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Abstract: 

We consider a basic content distribution 

scenario consisting of a single origin 

server connected through a shared 

bottleneck link to a number of users each 

equipped with a cache of finite memory. 

Every improved model including the basic 

one has the limits of caching. 

In order to alleviate the congestion during 

peak-traffic time, we proposed a caching 

scheme by encoding, decentralization and 

dynamic allocating. Here we also 

introduce and compare several different 

methods of updating scenario. The goal of 

proposed scheme is to satisfy users’ 

request with the minimum number of bits 

sent over the shared link by planning the 

caches in a variety of situations. 
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I. INTRODUCTION 

The traditional Internet is design with 

the philosophy of link-centric, where the end 

hosts need to figure out the IP addresses of 

the destination hosts and then communicate. 

After decades of rapid development, the 

current Internet has become a platform 

providing various services instead of a 

simple communication tunnel. Among these 

services, the content distribution is the most 

popular one, which generates a huge number 

of traffics over the network. Today, the 

Internet has a notable new trend, where the 

access to the Internet through wireless links 

has become the dominant way. However, 

this new trend also imposes new challenges 

to the network infrastructure. The 

fundamental reason is because the wireless 

links have less bandwidth resources 

compared to the wired ones. This research is 

to study how to design the network 

architecture and corresponding mechanisms 

to facilitate content distribution over 

wireless networks. 

Traffic in content delivery networks 

exhibits strong temporal variability, resulting 

in congestion during peak hours and 

resource underutilization during off-peak 

hours. It is therefore desirable to try to “shift” 

some of the traffic from peak to off-peak 

hours. 

 

 

 

Figure 1. Caching system considered in this paper. A 

server containing N files of size F bits each is 

connected through a shared link to K users each 

with an isolated cache of size MF bits. The goal is 

to design the placement phase and the delivery 

phase such that the peak rate  

(i.e. the load normalized by the file size) of the 

shared bottleneck link is minimized. In the figure, N 

= K = 3 and M = 1. 

 



Our discussion and results are all builds 

on the basic model sketched in Figure1. K 

users are connected to a server through a 

shared, error-free link. The server has a 

database of N files of equal size. Each of the 

users has access to a cache memory big 

enough to store M of the files. We will adopt 

these notations throughout this paper. Just 

this model makes the “shift” mentioned 

above possible. 

For example, there are lots of movies in 

server. If you have downloaded movie A to 

your local caches during off-peak hours, 

then you can watch it immediately whenever 

you want. Nevertheless you can’t watch 

movie B right now obviously. And our 

objective is to design a caching allocation 

strategy in off-peak such that the load(L) of 

the shared link during peak hours is 

minimized. 

Example 1 (Uncoded Caching) 

 For a memory size of MF bits 

(normalized to M bits), one possible strategy 

is for each user to cache the same M/N 

fraction of each file during off-peak hours. 

In the traffic peak, the server simply 

transmits the remaining (1−M/N) fraction of 

any requested file over the shared link. 

Clearly, each user can recover its requested 

file from the content of its local cache and 

the signal sent over the shared link. In the 

worst case the users request different files, 

results in the delivery load for this caching 

scheme is thus 

𝐿𝑤 = min{𝐾, 𝑁} ∙ (1 − 𝑀
𝑁⁄ ) 

We refer to this caching allocation strategy 

as uncoded caching.  

 

II. IMPROVEMENT RESULT 

 The server can never know which file 

the users want in advance. Like in section I, 

filling local cache with single file for one 

user may lead to extreme results (L=0 or 

L=M). So example 1 is a usual substitute 

scenario. Here we introduce an approach 

that achieves a significant reduction in 

network load. 

Example 2 (Coded Caching) 

 For simplicity, Consider the case N = K 

= 2, so that there are two files, say F1 = A, F2 

= B, and two users each with cache memory 

of size M. 

 Firstly, let us consider the two extreme 

cases M = 0 and M = N. Our fundamental 

model makes no sense when M = 0. If M = 

N, no optimizing is needed. So we consider 

the more interesting case, that is M = 1. We 

split both files A and B into two subfiles of 

equal size, i.e., A = (A1, A2) and B = (B1, B2). 

