
Big Data and Internet Thinking

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

• User: wuct

• Password: wuct123456

• http://www.cs.sjtu.edu.cn/~wuct/bdit/

ftp://public.sjtu.edu.cn/

Schedule

• lec1: Introduction on big data, cloud computing & IoT

• Iec2: Parallel processing framework (e.g., MapReduce)

• lec3: Advanced parallel processing techniques (e.g.,
YARN, Spark)

• lec4: Cloud & Fog/Edge Computing

• lec5: Data reliability & data consistency

• lec6: Distributed file system & objected-based storage

• lec7: Metadata management & NoSQL Database

• lec8: Big Data Analytics

Collaborators

Contents

Introduction to Map-Reduce 2.01

Classic Map-Reduce Task (MRv1)
• MapReduce 1 (“classic”) has three main components

 API→for user-level programming of MR applications

 Framework→runtime services for running Map and Reduce processes,
shuffling and sorting, etc.

 Resource management→infrastructure to monitor nodes, allocate resources,
and schedule jobs

MRv1: Batch Focus

HADOOP 1.0
Built for Web-Scale Batch Apps

Single App

BATCH

HDFS

Single App

INTERACTIVE

Single App

BATCH

HDFS

All other usage patterns MUST
leverage same infrastructure

Forces Creation of Silos to
Manage Mixed Workloads

Single App

BATCH

HDFS

Single App

ONLINE

YARN (MRv2)
• MapReduce 2 move resource management to

YARN

 MapReduce originally architecture at
Yahoo in 2008

 “alpha” in Hadoop 2 (pre-GA)

 YARN promoted to sub-project in Hadoop
in 2013 (Best Paper in SOCC 2013)

Why YARN is needed? (1)
• MapReduce 1 resource management issues

 Inflexible “slots” configured on nodes →map or reduce,
not both

 Underutilization of cluster when more map or reduce
tasks are running

 Cannot share resources with non-MR applications
running on Hadoop cluster (e.g., impala, apache giraph)

 Scalability → one Job Tracker per cluster – limit of
about 4000 nodes per cluster

Busy JobTracker on a large Apache
Hadoop cluster (MRv1)

Why YARN is needed? (2)
• YARN Solutions

 No slots

 Nodes have “resources” →memory and CPU cores – which are
allocated to applications when requested

 Supports MR and non-MR applications running on the same cluster

 Most Job Tracker functions moved to Application Master → one
cluster can have many Application Masters

YARN: Taking Hadoop Beyond Batch

Applications Run Natively in Hadoop

HDFS2 (Redundant, Reliable Storage)

YARN (Cluster Resource Management)

BATCH
(MapReduce)

INTERACTIVE
(Tez)

STREAMING
(Storm, S4,…)

GRAPH
(Giraph)

IN-MEMORY
(Spark)

HPC MPI
(OpenMPI)

ONLINE
(HBase)

OTHER
(Search)

(Weave…)

Store ALL DATA in one place…

Interact with that data in MULTIPLE WAYS

with Predictable Performance and Quality of Service

YARN: Efficiency with Shared Services

Yahoo! leverages YARN

40,000+ nodes running YARN across over 365PB of data

~400,000 jobs per day for about 10 million hours of compute time

Estimated a 60% – 150% improvement on node usage per day using

YARN

Eliminated Colo (~10K nodes) due to increased utilization

For more details check out the YARN SOCC 2013 paper

YARN and MapReduce
• YARN does not know or care what kind of application is running

 Could be MR or something else (e.g., Impala)

• MR2 uses YARN

 Hadoop includes a MapReduce ApplicationMaster (AM) to manage
MR jobs

 Each MapReduce job is a new instance of an application

Running a MapReduce Application in MRv2 (1)

Running a MapReduce Application in MRv2 (2)

Running a MapReduce Application in MRv2 (3)

Running a MapReduce Application in MRv2 (4)

Running a MapReduce Application in MRv2 (5)

Running a MapReduce Application in MRv2 (6)

Running a MapReduce Application in MRv2 (7)

Running a MapReduce Application in MRv2 (8)

Running a MapReduce Application in MRv2 (9)

Running a MapReduce Application in MRv2 (10)

The MapReduce Framework on YARN

• In YARN, Shuffle is run as an auxiliary service

 Runs in the NodeManager JVM as a persistent service

Contents

Introduction to Spark2

What is Spark?
• Fast, expressive cluster computing system compatible with Apache

Hadoop

 Works with any Hadoop-supported storage system (HDFS, S3, Avro, …)

• Improves efficiency through:

 In-memory computing primitives

 General computation graphs

• Improves usability through:

 Rich APIs in Java, Scala, Python

 Interactive shell

Up to 100× faster

Often 2-10× less code

How to Run It & Languages

• Local multicore: just a library in your program

• EC2: scripts for launching a Spark cluster

• Private cluster: Mesos, YARN, Standalone Mode

• APIs in Java, Scala and Python

• Interactive shells in Scala and Python

Spark Framework

Spark + Hive
Spark + Pregel

Key Idea

• Work with distributed collections as you would with local ones

• Concept: resilient distributed datasets (RDDs)

