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Abstract—Wireless sensor network(WSN) topology tomogra-
phy is the kernel of routing maintenance, topology control,
anomaly detection and load balance. As static routing tree
estimation has been fully studied in recent years, WSN topology
tomography has been proven non-trivial due to its instability. In
this work, we study general WSN routing topology tomography
from information gathered at the sink node only, where routing
structure is dynamic. We first formulate the problem using a
routing matrix. From the formulation, we divide the solution into
two steps. First, we propose a refinement of Multi-hop Network
Tomography(MNT) using compressive sensing to reconstruct the
routing matrix. Second, we prove that for a routing matrix
of a WSN which is very large and dynamic, link parameters
can be reconstructed using l1-minimization method with a high
probability.

Index Terms—wireless sensor networks, network tomography,
compressive sensing, delay estimation, expander graphs

I. INTRODUCTION

W IRELESS sensor networks(WSNs) are growing rapidly
in both size and complexity because of wide deploy-

ments. Consequently, it becomes increasingly important to
monitor the WSN structure and dynamics, namely, network
tomography. This capability plays a significant role in routing
improvement, topology control, anomaly detection and load
balance. Although there have been lots of works on link esti-
mation in traditional networks[4][3], studies of WSN topology
tomography aimed to recover the dynamic routing structure
and link parameters are limited. Our work is thus motivated
by the needs to overcome the fragility of traditional network
tomography methods in wireless scenarios.

In this paper, we divide the problem into two steps. First,
we should reconstruct the per-packet routing path serves as the
meta-information for later reconstruction of link parameters.
There are lots of works dedicated to solve this problem.The
method that identifies a certain path using heuristic path
scanning triggers disastrous computation overhead[2]. Some
methods reconstruct paths exploiting packet correlations[4].
However,experiments and analysis have confirmed that, in
real WSNs, we observe non-negligible topology variation and
instability. They lead to inaccuracy and even failure of some
state-of-art methods. To solve these issues, we propose a
method to use compressive sensing to optimize a state-of-art
method: MNT(multi-hop network tomography), namely, MNT-
CS method. We use simulations to verify that our algorithm

is effective and practical. Statistics will show that loss rate,
delay and reconstruction rate are all improved.

Second, once that topology is reconstructed, we shall use
compressive sensing the second time to reconstruct the inner-
link parameters such as delay. We consider the network to
be dynamic and large, thus the routing matrix is very sparse.
Using conclusions from[3] and knowledge of permutation and
combination, we verified that for a random large WSN, the
routing matrix generated by step1 is qualified to be the sensing
matrix for step2 to reconstruct the inner-link parameters with
a high probability. The total process can be briefly displayed
in Figure 1.

Fig. 1. WSN tomography illustration

The rest of this paper is organized as follows. Section II
gives introduction on previous related works and their rela-
tionship with this work. Section III briefly gives the network
routing model adopted in this work. Section IV represents the
problem in a compressive sensing way. Section V proposes our
optimization of state-of-art method MNT. Section VI verifies
the effectiveness of l1-minimization method in random large
dynamic WSNs.It also gives an algorithm chart of our method.
Section VII reports our simulations. Finally, Section VIII gives
conclusions and outlines our future work.

II. PREVIOUS RELATED WORK

According to our knowledge, previous works related to
WSN tomography can be divided into 3 classes.

The first class, which is classical, concerns about exploiting
existing information in the network or add functional headers
to each packet to collect inter-hop information. Some state-
of-art algorithms fall into this class, such as MNT(multi-hop
network tomography)[4], Pathfinder[7], Pathzip[8], ACO[9],
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etc. These methods are comparatively easy to deploy, but have
their own constraints in scale or stability of the network.

The second class introduces compressive sensing to WSN
tomography in an innovative way. Compressive sensing, which
we will give a brief introduction to later, has been a new
research field in recent ten years . Although intended to
improve the efficiency of digital image processing, compres-
sive sensing is also introduced in mobile communications for
its flexibility and economical spacial performance. Lots of
works concern about network tomography using compressive
sensing[10][11][12]. Compressive sensing should be deployed
in different ways according to different scenarios. But one
thing is in common, we should find the sparsity in a specific
scenario and use it to construct a compressive sensing model
which is compatible with reconstruction algorithms.

The third class looks into the features of compressive sens-
ing on graphs, and use graph theory and other mathematical
tools to advance it. Typical ones of them concern about ex-
pander graphs[3].According to their conclusion, compressive
sensing on expander graphs can exploit a more sparse sensing
matrix and more efficient reconstruction methods. These are
all preferred in resource-limited and time-limited scenes.

