
Big Data and Internet Thinking

Chentao Wu
Associate Professor

Dept. of Computer Science and Engineering
wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/bdit/

ftp://public.sjtu.edu.cn/

Schedule

• lec1: Introduction on big data, cloud computing & IoT

• Iec2: Parallel processing framework (e.g., MapReduce)

• lec3: Advanced parallel processing techniques (e.g.,
YARN, Spark)

• lec4: Cloud & Fog/Edge Computing

• lec5: Data reliability & data consistency

• lec6: Distributed file system & objected-based storage

• lec7: Metadata management & NoSQL Database

• lec8: Big Data Analytics

Collaborators

Contents

Parallel Programming Basic1

Task/Channel Model

• Parallel computation = set of tasks

• Task
• Program

• Local memory

• Collection of I/O ports

• Tasks interact by sending messages through
channels

Task/Channel Model

Task
Channel

Foster’s Design Methodology

• Partitioning

• Communication

• Agglomeration

• Mapping

Foster’s Design Methodology

Problem
Partitioning

Communication

AgglomerationMapping

Partitioning

• Dividing computation and data into pieces

• Domain decomposition

• Divide data into pieces

• Determine how to associate computations with
the data

• Functional decomposition

• Divide computation into pieces

• Determine how to associate data with the
computations

Example Domain Decompositions

Example Functional Decomposition

Partitioning Checklist

• At least 10x more primitive tasks than processors in
target computer

• Minimize redundant computations and redundant
data storage

• Primitive tasks roughly the same size

• Number of tasks an increasing function of problem
size

Communication

• Determine values passed among tasks

• Local communication

• Task needs values from a small number of other
tasks

• Create channels illustrating data flow

• Global communication

• Significant number of tasks contribute data to
perform a computation

• Don’t create channels for them early in design

Communication Checklist

• Communication operations balanced among tasks

• Each task communicates with only small group of
neighbors

• Tasks can perform communications concurrently

• Task can perform computations concurrently

Agglomeration

• Grouping tasks into larger tasks

• Goals
• Improve performance

• Maintain scalability of program

• Simplify programming

• In MPI programming, goal often to create one
agglomerated task per processor

Agglomeration Can Improve
Performance

• Eliminate communication between primitive tasks
agglomerated into consolidated task

• Combine groups of sending and receiving tasks

Agglomeration Checklist

• Locality of parallel algorithm has increased

• Replicated computations take less time than
communications they replace

• Data replication doesn’t affect scalability

• Agglomerated tasks have similar computational and
communications costs

• Number of tasks increases with problem size

• Number of tasks suitable for likely target systems

• Tradeoff between agglomeration and code
modifications costs is reasonable

Mapping

• Process of assigning tasks to processors

• Centralized multiprocessor: mapping done by
operating system

• Distributed memory system: mapping done by user

• Conflicting goals of mapping
• Maximize processor utilization

• Minimize interprocessor communication

Mapping Example

Optimal Mapping

• Finding optimal mapping is NP-hard

• Must rely on heuristics

Mapping Decision Tree

• Static number of tasks

• Structured communication

• Constant computation time per task

• Agglomerate tasks to minimize comm

• Create one task per processor

• Variable computation time per task

• Cyclically map tasks to processors

• Unstructured communication

• Use a static load balancing algorithm

• Dynamic number of tasks

Mapping Strategy

• Static number of tasks

• Dynamic number of tasks
• Frequent communications between tasks

• Use a dynamic load balancing algorithm

• Many short-lived tasks

• Use a run-time task-scheduling algorithm

Mapping Checklist

• Considered designs based on one task per processor
and multiple tasks per processor

• Evaluated static and dynamic task allocation

• If dynamic task allocation chosen, task allocator is not
a bottleneck to performance

• If static task allocation chosen, ratio of tasks to
processors is at least 10:1

Contents

Map-Reduce Framework2

MapReduce Programming Model

• Inspired from map and reduce operations commonly used in
functional programming languages like Lisp.

• Have multiple map tasks and reduce tasks

• Users implement interface of two primary methods:
 Map: (key1, val1) → (key2, val2)
 Reduce: (key2, [val2]) → [val3]

Example: Map Processing in Hadoop

• Given a file

A file may be divided into multiple parts (splits).

• Each record (line) is processed by a Map function,

written by the user,

 takes an input key/value pair

produces a set of intermediate key/value pairs.

 e.g. (doc—id, doc-content)

• Draw an analogy to SQL group-by clause

Map

map (in_key, in_value) ->

(out_key, intermediate_value) list

Processing of Reducer Tasks

• Given a set of (key, value) records produced by map tasks.

 all the intermediate values for a given output key are combined
together into a list and given to a reducer.

 Each reducer further performs (key2, [val2]) → [val3]

• Can be visualized as aggregate function (e.g., average) that is
computed over all the rows with the same group-by attribute.