 Immutable collections of objects spread across a cluster

 Built through parallel transformations (map, filter, etc)

 Automatically rebuilt on failure

 Controllable persistence (e.g. caching in RAM)

Spark Runtime

• Spark runs as a library in your
program

• (1 instance per app)

• Runs tasks locally or on Mesos

 new SparkContext (masterUrl,
jobname, [sparkhome], [jars])

 MASTER=local[n] ./spark-shell

 MASTER=HOST:PORT ./spark-shell

Example: Mining Console Logs
• Load error messages from a log into memory, then interactively

search for patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(‘\t’)[2])

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “foo” in s).count()

messages.filter(lambda s: “bar” in s).count()

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDD
Transformed RDD

Action

Result: full-text search of Wikipedia in <1 sec
(vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

RDD Fault Tolerance
RDDs track the transformations used to build them (their lineage) to
recompute lost data

E.g: messages = textFile(...).filter(lambda s: s.contains(“ERROR”))
.map(lambda s: s.split(‘\t’)[2])

HadoopRDD
path = hdfs://…

FilteredRDD
func = contains(...)

MappedRDD
func = split(…)

Which Language Should I Use?
• Standalone programs can be written in any, but console is only

Python & Scala

• Python developers: can stay with Python for both

• Java developers: consider using Scala for console (to learn the API)

• Performance: Java / Scala will be faster (statically typed), but
Python can do well for numerical work with NumPy

Iterative Processing in Hadoop

Throughput Mem vs. Disk

• Typical throughput of disk: ~ 100 MB/sec

• Typical throughput of main memory: 50 GB/sec

• => Main memory is ~ 500 times faster than disk

Spark→ In Memory Data Sharing

Spark vs. Hadoop MapReduce (3)

Spark vs. Hadoop MapReduce (4)

On-Disk Sort Record
Time to sort 100TB

2100 machines2013 Record:
Hadoop

2014 Record:
Spark

Source: Daytona GraySort benchmark, sortbenchmark.org

72 minutes

207 machines

23 minutes

Also sorted 1PB in 4 hours

Powerful Stack – Agile Development (1)

0

20000

40000

60000

80000

100000

120000

140000

Hadoop

MapReduce

Storm

(Streaming)

Impala

(SQL)

Giraph

(Graph)

Spark

non-test, non-example source lines

Powerful Stack – Agile Development (2)

non-test, non-example source lines

0

20000

40000

60000

80000

100000

120000

140000

Hadoop

MapReduce

Storm

(Streaming)

Impala

(SQL)

Giraph

(Graph)

Spark

Streaming

Powerful Stack – Agile Development (3)

non-test, non-example source lines

0

20000

40000

60000

80000

100000

120000

140000

Hadoop

MapReduce

Storm

(Streaming)

Impala

(SQL)

Giraph

(Graph)

Spark

SparkSQL
Streaming

Powerful Stack – Agile Development (4)

non-test, non-example source lines

0

20000

40000

60000

80000

100000

120000

140000

Hadoop

MapReduce

Storm

(Streaming)

Impala

(SQL)

Giraph

(Graph)

Spark

SparkSQL
Streaming

Powerful Stack – Agile Development (5)

non-test, non-example source lines

0

20000

40000

60000

80000

100000

120000

140000

Hadoop

MapReduce

Storm

(Streaming)

Impala

(SQL)

Giraph

(Graph)

Spark

GraphX

Streaming
SparkSQL

Powerful Stack – Agile Development (6)

non-test, non-example source lines

0

20000

40000

60000

80000

100000

120000

140000

Hadoop

MapReduce

Storm

(Streaming)

Impala

(SQL)

Giraph

(Graph)

Spark

GraphX

Streaming
SparkSQL

Your fancy

SIGMOD technique

here

Contents

Spark Programming3

Learning Spark

• Easiest way: Spark interpreter (spark-shell or pyspark)

 Special Scala and Python consoles for cluster use

• Runs in local mode on 1 thread by default, but can control with
MASTER environment var:

MASTER=local ./spark-shell # local, 1 thread
MASTER=local[2] ./spark-shell # local, 2 threads
MASTER=spark://host:port ./spark-shell # Spark standalone cluster

First Step: SparkContext

• Main entry point to Spark functionality

• Created for you in Spark shells as variable sc

• In standalone programs, you’d make your own (see later for details)

Creating RDDs

Turn a local collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt,
conf)

Basic Transformations

nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) # => {1, 4,
9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # =>
{4}

Map each element to zero or more others
nums.flatMap(lambda x: range(0, x)) # => {0, 0,
1, 0, 1, 2}

Range object (sequence of
numbers 0, 1, …, x-1)

Basic Actions

nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
nums.saveAsTextFile(“hdfs://file.txt”)

Working with Key-Value Pairs

• Spark’s “distributed reduce” transformations act on
RDDs of key-value pairs

• Python: pair = (a, b)

pair[0] # => a
pair[1] # => b

• Scala: val pair = (a, b)

pair._1 // => a
pair._2 // => b

• Java: Tuple2 pair = new Tuple2(a, b); // class

scala.Tuple2
pair._1 // => a
pair._2 // => b

Some Key-Value Operations

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”,
2)])

pets.reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

pets.groupByKey()
=> {(cat, Seq(1, 2)), (dog, Seq(1)}

pets.sortByKey()
=> {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements combiners on the
map side

