access

• Challenge
• Partitioning can balance workload but can’t deal with 

hot spots or flash crowds

• Ceph Solution
✓ Heavily read directories are selectively replicated 

across multiple nodes to distribute load

✓ Directories that are extra large or experiencing heavy 
write workload have their contents hashed by file name 
across the cluster



Ceph (11) – Distributed Object Storage



Ceph (11) – CRUSH

• CRUSH(x) → (osdn1, osdn2, osdn3)

• Inputs
• x is the placement group

• Hierarchical cluster map

• Placement rules

• Outputs a list of OSDs

• Advantages
• Anyone can calculate object location

• Cluster map infrequently updated



Ceph (12) – Replication

• Objects are replicated on OSDs within same PG
• Client is oblivious to replication



Ceph (13) – Conclusion
• Strengths:

• Easy scalability to peta-byte capacity

• High performance for varying work loads

• Strong reliability

• Weaknesses:
• MDS and OSD Implemented in user-space

• The primary replicas may become bottleneck to heavy 
write operation

• N-way replication lacks storage efficiency

• References
• Ceph: A Scalable, High Performance Distributed File System. 

In Proc. of OSDI’06
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Web Object Features

• RESTful API (i.e., web-based)

• Security/Authentication tied to Billing

• Metadata capabilities

• Highly available

• Loosely consistent

• Data Storage

 Blobs

 Tables

 Queues

• Other related APIs (compute, search, etc.)

 Storage API is relatively simple in comparison



Simple HTTP example



HTTP and objects

• Request specifies method and object:

 Operation: GET, POST, PUT, HEAD, COPY

 Object ID (/index.html)

• Parameters use MIME format borrowed from email

 Content-type: utf8;

 Set-Cookie: tracking=1234567;

• Add a data payload

 Optional

 Separated from parameters with a blank line (like email)

• Response has identical structure

 Status line, key-value parameters, optional data payload

This is a method 
call on an object 

These are 
parameters

This is data



OpenStack REST API for Storage

• GET v1/account HTTP/1.1

 Login to your account

• HEAD v1/account HTTP/1.1

 List account metadata

• PUT v1/account/container HTTP/1.1

 Create container

• PUT v1/account/container/object HTTP/1.1

 Create object

• GET v1/account/container/object HTTP/1.1

 Read object

• HEAD v1/account/container/object HTTP/1.1

 Read object metadata



Create an object



Update metadata



Ali OSS (1)

• Access URL: http://<bucket>.oss-cn-beijing.aliyuncs.com/<object>

Access Layer
Restful Protocol

LB
LVS

Partition Layer
Key-Value Engine

Persistent Layer
Pangu FS

Load Balancing

Protocol Manager & 
Access Control

Partition & Index

Persistent, Redundancy 
& Fault-Tolerance



Ali OSS (2) Architecture

• WS: Web Server PM: Protocol Manager

Persistent
Layer

M

M

MPaxos
OS

OS

OS

OS
OS

Nuwa
LockService

KVServer KVServer KVServer

KVMaster

WS+PM WS+PM WS+PM WS+PM

Access Layer（RESTful API）

Partition Layer（LSM Tree）

Request ACK



Ali OSS (3) Partition Layer

• Append/Dump/Merge

MemFile
Block
Cache

Block Index Cache Bloomfilter Cache

Memory

Pangu

Youchao Files
Redo Log File

Log Data Files



Ali OSS (4) Partition Layer

• Read/Write Process

MemFile

Redo Log 
File

Memory

Read

Youchao
FilesDump memfile

to youchao file

Write

Pangu

Merge



Ali OSS (5) Persistent Layer

• Write Pangu Normal File

PaxosPangu client

M

M

M

OS OS OS OS

Create Chunk

Chunk Location

A
p

p
en

d
 D

at
a

A
C

K

Append Append

ACK ACK



Ali OSS (6) Persistent Layer

• Write Pangu Log File

PaxosPangu client

M

M

M

OS OS OS OS

Create Chunk

Chunk Location

Fl
u

sh
 D

at
a

A
C

K



The Evolution of Data Storage
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Why build GFS?

