

Big Data and Internet Thinking

Chentao Wu Associate Professor Dept. of Computer Science and Engineering wuct@cs.sjtu.edu.cn

Download lectures

- <u>ftp://public.sjtu.edu.cn</u>
- User: wuct
- Password: wuct123456

• http://www.cs.sjtu.edu.cn/~wuct/bdit/

Schedule

- lec1: Introduction on big data, cloud computing & IoT
- Iec2: Parallel processing framework (e.g., MapReduce)
- lec3: Advanced parallel processing techniques (e.g., YARN, Spark)
- lec4: Cloud & Fog/Edge Computing
- lec5: Data reliability & data consistency
- lec6: Distributed file system & objected-based storage
- lec7: Metadata management & NoSQL Database
- lec8: Big Data Analytics

D&LEMC

Contents

Parallel Programming Basic

Task/Channel Model

- Parallel computation = set of tasks
- Task
 - Program
 - Local memory
 - Collection of I/O ports
- Tasks interact by sending messages through channels

Foster's Design Methodology

- Partitioning
- Communication
- Agglomeration
- Mapping

Foster's Design Methodology

Partitioning

- Dividing computation and data into pieces
- Domain decomposition
 - Divide data into pieces
 - Determine how to associate computations with the data
- Functional decomposition
 - Divide computation into pieces
 - Determine how to associate data with the computations

Example Domain Decompositions

Example Functional Decomposition

Partitioning Checklist

- At least 10x more primitive tasks than processors in target computer
- Minimize redundant computations and redundant data storage
- Primitive tasks roughly the same size
- Number of tasks an increasing function of problem size

Communication

- Determine values passed among tasks
- Local communication
 - Task needs values from a small number of other tasks
 - Create channels illustrating data flow
- Global communication
 - Significant number of tasks contribute data to perform a computation
 - Don't create channels for them early in design

Communication Checklist

- Communication operations balanced among tasks
- Each task communicates with only small group of neighbors
- Tasks can perform communications concurrently
- Task can perform computations concurrently

Agglomeration

- Grouping tasks into larger tasks
- Goals
 - Improve performance
 - Maintain scalability of program
 - Simplify programming
- In MPI programming, goal often to create one agglomerated task per processor

Agglomeration Can Improve Performance

- Eliminate communication between primitive tasks agglomerated into consolidated task
- Combine groups of sending and receiving tasks

Agglomeration Checklist

- Locality of parallel algorithm has increased
- Replicated computations take less time than communications they replace
- Data replication doesn't affect scalability
- Agglomerated tasks have similar computational and communications costs
- Number of tasks increases with problem size
- Number of tasks suitable for likely target systems
- Tradeoff between agglomeration and code modifications costs is reasonable

Mapping

- Process of assigning tasks to processors
- Centralized multiprocessor: mapping done by operating system
- Distributed memory system: mapping done by user
- Conflicting goals of mapping
 - Maximize processor utilization
 - Minimize interprocessor communication

Mapping Example

(a)

(b)

Optimal Mapping

- Finding optimal mapping is NP-hard
- Must rely on heuristics

Mapping Decision Tree

- Static number of tasks
 - Structured communication
 - Constant computation time per task
 - Agglomerate tasks to minimize comm
 - Create one task per processor
 - Variable computation time per task
 - Cyclically map tasks to processors
 - Unstructured communication
 - Use a static load balancing algorithm
- Dynamic number of tasks

Mapping Strategy

- Static number of tasks
- Dynamic number of tasks
 - Frequent communications between tasks
 - Use a dynamic load balancing algorithm
 - Many short-lived tasks
 - Use a run-time task-scheduling algorithm

Mapping Checklist

- Considered designs based on one task per processor and multiple tasks per processor
- Evaluated static and dynamic task allocation
- If dynamic task allocation chosen, task allocator is not a bottleneck to performance
- If static task allocation chosen, ratio of tasks to processors is at least 10:1