However, according to our knowledge, there are few works
combining the above three kinds of work together. In fact,
WSN tomography requires contribution of all the tree kinds of
work, and through good combination, hopefully we can exploit
the potential of previous related works. This work seeks to use
state-of-art reconstruction method, compressive sensing and
expander graph to achieve the goal of WSN tomography with
high probability.

III. ROUTING MODEL

Assume that a given network N(V,E) has a total of n
links(i.e., n=|E|), and γ(waiting to be reconstructed) is the
set of paths between the source nodes of the network to the
sink node and m = |γ|. Let γm×n denote the routing matrix,
where there exists an isomorphism between the set γ and the
corresponding routing matrix R. For example, for the network
in Figure 2, we have the routing matrix:

R =

∣∣∣∣∣∣∣∣
l2 l2 l3 l4 l5

P1 : n2− > n6− > sink 1 0 1 1 0
P2 : n1− > n5− > sink 0 1 1 0 1
P3 : n1− > n2− > sink 1 1 0 0 0
P4 : n5− > n6− > sink 0 0 0 1 1

∣∣∣∣∣∣∣∣

Fig. 2. packet routing model

For parameters such as delay, an addictive linear model
adequately represents the relationship between a measured
path and an individual link delay, i.e.,

y = Rx,

where x is the n × 1(unknown) vector of the individual
link mean delay. y is the measured r-vector of end-to-end
path delays. We should notice that although this paper focuses
on link delay, our method can be applied to any other link
attributes(such as log of packet loss rate) which allows such
a linear relationship with end-to-end measurements. For most
cases, since we assume the WSN is very large, number of
interval links of each packet is much more less than the total
number of links in this network, so we assume that n� m.
This enables us to view the problem of reconstructing x in a
compressive sensing perspective.

IV. FORMULATION

We consider the entire dynamic routing topology G(V,E) to
be reconstructed with routing matrix of E = p1 ∪ p2 ∪ · · · ∪
pM (M = n−1), where pi is the path measurement of the ith

packet. The routing matrix is defined just as mentioned above:

ϕij =

{
1 the ith path traverses over the jth link
0 otherwise

To adopt to the WSN scenario,where the routing topology
structure is evolving along time, the total number of links
n is the accumulation of all its dynamic possibilities in the
total measurement period. This leads to a more sparse routing
matrix. If we assume φ = R, the problem can be expressed
in a compressive sensing way:

X = argmin‖X‖0subject toY = φX

where l0-norm ‖X‖0 is the number of nonzero elements in
the vector X, φm×n is a sparse sensing matrix and n�m.X is
a sparse vector of length n. Y is the sink node information
of length m. X has 2 reasons to be sparse: 1. Inner-link
parameters such as delay can only be large when congestion
or other anomaly happens, which is not frequent. 2. As has
mentioned above, the number of interval links of each packet is
much more less than the total number of links in this network.

Compressive sensing is widely studied these years, many
algorithms have been brought out to solve this NP problem.
The most famous one is called l1 -minimization. But the
sensing matrix φ should satisfy RIP constraint to guarantee
the reconstruction accuracy. When applied to networks, the
routing matrix must satisfy other constraints, as explained in
[3].

We know that in lots of previous related works, sensing
matrix φ is known before the reconstruction process. Un-
fortunately, the φ in our problem formulation is completely
unknown which requires path reconstruction. Only if all the
paths are reconstructed and routing matrix(sensing matrix) φ
is known, can we further reconstruct the inner-link parameters.
So we can separate our algorithm into 2 steps:step1, path
reconstruction;step2, reconstruction of link parameters.
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Fig. 3. A motivating example illustrating how MNT reconstructs the routing
path of a packet(A,B,1). The packet is also denoted as A1 in the figure for
short.

V. PATH RECONSTRUCTION

The problem of path reconstruction can be viewed as a
single topic in WSN tomography. A straightforward solution
to reveal the packet path is to record the complete path during
packet forwarding. But the introduced overhead linearly grows
with the path length, which is unacceptable in large scale
WSNs.

There have been many efforts made to address the path
reconstruction problem in WSNs. One of them is state-of-art
MNT(multi-hop network tomography)[4]. MNT exploits data
already attached to each packet:(origin ID, parent ID, sequence
number). Using time estimation and this tuple, the path of each
packet can be reconstructed from the sink node hop by hop.
Figure 3 shows a typical working process of MNT.

MNT infers the next hop of the parent hop by leveraging
the parent hop of the other two packets generated at A’s parent
hop B. It assumes that all the three packets can be received
by sink node D and the topology is so stable that B1 and B2
have the same parent node. By repeating the process, the path
of A can be reconstructed hop by hop. Although MNT has
low computation complexity and we impose no change on the
headers of inner nodes, just as explained in [7], MNT fails to
reconstruct the path when packet losses happens and the WSN
is not stable. According to data from trace-driven simulations
in Citysee, a real WSN deployed in Wuxi city, China, MNT’s
accuracy is below 60% in a certain WSN scenario, which is
not satisfactory. To be clear, we denote the node where MNT
fails as the “failure node”, represented by pf . We assume that
the routing protocol enables the packet header to record the
node ID where MNT fails, which is possible if the routing
protocol is properly designed for this purpose.