• Node failures happen frequently

• Files are huge – multi-GB

• Most files are modified by appending at the end

 Random writes (and overwrites) are practically non-existent

• High sustained bandwidth is more important than low 
latency

 Place more priority on processing data in bulk



Typical workloads on GFS

• Two kinds of reads: large streaming reads & small random reads

 Large streaming reads usually read 1MB or more

 Oftentimes, applications read through contiguous regions in the file

 Small random reads are usually only a few KBs at some arbitrary 
offset

• Also many large, sequential writes that append data to files

 Similar operation sizes to reads

 Once written, files are seldom modified again

 Small writes at arbitrary offsets do not have to be efficient

• Multiple clients (e.g. ~100) concurrently appending to a single file

 e.g. producer-consumer queues, many-way merging



Interface

• Not POSIX-compliant, but supports typical file system operations: 
create, delete, open, close, read, and write

• snapshot: creates a copy of a file or a directory tree at low cost

• record append: allow multiple clients to append data to the 
same file concurrently

 At least the very first append is guaranteed to be atomic



GFS Architecture (1)



GFS Architecture (2)

• Very important: data flow is decoupled from control flow

 Clients interact with the master for metadata operations

 Clients interact directly with chunkservers for all files operations

 This means performance can be improved by scheduling expensive 
data flow based on the network topology

• Neither the clients nor the chunkservers cache file data

 Working sets are usually too large to be cached, chunkservers can use 
Linux’s buffer cache



The Master Node (1)

• Responsible for all system-wide activities

 managing chunk leases, reclaiming storage space, load-balancing

• Maintains all file system metadata

 Namespaces, ACLs, mappings from files to chunks, and current 
locations of chunks

 all kept in memory, namespaces and file-to-chunk mappings are also 
stored persistently in operation log

• Periodically communicates with each chunkserver in HeartBeat
messages

 This let’s master determines chunk locations and assesses state of the 
overall system

 Important: The chunkserver has the final word over what chunks it 
does or does not have on its own disks – not the master



The Master Node (2)

• For the namespace metadata, master does not use any per-
directory data structures – no inodes! (No symlinks or hard links, 
either.)

 Every file and directory is represented as a node in a lookup 
table, mapping pathnames to metadata. Stored efficiently using 
prefix compression (< 64 bytes per namespace entry)

• Each node in the namespace tree has a corresponding read-write 
lock to manage concurrency

 Because all metadata is stored in memory, the master can 
efficiently scan the entire state of the system periodically in the 
background

 Master’s memory capacity does not limit the size of the system



The Operation Log

• Only persistent record of metadata

• Also serves as a logical timeline that defines the serialized order of 
concurrent operations

• Master recovers its state by replaying the operation log

 To minimize startup time, the master checkpoints the log 
periodically

 The checkpoint is represented in a B-tree like form, can be 
directly mapped into memory, but stored on disk

 Checkpoints are created without delaying incoming requests 
to master, can be created in ~1 minute for a cluster with a 
few million files



Why a Single Master? (1)

• The master now has global knowledge of the whole system, which 
drastically simplifies the design

• But the master is (hopefully) never the bottleneck

 Clients never read and write file data through the master; client 
only requests from master which chunkservers to talk to

 Master can also provide additional information about 
subsequent chunks to further reduce latency

 Further reads of the same chunk don’t involve the master, 
either



Why a Single Master? (2)

• Master state is also replicated for reliability on multiple machines, 
using the operation log and checkpoints

 If master fails, GFS can start a new master process at any of 
these replicas and modify DNS alias accordingly

 “Shadow” masters also provide read-only access to the file 
system, even when primary master is down

 They read a replica of the operation log and apply the same 
sequence of changes

 Not mirrors of master – they lag primary master by fractions 
of a second

 This means we can still read up-to-date file contents while 
master is in recovery!