Contents

2

Map-Reduce Framework

MapReduce Programming Model

- Inspired from map and reduce operations commonly used in functional programming languages like Lisp.
- Have multiple map tasks and reduce tasks
- Users implement interface of two primary methods:
 - ▶ Map: (key1, val1) \rightarrow (key2, val2)
 - ▶ Reduce: (key2, [val2]) \rightarrow [val3]

Example: Map Processing in Hadoop

- Given a file
 - A file may be divided into multiple parts (splits).
- Each record (line) is processed by a Map function,
 - written by the user,
 - takes an input key/value pair
 - produces a set of intermediate key/value pairs.
 - e.g. (doc—id, doc-content)
- Draw an analogy to SQL group-by clause

Map

map (in_key, in_value) -> (out_key, intermediate_value) list

- Given a set of (key, value) records produced by map tasks.
 - Ill the intermediate values for a given output key are combined together into a list and given to a reducer.
 - ▶ Each reducer further performs (key2, [val2]) \rightarrow [val3]

• Can be visualized as *aggregate* function (e.g., average) that is computed over all the rows with the same group-by attribute.

Reduce

reduce (out_key, intermediate_value list) -> out_value list

Put Map and Reduce Tasks Together

Example: Wordcount (1)

Мар

- // assume input is a
- // set of text files
- // k is a line offset
- // v is the line for that offset

let map(k, v) =
foreach word in v:
emit(word, 1)

Reduce // k is a word // vals is a list of 1s

let reduce(k, vals) =
emit(k, vals.length())

Example: Wordcount (2) Input/Output for a Map-Reduce Job

File1.txt

California is a great place

File2.txt

Los_Angeles is the biggest city in California

California 2 great 1 place 1 Los Angeles 1 biggest 1 city 1 is 2 a 1 in 1

Example: Wordcount (3) Map

Example: Wordcount (4) Map

Example: Wordcount (5) $Map \rightarrow Reduce$

				Key	Values
	Key	Values		а	1
	California	{1,1}		-	(4.4)
	Los_Angeles	1		IS	{1,1}
			4	the	1
7				biggest	1
				city	1
				in	1
				great	1
				place	1

Example: Wordcount (7) Reduce Output

				Key	Values
	Key	Values		а	1
	California	2		1.	0
	Los_Angeles	1	1	IS	4
	10-10-10-10-10-10-10-10-10-10-10-10-10-1		L	the	1
4				biggest	1
				city	1
				in	1
				great	1
				place	1

MapReduce: Execution overview

Execute MapReduce on a cluster of machines with HDFS

MapReduce in Parallel: Example

MapReduce: Execution Details

- Input reader
 - Divide input into <u>splits</u>, assign each split to a Map task
- Map task
 - Apply the Map function to each record in the split
 - Each Map function returns a list of (key, value) pairs
- Shuffle/Partition and Sort
 - Shuffle distributes sorting & aggregation to many reducers
 - All records for key k are directed to the same reduce processor
 - Sort groups the same keys together, and prepares for aggregation
- Reduce task
 - Apply the Reduce function to each key
 - The result of the Reduce function is a list of (key, value) pairs

MapReduce: Runtime Environment

Replicated data blocks

MapReduce (Multiple Reduce Tasks)

Status Update

MapReduce with data shuffling & sorting

Lifecycle of a MapReduce Job

MapReduce: Fault Tolerance

- Handled via re-execution of tasks.
 - Task completion committed through master
- Mappers save outputs to local disk before serving to reducers
 - Allows recovery if a reducer crashes
 - Allows running more reducers than # of nodes
- If a task crashes:
 - Retry on another node
 - ► OK for a map because it had no dependencies
 - ▹ OK for reduce because map outputs are on disk
 - If the same task repeatedly fails, fail the job or ignore that input block
 - For the fault tolerance to work, user tasks must be deterministic and side-effect-free
- If a node crashes:
 - Relaunch its current tasks on other nodes
 - Relaunch any maps the node previously ran
 - >> Necessary because their output files were lost along with the crashed node

MapReduce: Locality Optimization

- Leverage the distributed file system to schedule a map task on a machine that contains a replica of the corresponding input data.
- Thousands of machines read input at local disk speed
- Without this, rack switches limit read rate

MapReduce: Redundant Execution

- Slow workers are source of bottleneck, may delay completion time.
- Near end of phase, spawn backup tasks, one to finish first wins.
- Effectively utilizes computing power, reducing job completion time by a factor.

