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Abstract. In this paper, we investigate the impact of group multicast on the capacity of large-scale random wireless networks. n
nodes are randomly distributed in the networks, among which ns nodes are selected as sources and nd destined nodes are chosen for
each. Specifically, we consider two different scenarios, i.e., (1) regular distribution scenario, and (2) random distribution scenario.
The upper bound capacity of group multicast is derived for the network. Furthermore, we propose the corresponding capacity-
achieving communication schemes to achieve the upper bound. Moreover, our study is the first attempt to understand how group
multicast may impact on large scale network capacity from a theoretical perspective.

1 Introduction

Since the seminal work by Kumar et al. [1], which showed that the optimal unicast per-node capacity is O(1/
√
n), the fundamental

capacity research about wireless ad hoc networks has drawn tremendous interest. Later on, Grossglauser and Tse [2] proposed a
2-hop relaying algorithm in which nodes are allowed to move, and they demonstrated that Θ(1) capacity per source-destination is
achievable but packets have to endure a larger delay of Ω(n). Since then, how to improve the network performance, in terms of the
capacity and delay, has become a critical issue.

The analysis on how to improve the network performance has arised in recent years. Some works [3], [4], [5], [6], [7] investigated
the improvement by introducing different kinds of mobility into the networks. Other works attempt to improve capacity by intro-
ducing base stations as infrastructure support [8], [9], [10]. Besides, there has been impressive recent works on the characterization
of delay and capacity tradeoff in wireless ad hoc networks [11], [12].

However, all the above researches relay on the unicast traffic pattern. As the demand of information sharing increases rapidly,
multicast traffic which genenalized both the unicast and broadcast traffic are proposed. Multicast capacity for large-scale wireless ad
hoc network was first analyzed in [13]. It shows that when the number of destination nodes k = O (n/ log n), the per-node multicast
capacity is Θ( 1√

n logn
W√
k
); when k = Ω (n/ log n), the per-node capacity is Θ (W/n), which is equivalent to the broadcast case.

The result also implies that the per-node capacity decreases to zero as n goes to infinity. This means static ad hoc network is not
scalable under unicast, multicast and broadcast traffic model. Wang et al. [14] generalized the result to anycast traffic pattern and
Mao et al. [15] studied multicast networks with infrastructure support.

While unicast and multicast traffic pattern have been extensively studied in previous work, group multicast is still a relatively
new concept and under active research. Group multicast refers to a traffic pattern in which data is delivered from a source to multiple
destinations originazed in a multicast group, which differs from multicast in that its destinations are located in a more centralized
area. Recently, many new applications appeared such as Introstate Television (TV), Stadium TV that impose stringent broadband
services on group multicast.

In this paper, we have studied the theoretical group multicast capacity of wireless ad hoc networks. More precisely, we consider
a wireless ad hoc network that consists of n nodes, among which ns nodes are selected as sources and nd destination nodes are
chosen for each. Thus, ns multicast sessions are formed. Furthermore, we assume that there are a set of n1−d multicast groups
A = {A1, A2, . . . , An1−d}. We study two kinds of common transmission scenarios, i.e., regular distribution scenario and random
distribution scenario. The first type represents that n1−d groups are regularly distributed in the network and each group covers
the whole cell without intersections. While in the latter pattern these groups are randomly distributed in the network, there will
inevitably be interferences due to the intersections between groups. The analysis method can also be applied to large scale wireless
networks [16], [17], [18].

Our main contributions can be summarized as follows:

– Under the regular distribution scenario with group multicast, the capacity is Θ( 1√
ns ) when s+d ≤ 1, and min{Θ( 1√

ns ), Θ( 1
ns+d−1 )}

when s+ d > 1. While under the random distribution scenario, the capacity of wireless ad hoc network stays the same.
– To our best knowledge, this paper is the first work that characterizes the impact of group multicast on network capacity from a

theoretical perspective.

The rest of this paper is organized as follows. In Section II, we describe the wireless network model. In Section III and IV, we
investigate the capacity of regular distribution and random distribution group multicast respectively, and we gives the aggregated
capacity of the wireless network and analyzes the results. Finally, we conclude our paper in Section V.



2 Wireless Network Model

2.1 Network Architecture

We employ the extended network model. We assume that there is a set V = {V1, V2, · · · , Vn} of n normal wireless nodes uniformly
deployed in a square region with side length

√
n. All the wireless nodes have the same transmission power, and hence have the same

transmission range r.
We further assume that there are a set of n1−d multicast groups A = {A1, A2, · · · , An1−d}. These n1−d regularly distributed

groups divide the network region into n1−d cells. Each group covers the whole cell and has nd nodes in the group. When these
groups are randomly distributed in the network, there will inevitably be interferences due to the intersections between the groups,
making it difficult to schedule the model. We first optimally place the groups in the network region, as shown in Figure 1, to avoid
the interference among the groups. And then we will discuss the random-distributed situation.
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Fig. 1. Network model

2.2 Multicast Traffic Pattern

Among the n wireless nodes, a total of ns source nodes are randomly selected, and each source node chooses a distinct group which
has nd destination nodes as a multicast session. Note that a particular group may be included by different multicast sessions as
destination.

2.3 Interference Model

We employ the traditional protocol model in [1] as the interference model. All nodes employ a common range r for all their
transmissions. When node Vi transmits to a node Vj , this transmission is successfully received by Vj if

1) The distance between Vi and Vj is no more than r, i.e.,

|Vi − Vj | ≤ r.