Chunks and Chunkservers

• Files are divided into fixed-size chunks, which has an immutable, 
globally unique 64-bit chunk handle

 By default, each chunk is replicated three times across multiple 
chunkservers (user can modify amount of replication)

• Chunkservers store the chunks on local disks as Linux files

 Metadata per chunk is < 64 bytes (stored in master)

 Current replica locations

 Reference count (useful for copy-on-write)

 Version number (for detecting stale replicas)



Chunk Size

• 64 MB, a key design parameter (Much larger than most file systems.)

• Disadvantages:

 Wasted space due to internal fragmentation

 Small files consist of a few chunks, which then get lots of traffic from 
concurrent clients

 This can be mitigated by increasing the replication factor

• Advantages:

 Reduces clients’ need to interact with master (reads/writes on the 
same chunk only require one request)

 Since client is likely to perform many operations on a given chunk, 
keeping a persistent TCP connection to the chunkserver reduces 
network overhead

 Reduces the size of the metadata stored in master → metadata can 
be entirely kept in memory



Consistency Model

• Terminology:

 consistent: all clients will always see the same data, regardless of 
which replicas they read from

 defined: same as consistent and, furthermore, clients will see what 
the modification is in its entirety

• Guarantees:



Data Modification in GFS

• After a sequence of modifications, if successful, then modified 
file region is guaranteed to be defined and contain data written 
by last modification

• GFS applies modification to a chunk in the same order on all its 
replicas

• A chunk is lost irreversibly if and only if all its replicas are lost 
before the master node can react, typically within minutes

 even in this case, data is lost, not corrupted



Record Appends

• A modification operation that guarantees that data (the “record”) 
will be appended atomically at least once – but at the offset of 
GFS’s choosing

 The offset chosen by GFS is returned to the client so that the 
application is aware

• GFS may insert padding or record duplicates in between different 
record append operations

• Preferred that applications use this instead of write

 Applications should also write self-validating records (e.g. 
checksumming) with unique IDs to handle 
padding/duplicates



GFS Write Control and Data Flow (1)

• If the master receives a modification operation for a particular chunk:

 Master finds the chunkservers that have the chunk and grants a chunk 
lease to one of them

 This server is called the primary, the other servers are called secondaries

 The primary determines the serialization order for all of the chunk’s 
modifications, and the secondaries follow that order

 After the lease expires (~60 seconds), master may grant primary status 
to a different server for that chunk

 The master can, at times, revoke a lease (e.g. to disable modifications 
when file is being renamed)

 As long as chunk is being modified, the primary can request an extension 
indefinitely

 If master loses contact with primary, that’s okay: just grant a new lease 
after the old one expires



GFS Write Control and Data Flow (2)

• 1. Client asks master for all 
chunkservers (including all 
secondaries)

• 2. Master grants a new lease on 
chunk, increases the chunk version 
number, tells all replicas to do the 
same. Replies to client. Client no 
longer has to talk to master

• 3. Client pushes data to all servers, 
not necessarily to primary first

• 4. Once data is acked, client sends 
write request to primary. Primary 
decides serialization order for all 
incoming modifications and applies 
them to the chunk



GFS Write Control and Data Flow (3)

• 5. After finishing the modification, 
primary forwards write request and 
serialization order to secondaries, 
so they can apply modifications in 
same order. (If primary fails, this 
step is never reached.)

• 6. All secondaries reply back to the 
primary once they finish the 
modifications

• 7. Primary replies back to the client, 
either with success or error

 If write succeeds at primary but 

fails at any of the secondaries, 
then we have inconsistent state 
→ error returned to client

 Client can retry steps (3) through (7)