During off-peak time, we put Z1 = (A1, B1) 

and Z2 = (A2, B2) into user 1’s and user 2’s 

local caches separately. Assume for example 

that user 1 requests file A and user 2 requests 

file B. given that user 1 already has subfile 

A1, it only needs to obtain the missing 

subfile A2, which is cached in the second 

user’s memory Z2. Similarly, user two only 

needs to obtain the missing subfile B1, which 

is cached in the first user’s memory Z1. In 

other words, each user has one part of the 

file that the other user needs. 

 The server can in this case simply 

transmit𝐴2 ⊕ 𝐵1, where ⊕ denotes bitwise 

XOR. And we know 

Formula 1 If 𝑐 = 𝑎 ⊕ 𝑏, then it must be 

𝑎 = 𝑏 ⊙ 𝑐 

where ⊙ denotes bitwise XNOR, also 

𝑏 = 𝑎 ⊙ 𝑐 

  

Since user 1 already has B1, it can 

recover A2 from 𝐴2 ⊕ 𝐵1 . Similarly, since 

user two already has A2, it can recover B1 

from 𝐴2 ⊕ 𝐵1. Thus, the transmitting signal 

received over the shared link helps both 

users to effectively exchange the missing 

subfiles available in the cache of the other 

user. 



 

Figure 2. Caching strategy for N = 2 files and K = 

2users with cache size M = 1 with all four possible 

user requests. Each file is split into two subfiles of 

size 1/2, i.e., A = (A1, A2 ) and  B = (B1, B2). The 

scheme achieves rate R = 1/2. 

  

 The signals sent over the shared link for 

all other requests are illustrated in Figure 2. 

Now we extend it to arbitrary parameters. 

But for general, 0 ≤ M ≤ N, and we focus 

on the case N ≥ K, in which 

𝐿𝑐 =
𝐾

1 + 𝐾𝑀
𝑁⁄

⋅ (1 − 𝑀
𝑁⁄ ) 

The factor 1 (1 + 𝐾𝑀 𝑁⁄ )⁄  is called global 

caching gain. It is to be interpreted as a 

multicasting gain available simultaneously 

for all possible demands. 

 

 

Figure 3. Comparison of uncoded and coded 

caching load during peak hours. 

 

 Let us use MATLAB to compare the 

delivery load of uncoded scheme versus 

coded scheme with N = 100 and K = 50 as 

shown in Figure 3. 

 

III. INFLUENCE OF REAL-LIFE 

 Crucially, the coded caching scheme 

has its limitation like any system. It may be 

invalid when those ideal assumptions don’t 

work anymore. So we continue discussing 

some follow-up work. 

 

A. Decentralized Caching 

The coded caching scheme described in 

section II has both already known the 

number and the identity of the users in 

delivery during off-peak hours. This is 

clearly not a realistic assumption since we 

usually do not know in the morning which 

users will request content in the following 

evening. Moreover, if instead of the 

synchronized user requests here we have 

more realistic asynchronous requests, then 

users join and leave the system over a period 

of several hours during the peak hours, 

resulting in a time-varying number of users. 

Finally, users may be in different networks 

during the two periods of time. 

In this part, we solve this problem in the 

positive by developing a caching algorithm 

that creates simultaneous coded-multicasting 

opportunities without coordination in the 

off-peak hours. 

Example 3 (Decentralized coded caching) 

Consider the caching problem with N = 2 

files A and B, and K = 2 users each with a 

cache of size M. During off-peak hours, each 

user caches a subset of MF/2 bits of each file 

independently at random. As a result, each 

bit of a file is cached by a specific user with 

probability M/2. Let us focus on file A. The 

actions of the placement procedure 

effectively partition file A into 4 subfiles,  

A = (A0, A1, A2, A12) 



Where A0 denotes the bits of file A that are 

not stored in anyone’s caches. A1 and A2 

denote the bit of file A that are stored in the 

cache memories of user 1 and 2 separately. 

A12 belongs to both user 1 and 2. 

Theorem 1 (Law of large numbers) Let 

𝑋1, 𝑋2, … , 𝑋𝑛 be a sequence of independent 

and identically distributed random variables, 

each having a mean μ. Define a new 

variable 

𝑋 =
1

𝑛
∙ (𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛) 

Then, as 𝑛 → ∞, the sample mean equals 

the population mean of each variable. 

𝑙𝑖𝑚
𝑛→∞

𝑃(|𝑋 − 𝜇| < 𝜀) = 1 

for all ε > 0. 