Reduce

reduce (out_key, intermediate_value list) ->

out_value list

Put Map and Reduce Tasks Together

Example: Wordcount (1)

Example: Wordcount (2)
Input/Output for a Map-Reduce Job

Example: Wordcount (3)
Map

Example: Wordcount (4)
Map

Example: Wordcount (5)
Map→Reduce

Example: Wordcount (6)
Input to Reduce

Example: Wordcount (7)
Reduce Output

MapReduce: Execution overview

Reducers output the result on stable storage.

Shuffle phase assigns reducers to these buffers, which are remotely read and
processed by reducers.

Map task reads the allocated data, saves the map results in local buffer.

Master Server distributes M map tasks to machines and monitors their
progress.

Execute MapReduce on a cluster of
machines with HDFS

MapReduce in Parallel: Example

MapReduce: Execution Details

• Input reader

 Divide input into splits, assign each split to a Map task

• Map task

 Apply the Map function to each record in the split

 Each Map function returns a list of (key, value) pairs

• Shuffle/Partition and Sort

 Shuffle distributes sorting & aggregation to many reducers

 All records for key k are directed to the same reduce processor

 Sort groups the same keys together, and prepares for aggregation

• Reduce task

 Apply the Reduce function to each key

 The result of the Reduce function is a list of (key, value) pairs

MapReduce: Runtime Environment

Partitioning the input data.

Scheduling program across
cluster of machines,

Locality Optimization and
Load balancing

Dealing with machine
failure

Managing Inter-Machine
communication

MapReduce Runtime
Environment

Hadoop Cluster with MapReduce

MapReduce (Single Reduce Task)

MapReduce (No Reduce Task)

MapReduce (Multiple Reduce Tasks)

High Level of Map-Reduce in Hadoop

Status Update

MapReduce with data shuffling & sorting

Lifecycle of a MapReduce Job

Map function

Reduce function

Run this program as a

MapReduce job

MapReduce: Fault Tolerance
• Handled via re-execution of tasks.

 Task completion committed through master

• Mappers save outputs to local disk before serving to reducers

 Allows recovery if a reducer crashes

 Allows running more reducers than # of nodes

• If a task crashes:

 Retry on another node

OK for a map because it had no dependencies

OK for reduce because map outputs are on disk

 If the same task repeatedly fails, fail the job or ignore that input block

 For the fault tolerance to work, user tasks must be deterministic and side-effect-free

• If a node crashes:

 Relaunch its current tasks on other nodes

 Relaunch any maps the node previously ran

Necessary because their output files were lost along with the crashed node

MapReduce: Locality Optimization

• Leverage the distributed file system to schedule a
map task on a machine that contains a replica of the
corresponding input data.

• Thousands of machines read input at local disk speed

• Without this, rack switches limit read rate

MapReduce: Redundant Execution

• Slow workers are source of bottleneck, may delay
completion time.

• Near end of phase, spawn backup tasks, one to finish
first wins.

• Effectively utilizes computing power, reducing job
completion time by a factor.

MapReduce: Skipping Bad Records

• Map/Reduce functions sometimes fail for particular
inputs.

• Fixing the Bug might not be possible : Third Party
Libraries.

• On Error

Worker sends signal to Master

If multiple error on same record, skip record

MapReduce: Miscellaneous Refinements

• Combiner function at a map task

• Sorting Guarantees within each reduce partition.

• Local execution for debugging/testing

• User-defined counters

Combining Phase

• Run on map machines after map phase

• “Mini-reduce,” only on local map output

• Used to save bandwidth before sending data to full
reduce tasks

• Reduce tasks can be combiner if commutative &
associative

Combiner, graphically

Combiner

replaces with:

Map output

To reducer

On one mapper machine:

To reducer

Examples of MapReduce Usage in Web
Applications

• Distributed Grep.

• Count of URL Access
Frequency.

• Clustering (K-means)

• Graph Algorithms.

• Indexing Systems

MapReduce Programs In
Google Source Tree

Contents

Applications Using Map-Reduce3

More MapReduce Applications

• Map Only processing

• Filtering and accumulation

• Database join

• Reversing graph edges

• Producing inverted index for web search

• PageRank graph processing

MapReduce Use Case 1: Map Only

Data distributive tasks – Map Only

• E.g. classify individual documents

• Map does everything

• Input: (docno, doc_content), …

• Output: (docno, [class, class, …]), …

• No reduce tasks

MapReduce Use Case 2: Filtering and
Accumulation
Filtering & Accumulation – Map and Reduce

• E.g. Counting total enrollments of two given student classes

• Map selects records and outputs initial counts

 In: (Jamie, 11741), (Tom, 11493), …

 Out: (11741, 1), (11493, 1), …

• Shuffle/Partition by class_id

• Sort

 In: (11741, 1), (11493, 1), (11741, 1), …

 Out: (11493, 1), …, (11741, 1), (11741, 1), …

• Reduce accumulates counts

 In: (11493, [1, 1, …]), (11741, [1, 1, …])

 Sum and Output: (11493, 16), (11741, 35)

MapReduce Use Case 3: Database Join
• A JOIN is a means for combining fields from two tables by using values common to each.