While we confess this great weakness of MNT, we shall
see that although MNT fails to reconstruct the whole path, it
does reconstruct the partial path before the failure node pf .
It would be better if we can leverage this information and
reconstruct the remaining path using other methods. Here, we
think compressive sensing is a good choice again. Here we
want to use compressive sensing based method to optimize
the state-of-art MNT.

Compressive sensing based method can run independently
to reconstruct the packet paths. Its principles are described as
follows. We manually allocate a certain algorithm in all the
nodes and the sink node. This algorithm can distribute the
entries of a sensing matrix φ to each interval nodes, thus help

Fig. 4. Example of compressive sensing based path reconstruction method

to construct a compressive sensing scenario. We assume it is
the ith time that a packet generated from source A travels the
same path to the sink node, then the jth hop of the path is
given φij as the sensing parameter, which should be added to
Acc, which is used to record the interval nodes of each packet
in a space-economical way. The whole process can be shown
in Figure 4[1].

Of course, different paths need to be classified. We can
add a header bFlt using an L-bit array associated with H
independent hash functions to space-efficiently record node
IDs. Hash function is widely used in design of algorithms
of computer networks. The headers of packets of the same
classified path are included in the same “path group”, denoted
by k(k = 1, 2, 3, 4, . . . ).The number of packets in path group
k is denoted by Gk.

However, solely using compressive sensing based way is
time-consuming, since we should wait M times’ travel of the
same path. According to latest study, M should be greater than
Ml = ck log(N

k ) when c=1.5. k represents the sparsity of x.If
we can reduce N, namely the width of the sensing matrix, we
can reduce the reconstruction delay and loss rate as well as
improving reconstruction ratio. Our motivation is to exploit
the already-reconstructed partial path by MNT to reduce N
in the compressive sensing method. We call the new method
MNT-CS.

So our optimization method are described as follows. At the
sink node, we implement MNT first to get the failure point pf ,
then we use pf to get a new sensing matrix(φ′) and compressed
information(y′).

y = φx = [φ1φ2]× [
xmnt

xcs
] = y1 + φ2xcs

(xmnt = [p1 p2 p3 · · · pf ], xcs = [pf+1pf+2pf+3 · · · pn])

y′ = y − y1 = φ2xcs

(xmnt : M × f xcs : M × (n− f))

Since xmnt is subtracted from x, the sparsity k of xcs is
will not increase, thus further proves the rationality of our
motivation.

Then we just need to solve y = φ2 × xcs, in which the
number of sensing matrix’s width is reduced by f. Connect
the MNT reconstructed xmnt and CS reconstructed xcs ,we
can get the reconstructed path of packet A. After a certain
time when enough paths of different packets have been recon-
structed, the routing matrix can thus be generated.
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Fig. 5. The two columns have the same number of red nodes. Regard the
red nodes in each column as 1, blue nodes as 0. Do the logical OR between
the two columns. The answer column must has more than 1.5 times of red
nodes than each original columns

VI. RECONSTRUCTION OF LINK PARAMETERS

Through MNT-CS, we get the routing matrix R. As we have
already known in Section I that in our problem formation,
R is very sparse, then we need to verify that for a very
sparse random sensing matrix, l1-minimization is qualified to
reconstruct the inner-link parameters. But first, we need to
use the conclusion in[3].That paper explores the potential of
expander graphs to reconstruct to link parameters with a high
probability.

First let’s see the definition of expander graph, which is
studied recent years and widely used self-correcting codes and
computer networks.

Definition 1: A bipartite graph G(X,Y,H) with a left
degree d(i.e., deg(v)=d ∀ v ∈ X) is a (φ, d, ε)-expander
if for any Φ ⊂ X with |Φ| ≤ φ, the following condition holds:

|N(Φ)| ≥ (1− ε)d|Φ|,

where N(Φ) is a set of neighbors of Φ. φ and ε are the
“expansion factor” and the “error parameter”, respectively.

The author proposes that if the routing matrix of WSN can
be viewed as an expander graph or the combination of several
expander graphs with different left degrees, l1-minimization
method can be applied with high probability. Inspired by this
conclusion, we can calculate the probability for a simplest
(2,d,1/4) expander graph(two columns of routing matrix for
simplicity) to be included in a random sparse matrix as the
answer of a basic permutation and combination problem shown
in Figure 5. The solution equation is,

P =
Cd

M −
∑floor(0.5d)

k=0 Cd−k
d Ck

M−d
Cd

M

If P is close to 1, we can say confidently that link parameters
can be reconstructed with high accuracy, using the routing
matrix generated by MNT-CS.