Contents

Hadoop File System (HDFS)6



Hadoop History

• Dec 2004 – Google GFS paper published

• July 2005 – Nutch uses MapReduce

• Feb 2006 – Starts as a Lucene subproject

• Apr 2007 – Yahoo! on 1000-node cluster

• Jan 2008 – An Apache Top Level Project

• May 2009 – Hadoop sorts Petabyte in 17 hours

• Aug 2010 – World’s Largest Hadoop cluster at Facebook

 2900 nodes, 30+ PetaByte



Hadoop Commodity Hardware

• Typically in 2 level architecture

 Nodes are commodity PCs

 20-40 nodes/rack

 Uplink from rack is 4 gigabit

 Rack-internal is 1 gigabit



Goals of Hadoop Distributed
File System (HDFS)

• Very Large Distributed File System

 10K nodes, 1 billion files, 100 PB

• Assumes Commodity Hardware

 Files are replicated to handle hardware failure

 Detect failures and recovers from them

• Optimized for Batch Processing

 Data locations exposed so that computations can move to 
where data resides

 Provides very high aggregate bandwidth

• User Space, runs on heterogeneous OS



Basic of HDFS

• Single Namespace for entire cluster

• Data Coherency

 Write-once-read-many access model

 Client can only append to existing files

• Files are broken up into blocks

 Typically 128 - 256 MB block size

 Each block replicated on multiple DataNodes

• Intelligent Client

 Client can find location of blocks

 Client accesses data directly from DataNode



HDFS Architecture (1)



HDFS Architecture (2)



Namenode→Metadata

• Meta-data in Memory

 The entire metadata is in main memory

 No demand paging of meta-data

• Types of Metadata

 List of files

 List of Blocks for each file & file attributes

• A Transaction Log

 Records file creations, file deletions, etc.



Datanode

• A Block Server

 Stores data in the local file system (e.g. ext3)

 Stores meta-data of a block (e.g. CRC32)

 Serves data and meta-data to Clients

 Periodic validation of checksums

• Block Report

 Periodically sends a report of all existing blocks to the 
NameNode (heartbeats)

• Facilitates Pipelining of Data

 Forwards data to other specified DataNodes



Block Placement

• Current Strategy

 One replica on local node

 Second replica on a remote rack

 Third replica on same remote rack

 Additional replicas are randomly placed

• Clients read from nearest replica

• Pluggable policy for placing block replicas

 Co-locate datasets that are often used together



Block Replication



HDFS Read

• To read a block, the client requests the list of replica locations 
from the NameNode

• Then pulling data from a replica on one of the DataNodes



Data Pipelining

• Client writes block to the first 
DataNode

 The first DataNode forwards 
the data to the next

• DataNode in the Pipeline, and so 
on

 When all replicas are written, 
the Client moves on to write 
the next block in file

• Not good for latency sensitive 
applications



HDFS Write

• To write a block of a file, the client requests a list of candidate 
DataNodes from the NameNode, and organizes a write pipeline.



Namenode failure

• A Single Point of Failure

• Transaction Log stored in multiple directories

 A directory on the local file system

 A directory on a remote file system (NFS/CIFS)

• This is a problem with 24 x 7 operations

 AvatarNode comes to the rescue



NameNode High Availability
Challenges
• DataNodes send block location 

information to only one 
NameNode

• NameNode needs block 
locations in memory to serve 
clients

• The in-memory metadata for 
100 million files could be 60 
GB, huge!



NameNode High Availability
AvatarNode
• Active-Standby Pair

 Coordinated via zookeeper

 Failover in few seconds

 Wrapper over NameNode

• Active AvatarNode

 Writes transaction log to filer

• Standby AvatarNode

 Reads transactions from filer

 Latest metadata in memory



Rebalancer

• Goal: % disk full on DataNodes should be similar

 Usually run when new DataNodes are added

 Cluster is online when Rebalancer is active

 Rebalancer is throttled to avoid network congestion

• Disadvantages

 Does not rebalance based on access patterns or load

 No support for automatic handling of hotspots of data



HDFS RAID

• Triplicate every data block

• Background encoding

 Combine third replica of 
blocks from a single file to 
create parity block

 Remove third replica

• RaidNode

 Auto fix of failed replicas

• Reed Solomon encoding for 
old files
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Microsoft Azure Storage
• Blobs – File system in the cloud