Example: Word Count
lines = sc.textFile(“hamlet.txt”)

counts = lines.flatMap(lambda line:
line.split(“ ”)) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda x, y: x + y)

“to be or”

“not to be”

“to”

“be”

“or”

“not”

“to”

“be”

(to, 1)

(be, 1)

(or, 1)

(not, 1)

(to, 1)

(be, 1)

(be, 2)

(not, 1)

(or, 1)

(to, 2)

Multiple Datasets

visits = sc.parallelize([(“index.html”, “1.2.3.4”),
(“about.html”, “3.4.5.6”),
(“index.html”, “1.3.3.1”)])

pageNames = sc.parallelize([(“index.html”, “Home”),
(“about.html”, “About”)])

visits.join(pageNames)
(“index.html”, (“1.2.3.4”, “Home”))
(“index.html”, (“1.3.3.1”, “Home”))
(“about.html”, (“3.4.5.6”, “About”))

visits.cogroup(pageNames)
(“index.html”, (Seq(“1.2.3.4”, “1.3.3.1”), Seq(“Home”)))
(“about.html”, (Seq(“3.4.5.6”), Seq(“About”)))

Controlling the level of parallelism

• All the pair RDD operations take an optional second
parameter for number of tasks
words.reduceByKey(lambda x, y: x + y, 5)

words.groupByKey(5)

visits.join(pageViews, 5)

Using Local Variables

• External variables you use in a closure will
automatically be shipped to the cluster:

query = raw_input(“Enter a query:”)

pages.filter(lambda x: x.startswith(query)).count()

• Some caveats:
• Each task gets a new copy (updates aren’t sent back)

• Variable must be Serializable (Java/Scala) or Pickle-able
(Python)

• Don’t use fields of an outer object (ships all of it!)

Closure Mishap Example

class MyCoolRddApp {
val param = 3.14
val log = new Log(...)
...

def work(rdd: RDD[Int])
{

rdd.map(x => x +
param)

.reduce(...)
}

}

How to get around it:

class MyCoolRddApp {
...

def work(rdd: RDD[Int])
{

val param_ = param
rdd.map(x => x +

param_)
.reduce(...)

}
}

NotSerializableException:
MyCoolRddApp (or Log)

References only local variable
instead of this.param

Build Spark

• Requires Java 6+, Scala 2.9.2

git clone git://github.com/mesos/spark
cd spark
sbt/sbt package

Optional: publish to local Maven
cache
sbt/sbt publish-local

Add Spark into Your Project

• Scala and Java: add a Maven dependency on

groupId: org.spark-project
artifactId: spark-core_2.9.1
version: 0.7.0-SNAPSHOT

• Python: run program with our pyspark script

Create a SparkContext

import spark.api.java.JavaSparkContext;

JavaSparkContext sc = new JavaSparkContext(
“masterUrl”, “name”, “sparkHome”, new String[]

{“app.jar”}));

import spark.SparkContext
import spark.SparkContext._

val sc = new SparkContext(“masterUrl”, “name”, “sparkHome”,
Seq(“app.jar”))

Cluster URL, or
local / local[N]

App
name

Spark install
path on clusterList of JARs with

app code (to ship)

Sc
al

a
Ja

va

from pyspark import SparkContext

sc = SparkContext(“masterUrl”, “name”, “sparkHome”,
[“library.py”]))P

yt
h

o
n

Complete App: Scala

import spark.SparkContext
import spark.SparkContext._

object WordCount {
def main(args: Array[String]) {

val sc = new SparkContext(“local”,
“WordCount”, args(0), Seq(args(1)))

val lines = sc.textFile(args(2))
lines.flatMap(_.split(“ ”))

.map(word => (word, 1))

.reduceByKey(_ + _)

.saveAsTextFile(args(3))
}

}

Complete App: Python

import sys
from pyspark import SparkContext

if __name__ == "__main__":
sc = SparkContext(“local”, “WordCount”,

sys.argv[0], None)
lines = sc.textFile(sys.argv[1])

lines.flatMap(lambda s: s.split(“ ”)) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: x + y) \
.saveAsTextFile(sys.argv[2])

Contents

Graph Computing4

Graphs are very where

Program Flow

Ecological
Network

Biological
Network

Social Network

Chemical
Network Web Graph

Complex Graphs
• Real-life graph contains complex contents – labels

associated with nodes, edges and graphs.

Node Labels:

Location, Gender,
Charts, Library,
Events, Groups,
Journal, Tags, Age,
Tracks.

Large Graphs

of Users # of Links

Facebook 400 Million 52K Million

Twitter 105 Million 10K Million

LinkedIn 60 Million 0.9K Million

Last.FM 40 Million 2K Million

LiveJournal 25 Million 2K Million

del.icio.us 5.3 Million 0.7K Million

DBLP 0.7 Million 8 Million

Thank you!