• Example :For each employee, find the department he works in

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

JOIN

Pred:

EMPLOYEE.DepID=

DEPARTMENT.DepID

JOIN RESULT

LastName DepartmentName

Rafferty Sales

Jones Engineering

Steinberg Engineering

… …

MapReduce Use Case 3 – Database Join
Problem: Massive lookups

 Given two large lists: (URL, ID) and (URL, doc_content) pairs

 Produce (URL, ID, doc_content) or (ID, doc_content)

Solution:

• Input stream: both (URL, ID) and (URL, doc_content) lists

 (http://del.icio.us/post, 0), (http://digg.com/submit, 1), …

 (http://del.icio.us/post, <html0>), (http://digg.com/submit, <html1>), …

• Map simply passes input along,

• Shuffle and Sort on URL (group ID & doc_content for the same URL together)

 Out: (http://del.icio.us/post, 0), (http://del.icio.us/post, <html0>),
(http://digg.com/submit, <html1>), (http://digg.com/submit, 1), …

• Reduce outputs result stream of (ID, doc_content) pairs

 In: (http://del.icio.us/post, [0, html0]), (http://digg.com/submit, [html1,
1]), …

 Out: (0, <html0>), (1, <html1>), …

MapReduce Use Case 4: Reverse graph
edge directions & output in node order

• Input example: adjacency list of graph (3 nodes and
4 edges)

(3, [1, 2]) (1, [3])
(1, [2, 3]) ➔ (2, [1, 3])

(3, [1])

• node_ids in the output values are also sorted.
But Hadoop only sorts on keys!

• MapReduce format
• Input: (3, [1, 2]), (1, [2, 3]).
• Intermediate: (1, [3]), (2, [3]), (2, [1]), (3, [1]). (reverse

edge direction)
• Out: (1,[3]) (2, [1, 3]) (3, [[1]).

1 2

3

1 2

3

➔

MapReduce Use Case 5: Inverted Indexing
Preliminaries

Construction of inverted lists for document search

• Input: documents: (docid, [term, term..]), (docid,
[term, ..]), ..

• Output: (term, [docid, docid, …])

E.g., (apple, [1, 23, 49, 127, …])

A document id is an internal document id, e.g., a unique
integer

• Not an external document id such as a url

Using MapReduce to Construct Indexes:
A Simple Approach
A simple approach to creating inverted lists

• Each Map task is a document parser

 Input: A stream of documents

 Output: A stream of (term, docid) tuples

 (long, 1) (ago, 1) (and, 1) … (once, 2) (upon, 2) …

 We may create internal IDs for words.

• Shuffle sorts tuples by key and routes tuples to Reducers

• Reducers convert streams of keys into streams of inverted lists

 Input: (long, 1) (long, 127) (long, 49) (long, 23) …

 The reducer sorts the values for a key and builds an inverted list

 Output: (long, [df:492, docids:1, 23, 49, 127, …])

Inverted Index: Data flow

This page contains

so much text

My page contains

text too

Foo

Bar

contains: Bar

My: Bar

page : Bar

text: Bar

too: Bar

contains: Foo

much: Foo

page : Foo

so : Foo

text: Foo

This : Foo
contains: Foo, Bar

much: Foo

My: Bar

page : Foo, Bar

so : Foo

text: Foo, Bar

This : Foo

too: Bar

Reduced output

Foo map output

Bar map output

Processing Flow Optimization

A more detailed analysis of processing flow

• Map: (docid1, content1) → (t1, docid1) (t2, docid1) …

• Shuffle by t, prepared for map-reducer communication

• Sort by t, conducted in a reducer machine

(t5, docid1) (t4, docid3) … → (t4, docid3) (t4, docid1) (t5, docid1) …

• Reduce: (t4, [docid3 docid1 …]) → (t, ilist)

docid: a unique integer

t: a term, e.g., “apple”

ilist: a complete inverted list

but a) inefficient, b) docids are sorted in reducers, and c) assumes
ilist of a word fits in memory

Using Combine () to Reduce Communication

• Map: (docid1, content1) → (t1, ilist1,1) (t2, ilist2,1) (t3, ilist3,1) …

 Each output inverted list covers just one document

• Combine locally

Sort by t

Combine: (t1 [ilist1,2 ilist1,3 ilist1,1 …]) → (t1, ilist1,27)