MapReduce: Skipping Bad Records

- Map/Reduce functions sometimes fail for particular inputs.
- Fixing the Bug might not be possible : Third Party Libraries.

• On Error

- Worker sends signal to Master
- If multiple error on same record, skip record

MapReduce: Miscellaneous Refinements

- Combiner function at a map task
- Sorting Guarantees within each reduce partition.
- Local execution for debugging/testing
- User-defined counters

Combining Phase

- Run on map machines after map phase
- "Mini-reduce," only on local map output
- Used to save bandwidth before sending data to full reduce tasks
- Reduce tasks can be combiner if commutative & associative

Combiner, graphically

Examples of MapReduce Usage in Web Applications

- Distributed Grep.
- Count of URL Access Frequency.
- Clustering (K-means)
- Graph Algorithms.
- Indexing Systems

MapReduce Programs In Google Source Tree

Contents

Applications Using Map-Reduce

More MapReduce Applications

- Map Only processing
- Filtering and accumulation
- Database join
- Reversing graph edges
- Producing inverted index for web search
- PageRank graph processing

MapReduce Use Case 1: Map Only

Data distributive tasks – Map Only

- E.g. classify individual documents
- Map does everything
 - Input: (docno, doc_content), ...
 - Output: (docno, [class, class, ...]), ...
- No reduce tasks

MapReduce Use Case 2: Filtering and Accumulation

Filtering & Accumulation – Map and Reduce

- E.g. Counting total enrollments of two given student classes
- Map selects records and outputs initial counts
 - In: (Jamie, 11741), (Tom, 11493), ...
 - Out: (11741, 1), (11493, 1), ...
- Shuffle/Partition by class_id
- Sort
 - In: (11741, 1), (11493, 1), (11741, 1), ...
 - Out: (11493, 1), ..., (11741, 1), (11741, 1), ...
- Reduce accumulates counts
 - In: (11493, [1, 1, ...]), (11741, [1, 1, ...])
 - Sum and Output: (11493, 16), (11741, 35)

- A JOIN is a means for combining fields from two tables by using values common to each.
- Example :For each employee, find the department he works in

Employee Table			Department Table	
LastName	DepartmentID		DepartmentID	DepartmentName
Rafferty	31	JOIN		Departmentivame
Jones	33	Pred:	31	Sales
Steinberg	33	EMPLOYEE.DepID= DEPARTMENT.DepID	33	Engineering
Robinson	34		34	Clerical
Smith	34		35	Marketing

JOIN RESULT		
LastName	DepartmentName	
Rafferty	Sales	
Jones	Engineering	
Steinberg	Engineering	
•••		

MapReduce Use Case 3 – Database Join

Problem: Massive lookups

- Given two large lists: (URL, ID) and (URL, doc_content) pairs
- Produce (URL, ID, doc_content) or (ID, doc_content)

Solution:

- Input stream: both (URL, ID) and (URL, doc_content) lists
 - (http://del.icio.us/post, 0), (http://digg.com/submit, 1), ...
 - (http://del.icio.us/post, <html0>), (http://digg.com/submit, <html1>), ...
- Map simply passes input along,
- Shuffle and Sort on URL (group ID & doc_content for the same URL together)
 - Out: (http://del.icio.us/post, 0), (http://del.icio.us/post, <html0>), (http://digg.com/submit, <html1>), (http://digg.com/submit, 1), ...
- Reduce outputs result stream of (ID, doc_content) pairs
 - In: (http://del.icio.us/post, [0, html0]), (http://digg.com/submit, [html1, 1]), ...
 - Out: (0, <html0>), (1, <html1>), ...