 

 If file size F is large enough, actually 

even a 10MB file contains 81920 bits which 

is large enough, each bit can be interpreted 

as a random variable in the sequence. So the 

probability of subfiles is approximately 

P(𝐴0) = (1 − 𝑀
2⁄ )

2
 

P(𝐴1) = P(𝐴2) =
𝑀

2
∙ (1 − 𝑀

2⁄ ) 

P(𝐴12) = (
𝑀

2
)2 

 Assume that user 1 requests file A and 

user 2 requests file B. Since the cache of 

user 1 has A1 and the cache of user 2 

contains B2. Hence the server needs to 

transmit T = (𝐴2 ⊕ 𝐵1) + 𝐴0 + 𝐵0.  

The size of T (surely normalized by F) is 

(𝑀 2⁄ ) ∙ (1 − 𝑀 2⁄ ) + 2(1 − 𝑀 2⁄ )2 

This can be rewritten as 

(2 𝑀⁄ )(1 − 𝑀 2⁄ )[1 − (1 − 𝑀 2⁄ )2]. 

For general, if M ≥ 1  and N ≥ K , the 

minimum load is 

𝐿𝑑 =
𝑁

𝑀
∙ (1 − 𝑀

𝑁⁄ ) ∙ [1 − (1 − 𝑀
𝑁⁄ )

K
] 

 

Figure 4. Comparison of centralized and decen- 

tralized caching load during peak hours. 

 

From Figure 4, we can find the 

decentralized caching load if a little more 

than centralized one when affected by reality 

reasons. But its performance is good enough. 

 

B. Non-uniform File Popularities 

Hitherto in this paper, we have adopted 

a worst-case definition of rate with respect to 

user requests. However, different pieces of 

content have usually different popularities 

(i.e., probabilities of being requested by the 

users). In order to capture this effect, the 

definition of rate needs to be changed from 

worst case to expected value. 

Considering the impact of specific file 

popularities p1, p2, …, pn on the performance 

of caching, we use an optimal strategy, 

least-frequently used (LFU), in uncoded 

caching scheme with only a single user 

(K=1).To be surprised, perhaps our intuition 

tell us the strategy does not carry over to 

multiple users (K>1). In fact, we will argue 

that LFU can be arbitrarily suboptimal in the 

multi-user setting. 

We now describe the proposed scheme 

in detail. Let us partition the N files into s 

groups. In the statement of algorithm, we 

use the notation 𝑝𝑖 , 𝒾 ∈ ℕ and 𝒾 < N  to 

denote the popularity of file I except zero. 

𝑝0 is the least popularity among all files in 

current group. 



 

Algorithm 1 Geometric Partitioning 

1: procedure MERGE SORT 

2: if (low==high) small = large 

3: else  

4:     mid = (low+high) / 2 

5:     MergeSort(small,large,low,mid) 

6:    MergeSort(small,large,mid+1,high) 

7:    Merge(small,large,low,mid,high) 

8: end if 

9: end procedure 

10:procedure PARTITIONING 

11:         𝑝0 = 𝑝1 

12:         head = 1 

13:    for i=1,2,…,N do 

14:       if (𝑝𝑖>2𝑝0)  

15:                            𝑝0 = 𝑝𝑖 

16:   Group (𝑝ℎ𝑒𝑎𝑑 , … , 𝑝𝑖−1) 

17:    head = i 

18:       end if 

19:    end for 

20:end procedure 

 

In order of most popular, we get these 

groups 𝐺1, 𝐺2, … , 𝐺𝑠 from smallest to largest 

popularity. And in the same group, the 

popular file won’t be more than double the 

out of fashion file.  

 The server uses the same delivery 

procedure as in section II s times, once for 

each group of users 𝐾𝑠. Then each subfile 

times a weight factor 𝑤𝑠 differed by group 

and aggregate. The more popular, the larger 

𝑤𝑠 is. Of course the sum of each weighted 

subfile size must be M. 

𝐿𝑛 ≤ min ∑ 𝔼[𝐿𝑑(𝑀𝑖 , 𝑁𝑖 , 𝐾𝑖)]

𝑠

𝑖=1

 

Where 𝔼 denotes expectation, 𝐿𝑑(𝑀, 𝑁, 𝐾) 

is defined in section II. It’s worth noting that 

we are interested in expected load instead of 

peak load here because of the characteristics 

of model. 