The integral algorithm of our WSN tomography is listed as
follows.

VII. SIMULATIONS

A. Simulation of MNT-CS

According to the algorithm and analysis of Section V,
Section VI, we set up simulations independently for both two

Algorithm 1 Procedures for MNT-CS based WSN tomography
1: Mp is the number of reconstructed paths
2: Mp = 0
3: for Each packet pi received by sink node do
4: Check its path header, bFlt
5: if pi belongs to path group k then
6: Gk=Gk+1
7: end if
8: if pi does not belong to path group then
9: Gmax(k)+1 = 1

10: end if
11: if Gk ≥ ml then
12: Get MNT-CS switch point pf
13: Reconstruct path before node pf using MNT
14: Reconstruct the remaining path using compressive

sensing, we get the whole path Pk

15: Mp = Mp + 1
16: end if
17: if Mp > n, n is the total number of links mentioned

in Section IV. We choose n to guarantee the sparsity of
the sensing matrix then

18: Use link delay accumulation data in the sink n-
ode,run step2: reconstruction of inner-link delays

19: Update the resultant database
20: end if
21: end for

Fig. 6. WSN simulation topology(black node is the sink node). Note: This
is the topology seen from the sink node in a specific time period, rather than
a stasis topology of WSN

steps: MNT-CS reconstruction and reconstruction of inner-link
parameters.

We implement our simulation on Matlab. We set 400
nodes(1 sink node) randomly distributed in a 1000*1000 area,
as shown in Figure 6. Nodes in the radius of 65 can form
a link. The number 65 is chosen to ensure each nodes are
connected.

We simulate 40000 time units. In each time unit, 5 nodes
transmit packets. Nodes are classified as ’active’ and ’inactive’,
whose sending probability is 0.0125 and 0.001.The routing
path is formed by the shortest path algorithm. We should notice
that in real world, the paths of the packets generated from the
same node will be different. To simplify our simulation, we
assume that in a specific time of period, the paths of every
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Fig. 7. Simulation result using only CS

Fig. 8. Simulation result using CS & MNT

packet follows the principle of shortest path algorithm. Since
our algorithm is not concerned about the routing algorithm,
this assumption is reasonable. The result of our simulation
will not be effected by the simplification.

The success rate of MNT is set as 70%, which means 30%
packets’ path need CS to reconstruct.

We plot the curve of reconstruction ratio and loss rate during
the first 8000 time units. First we only implement compressive
sensing method and get Figure 7.

Then we implement our refinement using the combination
of MNT and CS and get Figure 8.

From Figure 7 and Figure 8 above, we can observe the
improvements of our refinement:

1) Lower loss rate. When reconstruction procedure is fin-
ished, CS based reconstruction has a loss rate of 12.15%,
while CS&MNT is 6.20%

2) Less delay. The time when CS based method reaches its
reconstruction plateau is 6459, while CS&MNT is 5433.

3) Higher reconstruction rate. MNT can help CS to re-
construct the paths of inactive nodes. CS based method
reconstructs 88.72% paths while CS&MNT reconstructs
96.74%.

B. Simulation of reconstruction of inner-link parameters

plot P =
Cd

M−
∑floor(0.5d)

k=0 Cd−k
d Ck

M−d

Cd
M

in Matlab, where the
x axis is the number of non-zero entries of each column, y
axis is the probability. The total number of nodes is 400.The
result is shown in Figure 9. As we can see, when x is small, the

Fig. 9. The relationship between the effectiveness of routing matrix to be
sensing matrix and the sparsity of the network

probability is very close to 1, which indicates the effectiveness
of a random routing matrix in a large WSN to be the sensing
matrix of link parameter reconstruction.

VIII. CONCLUSIONS

In this work, we put the problem of WSN topology tomog-
raphy into a compressive sensing representation and separate
its application in WSN into 2 steps, where routing matrix can
not be pre-defined . In step1, we proposed a refinement on
WSN path reconstruction problem based on MNT and CS. In
step2, we tried to verify that for a very sparse WSN rout-
ing matrix, l1-minimization method is reliable to reconstruct
routing parameters.

We still have several future works to go if we want to
get a more convincing result. First, we can find a way to
predict the MNT&CS switch point in Step1 using network
information.Second, we should implement a more reliable
simulation and even deploy MNT & CS method in real
wireless sensor networks. Moreover, the proper number of
routes included in the routing matrix need to be clarified in a
numerical way.
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