MapReduce Use Case 4: Reverse graph edge directions & output in node order

Input example: adjacency list of graph (3 nodes and 4 edges)

 $\begin{array}{ll} (3, [1, 2]) & (1, [3]) \\ (1, [2, 3]) \xrightarrow{\bullet} & (2, [1, 3]) \\ & (3, [1]) \end{array}$

- node_ids in the output values are also sorted. But Hadoop only sorts on keys!
- MapReduce format
 - Input: (3, [1, 2]), (1, [2, 3]).
 - Intermediate: (1, [3]), (2, [3]), (2, [1]), (3, [1]). (reverse edge direction)
 - Out: (1,[3]) (2, [1, 3]) (3, [[1]).

MapReduce Use Case 5: Inverted Indexing Preliminaries

Construction of _inverted lists for document search

- Input: documents: (docid, [term, term..]), (docid, [term, ..]), ..
- Output: (term, [docid, docid, ...])
 - E.g., (apple, [1, 23, 49, 127, ...])

A document id is an <u>internal document id</u>, e.g., a unique integer

<u>Not</u> an external document id such as a url

Using MapReduce to Construct Indexes: A Simple Approach

- A simple approach to creating inverted lists
- Each Map task is a document parser
 - Input: A stream of documents
 - Output: A stream of (term, docid) tuples
 - (long, 1) (ago, 1) (and, 1) ... (once, 2) (upon, 2) ...
 - ▶ We may create internal IDs for words.
- Shuffle sorts tuples by key and routes tuples to Reducers
- Reducers convert streams of keys into streams of inverted lists
 - Input: (long, 1) (long, 127) (long, 49) (long, 23) ...
 - > The reducer sorts the values for a key and builds an inverted list
 - Output: (long, [df:492, docids:1, 23, 49, 127, ...])

Inverted Index: Data flow

Processing Flow Optimization

A more detailed analysis of processing flow

- Map: $(docid_1, content_1) \rightarrow (t_1, docid_1) (t_2, docid_1) \dots$
- Shuffle by t, prepared for map-reducer communication
- Sort by t, conducted in a reducer machine (t_5 , docid₁) (t_4 , docid₃) ... \rightarrow (t_4 , docid₃) (t_4 , docid₁) (t_5 , docid₁) ...
- Reduce: $(t_4, [docid_3 docid_1 ...]) \rightarrow (t, ilist)$

docid: a unique integer

- t: a term, e.g., "apple"
- ilist: a complete inverted list

but a) inefficient, b) docids are sorted in reducers, and c) assumes ilist of a word fits in memory

Using Combine () to Reduce Communication

- Map: $(docid_1, content_1) \rightarrow (t_1, ilist_{1,1}) (t_2, ilist_{2,1}) (t_3, ilist_{3,1}) \dots$
 - Each output inverted list covers just <u>one document</u>
- Combine locally

Sort by t

Combine: $(t_1 [ilist_{1,2} ilist_{1,3} ilist_{1,1} ...]) \rightarrow (t_1, ilist_{1,27})$

- Each output inverted list covers a <u>sequence of documents</u>
- Shuffle by t
- Sort by t

 $(t_4, ilist_{4,1}) (t_5, ilist_{5,3}) \dots \rightarrow (t_4, ilist_{4,2}) (t_4, ilist_{4,4}) (t_4, ilist_{4,1}) \dots$

• Reduce: $(t_7, [ilist_{7,2}, ilist_{3,1}, ilist_{7,4}, ...]) \rightarrow (t_7, ilist_{final})$

ilist_{i,j}: the j'th inverted list fragment for term i

Using MapReduce to Construct Indexes

- Useful when the document list of a term does not fit memory
- Map: $(docid_1, content_1) \rightarrow ([p, t_1], ilist_{1,1})$
- Combine to sort and group values

 $([\mathsf{p},\mathsf{t}_1] \ [\mathsf{ilist}_{1,2} \ \mathsf{ilist}_{1,3} \ \mathsf{ilist}_{1,1} \ \ldots]) \xrightarrow{} ([\mathsf{p},\mathsf{t}_1], \, \mathsf{ilist}_{1,27})$

- Shuffle by p
- Sort values by [p, t]

上海交通大學

• Reduce: $([p, t_7], [ilist_{7,2}, ilist_{7,1}, ilist_{7,4}, ...]) \rightarrow ([p, t_7], ilist_{final})$

p: partition (shard) id

Generate Partitioned Index

MapReduce Use Case 6: PageRank

PageRank

Model page reputation on the web

$$PR(x) = (1-d) + d\sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

- i=1,n lists all parents of page x.
- PR(x) is the page rank of each page.
- C(t) is the out-degree of t.
- d is a damping factor .