 

Figure 5. Comparison of general coded caching and 

divide and conquer caching scheme performance in 

expected load. 

 

The popularity distribution is varied and 

conditions become complicated. We 

constrain those specific parameters as in 

Figure caption above. The expected load is 

apparently decrease when the memory of 

caches is not quite a few. 

 

C. Online Caching 

Maybe you have noticed that caches is 

updated only during the off-peak hours, but 

not during the peak time. Many caching 

systems used in practice use online cache 

updates, in which a decision to update the 

cache is made in the traffic peak. One 

popular update rule is least-recently used 

(better known by its abbreviation LRU), in 

which the least-recently requested file is 

evicted from the cache. 

Example 4 (LRU) 

 A popular online caching scheme is 

LRU. In this scheme, the content of a user’s 

cache at the beginning of time slot t is a 

function of the cache content at time t-1, the 

output of the shared link at time t-1, and the 

past requests. 

 Consider a toy system with N = 2 

popular files. A possible evolution of the 

caches is as follows. 

t = 1: Assume the initial set of popular files 

is {B, C}. 



t=2: There is an arrival. The file C is 

randomly chosen and replaced with 

file D, so that the set is {B, D}. 

t=3:  There is no arrival, and the set still is 

{B, D}. 

 

 We now introduce an online version of 

the caching algorithm, which we term coded 

least-recently sent (LRS).  

 

Algorithm 2 Coded LRS caching for time t. 

1: procedure PEAK HOURS 

2: for s=K, K-1, …, 1 do 

3:  for S ⊆ [K]: |S| = s do 

4:       server sends ⊕𝑘∈𝑆 𝑉𝑆{𝑘}(𝑘) 

5:      end for 

6: end for 

7: end procedure 

8: procedure CACHE UPDATE 

9: end procedure 

10:procedure PARTITIONING 

11: for k, k′ ∈ [K] do 

12:  if 𝑑𝑡(𝑘′) is not cached at user k 

13:  then k replaces the least recently 

sent file in cache with a random subset 

of 
𝑀𝐹

𝑁′
 bits of file 𝑑𝑡(𝑘′) 

14:  end if 

15: end for 

16: end procedure 

 

Consider next the cache update 

procedure. In each time slot t, the users 

maintain a list of N ≜ αN, α ≥ 1. 

 

Example 5 (Coded LRS) 

 We consider again a system with N = 2 

popular files and assume the same 

popular-file dynamics as in example 4. 

Assume there are K = 2 users with a cache 

memory of M = 1. Let α = 1.5 so that each 

user caches 1/3 of N′ = αN = 3 files. We 

presume that initially each user partially 

caches the files {A, B, C}. 

t = 1: The set of popular files is {B, C}. 

Assume the users request 𝑑1 = (B, C). 

Both of the requested files are 

partially cached at the users. In the 

peak hours procedure, the server send 

𝐵0, 𝐶0 and 𝐵2 ⊕ 𝐶1. This results in a 

load of 

𝐿𝑑(𝑀, 𝑁′, 2) = 10/9 

 And each user still partially caches {A, 

B, C}. 

t=2: The set changes to {B, D}. Assume the 

users request 𝑑2 = (B, D). This results 

in a load of 

𝐿𝑑(𝑀, 𝑁′, 1) + 1 = 15/9 

 The least-recently sent file A is evicted 

from each cache and replaced by a 

random third of the file D. The new 

set is {B, C, D}. 

t=3: The set stays {B, D}. Assume the users 

request 𝑑3 = (D, B), both of which are 

now partially cached at the users. 

Unlike before, 𝐷1 is now no longer 

empty, and the resulting load is 

𝐿𝑑(𝑀, 𝑁′, 2) = 10/9 

 As calculated before. The set stays the 

same, namely {B, C, D}. 

 

There are three key differences between 

LRU and LRS. First, coded LRS uses a 

coded peak hours procedure whereas the 

transmissions in LRU are uncoded. Second, 

 

Figure 6. Comparison of least-recently used and 

least-recently sent strategy. 

 



coded LRS caches many partial files 

whereas LRU caches fewer whole files. 

Third, coded LRS uses a LRS eviction rule, 

taking into account the files requested by all 

users jointly, compared to the LRU eviction 

rule, taking into account only the files 

requested by every user individually. 
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