• Tables – Massively scalable structured storage

• Queues – Reliable storage and delivery of messages

• Drives – Durable NTFS volumes for Windows Azure applications



Windows Azure Storage Stamps

Storage Stamp

LB

Storage
Location 
Service

Access blob storage via the URL: http://<account>.blob.core.windows.net/ 

Data access

Partition Layer

Front-Ends

Stream Layer

Intra-stamp replication
Storage Stamp

LB

Partition Layer

Front-Ends

Stream Layer

Intra-stamp replication

Inter-stamp (Geo) replication



Storage Stamp Architecture – Stream Layer
• Append-only distributed file system

• All data from the Partition Layer is stored into files (extents) in the Stream layer

• An extent is replicated 3 times across different fault and upgrade domains

• With random selection for where to place replicas for fast MTTR

• Checksum all stored data

• Verified on every client read

• Scrubbed every few days

• Re-replicate on disk/node/rack failure or checksum mismatch
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Extent Nodes (EN)

Paxos

M

M
Stream 

Layer

(Distributed

File System)



Storage Stamp Architecture – Partition Layer
• Provide transaction semantics and strong consistency for Blobs, Tables and Queues

• Stores and reads the objects to/from extents in the Stream layer

• Provides inter-stamp (geo) replication by shipping logs to other stamps

• Scalable object index via partitioning

M
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Paxos

M
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Partition
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Lock 
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Storage Stamp Architecture – Front End Layer
• Stateless Servers

• Authentication + authorization

• Request routing

M
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Storage Stamp Architecture – Request
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Partition Layer – Scalable Object Index

• 100s of Billions of blobs, entities, messages across all 
accounts can be stored in a single stamp 
• Need to efficiently enumerate, query, get, and update them

• Traffic pattern can be highly dynamic

• Hot objects, peak load, traffic bursts, etc

• Need a scalable index for the objects that can
• Spread the index across 100s of servers

• Dynamically load balance

• Dynamically change what servers are serving each part of 
the index based on load



Scalable Object Index via Partitioning

• Partition Layer maintains an internal Object Index 
Table for each data abstraction
• Blob Index: contains all blob objects for all accounts in a stamp 

• Table Entity Index: contains all entities for all accounts in a stamp

• Queue Message Index: contains all messages for all accounts in a 
stamp

• Scalability is provided for each Object Index
• Monitor load to each part of the index to determine hot spots

• Index is dynamically split into thousands of Index RangePartitions
based on load

• Index RangePartitions are automatically load balanced across 
servers to quickly adapt to changes in load



Partition Layer – Index Range Partitioning
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• Split index into 
RangePartitions based on 
load 

• Split at PartitionKey
boundaries

• PartitionMap tracks Index 
RangePartition assignment 
to partition servers

• Front-End caches the 
PartitionMap to route user 
requests

• Each part of the index is 
assigned to only one 
Partition Server at a time
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Each RangePartition – Log Structured Merge Tree 

Checkpoint
File Table

Checkpoint
File Table

Checkpoint
File Table

Blob Data Blob Data Blob Data

Commit Log Stream

Metadata log Stream

Writes Read/Query



Stream Layer

• Append-Only Distributed File System

• Streams are very large files
• Has file system like directory namespace

• Stream Operations
• Open, Close, Delete Streams

• Rename Streams

• Concatenate Streams together

• Append for writing

• Random reads



Stream Layer Concepts

Extent E2 Extent E3
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Extent
• Unit of replication

• Sequence of blocks

• Size limit (e.g. 1GB)
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Stream
• Hierarchical namespace
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Creating an Extent

SM
SMStream 

Master

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN

Create Stream/Extent

Allocate Extent replica set

Primary Secondary A Secondary B

EN1 Primary
EN2, EN3 Secondary



Replication Flow

SM
SM

SM

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN

Append

Primary Secondary A Secondary B

Ack

EN1 Primary
EN2, EN3 Secondary



Thank you!