Computing PageRank Iteratively

- Effects at each iteration is local. i+1th iteration depends only on ith iteration
- At iteration i, PageRank for individual nodes can be computed independently

PageRank using MapReduce

Map: distribute PageRank "credit" to link targets

PageRank Calculation: Preliminaries

- One PageRank iteration:
- Input:
 - (id₁, [score₁^(t), out₁₁, out₁₂, ..]), (id₂, [score₂^(t), out₂₁, out₂₂, ..]).
- Output:
 - (id₁, [score₁^(t+1), out₁₁, out₁₂, ..]), (id₂, [score₂^(t+1), out₂₁, out₂₂, ..]).

MapReduce elements

- Score distribution and accumulation
- Database join

PageRank: Score Distribution and Accumulation

- Map
 - In: (id₁, [score₁^(t), out₁₁, out₁₂, ..]), (id₂, [score₂^(t), out₂₁, out₂₂, ..]) ..
 - Out: (out₁₁, score₁^(t)/n₁), (out₁₂, score₁^(t)/n₁) .., (out₂₁, score₂^(t)/n₂), ..
- Shuffle & Sort by node_id
 - In: (id₂, score₁), (id₁, score₂), (id₁, score₁), ..
 - Out: (id₁, score₁), (id₁, score₂), .., (id₂, score₁), ..
- Reduce
 - In: (id₁, [score₁, score₂, ..]), (id₂, [score₁, ..]), ..
 - Out: (id₁, score₁^(t+1)), (id₂, score₂^(t+1)), ...

PageRank:

Database Join to associate outlinks with score

- Map
 - In & Out: (id₁, score₁^(t+1)), (id₂, score₂^(t+1)), ..., (id₁, [out₁₁, out₁₂, ..]), (id₂, [out₂₁, out₂₂, ..]).
- Shuffle & Sort by node_id
 - Out: (id₁, score₁^(t+1)), (id₁, [out₁₁, out₁₂, ..]), (id₂, [out₂₁, out₂₂, ..]), (id₂, score₂^(t+1)), ..
- Reduce
 - In: (id₁, [score₁^(t+1), out₁₁, out₁₂, ..]), (id₂, [out₂₁, out₂₂, .., score₂^(t+1)]), ..
 - Out: (id₁, [score₁^(t+1), out₁₁, out₁₂, ..]), (id₂, [score₂^(t+1), out₂₁, out₂₂, ..]).

Conclusion

Application cases

- Map only: for totally distributive computation
- Map+Reduce: for filtering & aggregation
- Database join: for massive dictionary lookups
- Secondary sort: for sorting on values
- Inverted indexing: combiner, complex keys
- PageRank: side effect files

References

- J. Dean and S. Ghemawat. "MapReduce: Simplified Data Processing on Large Clusters." *In Proc. of OSDI 2004*.
- S. Ghemawat, H. Gobioff, and S.-T. Leung. "The Google File System." In Proc. of SOSP 2003.
- http://hadoop.apache.org/common/docs/current/mapred_tu torial.html. "Map/Reduce Tutorial". Fetched January 21, 2010.
- Tom White. *Hadoop: The Definitive Guide*. O'Reilly Media. 2013.
- http://developer.yahoo.com/hadoop/tutorial/module4.html
- J. Lin and C. Dyer. *Data-Intensive Text Processing with MapReduce*, Book Draft. February 7, 2010.

Thank you!

上海交通大學

Shanghai Jiao Tong University