 Each output inverted list covers a sequence of documents

• Shuffle by t

• Sort by t

(t4, ilist4,1) (t5, ilist5,3) … → (t4, ilist4,2) (t4, ilist4,4) (t4, ilist4,1) …

• Reduce: (t7, [ilist7,2, ilist3,1, ilist7,4, …]) → (t7, ilistfinal)

ilisti,j: the j’th inverted list fragment for term i

Using MapReduce to Construct Indexes

Parser /

Indexer

Parser /

Indexer

Parser /

Indexer

:

:

:

:

:

:

Merger

Merger

Merger

:

:

A-F

Documents

Inverted

Lists

Map/Combine

Inverted List

Fragments

Shuffle/Sort Reduce

G-P

Q-Z

Construct Partitioned Indexes

• Useful when the document list of a term does not fit memory

• Map: (docid1, content1) → ([p, t1], ilist1,1)

• Combine to sort and group values

([p, t1] [ilist1,2 ilist1,3 ilist1,1 …]) → ([p, t1], ilist1,27)

• Shuffle by p

• Sort values by [p, t]

• Reduce: ([p, t7], [ilist7,2, ilist7,1, ilist7,4, …]) → ([p, t7], ilistfinal)

p: partition (shard) id

Generate Partitioned Index

Parser /

Indexer

Parser /

Indexer

Parser /

Indexer

:

:

:

:

:

:

Merger

Merger

Merger

:

:

Partition

Documents

Inverted

Lists

Map/Combine

Inverted List

Fragments

Shuffle/Sort Reduce

Partition

Partition

MapReduce Use Case 6: PageRank

PageRank

 Model page reputation on the web

 i=1,n lists all parents of page x.

 PR(x) is the page rank of each page.

 C(t) is the out-degree of t.

 d is a damping factor .

=

+−=
n

i i

i

tC

tPR
ddxPR

1)(

)(
)1()(

0.4

0.4

0.2

0.2

0.2

0.2

0.4

Computing PageRank Iteratively

Start with seed
PageRank values

Each page distributes
PageRank “credit” to
all pages it points to.

Each target page adds up
“credit” from multiple in-

bound links to compute PRi+1

 Effects at each iteration is local. i+1th iteration depends only on ith

iteration

 At iteration i, PageRank for individual nodes can be computed
independently

PageRank using MapReduce

Map: distribute PageRank “credit” to link targets

Reduce: gather up PageRank “credit” from multiple
sources to compute new PageRank value

Iterate until
convergence

PageRank Calculation:
Preliminaries
One PageRank iteration:

• Input:

 (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21, out22, ..]) ..

• Output:

 (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), out21,
out22, ..]) ..

MapReduce elements

• Score distribution and accumulation

• Database join

PageRank:
Score Distribution and Accumulation
• Map

 In: (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21,
out22, ..]) ..

 Out: (out11, score1
(t)/n1), (out12, score1

(t)/n1) .., (out21,
score2

(t)/n2), ..

• Shuffle & Sort by node_id

 In: (id2, score1), (id1, score2), (id1, score1), ..

 Out: (id1, score1), (id1, score2), .., (id2, score1), ..

• Reduce

 In: (id1, [score1, score2, ..]), (id2, [score1, ..]), ..

 Out: (id1, score1
(t+1)), (id2, score2

(t+1)), ..

PageRank:
Database Join to associate outlinks with score
• Map

 In & Out: (id1, score1
(t+1)), (id2, score2

(t+1)), .., (id1, [out11,
out12, ..]), (id2, [out21, out22, ..]) ..

• Shuffle & Sort by node_id

 Out: (id1, score1
(t+1)), (id1, [out11, out12, ..]), (id2, [out21, out22, ..]),

(id2, score2
(t+1)), ..

• Reduce

 In: (id1, [score1
(t+1), out11, out12, ..]), (id2, [out21, out22, ..,

score2
(t+1)]), ..

 Out: (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), out21,
out22, ..]) ..

Conclusion

• Application cases

 Map only: for totally distributive computation

 Map+Reduce: for filtering & aggregation

 Database join: for massive dictionary lookups

 Secondary sort: for sorting on values

 Inverted indexing: combiner, complex keys

 PageRank: side effect files

References

• J. Dean and S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters.” In Proc. of OSDI 2004.

• S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google File
System.” In Proc. of SOSP 2003.

• http://hadoop.apache.org/common/docs/current/mapred_tu
torial.html. “Map/Reduce Tutorial”. Fetched January 21,
2010.

• Tom White. Hadoop: The Definitive Guide. O'Reilly Media.
2013.

• http://developer.yahoo.com/hadoop/tutorial/module4.html

• J. Lin and C. Dyer. Data-Intensive Text Processing with
MapReduce, Book Draft. February 7, 2010.

Thank you!