2) For every other node Vk simultaneously transmitting,

|Vk − Vj | ≥ (1 +∆)r.

The quantity ∆ > 0 is a guard zone specified by the protocol to prevent a neighboring node from transmitting at the same time.
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Fig. 2. Transmission mode

2.4 Definition of Capacity

Throughput: λi bits/sec that can be transmitted by source node Vi to its chosen nd destination nodes on average is called the per-
node throughput. The sum of per-node throughput over all the nodes, Λ (n) = λ1 + λ2 + · · ·+ λns , is defined as the throughput of
the network.

Feasible Throughput: A multicast rate vector λ = (λ1, λ2, · · · , λn) bits/sec is feasible if there is a spatial and temporal scheme
for scheduling transmissions such that every node Vi can send λi bits/sec on average to its destinations. An aggregated multicast
throughput Λ (n) bits/sec is feasible if there is a feasible rate vector λ = (λ1, λ2, · · · , λn).

Capacity of The Network: The per-node throughput capacity is of order O (f(n)) bits/sec if there is a deterministic constant
c < +∞ such that

lim inf
n→∞

Pr (λ (n) = cf (n) is feasible) < 1

and is of order Θ (f (n)) bits/sec if there are deterministic constants c > 0 and c < c′ < +∞ such that

lim
n→∞

Pr (λ (n) = cf (n) is feasible) = 1

lim inf
n→∞

Pr (λ (n) = c′f (n) is feasible) < 1

3 Capacity of Regular Distribution Group Multicast

Any group Ai will be chosen by a certain source node as a destination with the probability p = nd−1. Let Ni be the number of times
when the group Ai is chosen as a destination, then clearly Ni follows the binomial distribution with parameters ns and p. Easily we
can derive

Pr(Ni = k) =

(
ns

k

)
pk(1− p)n

s−k,

and the expected value of Ni is E[Ni] = nsp = ns+d−1. Thus we will employ different approaches to investigate the network
capacity, according to the various circumstances of s+ d.

We can randomly choose only one node inside a group as the destination node, thus the destination nodes are less than
or included in the original group nodes. We define the procedure that source nodes transmit packets to destination nodes as
phase one transmission, then we will calculate the network capacity, which is similar to the unicast capacity. When the number
of destination nodes increases, just like original situation, network performance will be inevitably worse compared to phase one. We
define the process that packets are transmitted from the destination node to the whole group as phase two transmission, and we



will study capacity of phase two transmission which is similar to the broadcast capacity. We cam easily know that the network ca-
pacity is upper-bounded both by the per-flow unicast capacity and the per-flow broadcast capacity. Thus, combining the two phases,
we can get the upper bound of wireless network capacity. See Figure 2 for illustration.

3.1 When s + d < 1

The expected value of Ni diminishes to zero as the number of nodes is increased. Since the number of nodes goes to infinity
while the product nsp remains fixed, the binomial distribution converges towards the Poisson distribution. Therefore the Poisson
distribution with parameter λ = nsp = nc can be used as an approximation to the binomial distribution here.

Capacity of Phase One Transmission Taking consideration of the source-destination pairs, there are totally ns source nodes
transmitting packets to their destinations. According to Kumar et al. [1], we can get the capacity of phase one transmission as

λ1 (n) = O(
1√
ns

).

Capacity of Phase Two Transmission We will take the similar approach in [19], [20], which is similar to the well-known
maximum-flow and minimum-cut theorem. Considering a time interval T which is large enough, since each node can send data
at λ (n), the total amount of packets to be delivered between all source-destination pairs during T is cP kλ (n)T , where k is the
number of simultaneous transmission pairs and positive constant 1/cP is the average number of bits per packet. Besides, the total
wireless channel bandwidth is fixed to W bits per second, then the total number of packets the wireless network can provide is
cpWT . We can derive

cP kλ (n)T ≤ cpWT,

and thus the capacity of the wireless network is

λ (n) = O(
W

k
).

To determine the maximum flow, k, we derive the following lemma.

Lemma 1. The number of times when any group is selected as a destination is at most constant when s+ d < 1.

Proof. Let K be a positive integer. As Ni follows the Poisson distribution with parameter λ = nsp = nc, then we can have

Pr(Ni ≥ K) =
∑
k≥K

e−λλ
k

k!

≤
∑
k≥K

e−λλk

≤ e−λλK

1− λ
,

Pr(max
i

Ni ≥ K) ≤
∑
i

Pr(Ni ≥ K)

≤ ne−λλK

1− λ
.

Since c = s+ d− 1 < 0, λ = nc goes to zero when the number of nodes n goes to infinity. Then we can derive

lim
n→∞

Pr(max
i

Ni ≥ K) ≤ lim
n→∞

ncK+1e−λ

1− λ
= 0

as long as cK + 1 < 0. We choose K = 1 + [ 1
1−s−d ].



Based on Lemma 1, we can easily get the capacity

λ2 (n) = O(
W

K
) = O(1).

Since the network capacity is upper-bounded both by the per-flow unicast capacity and the per-flow broadcast capacity, combin-
ing phase one transmission and phase two transmission, we can derive the capacity of regular distribution scenario as

λ (n) = O(min{Θ(
1√
ns

), Θ(1)})

= O(
1√
ns

).

Next, we will show that the bound is achievable. To achieve this goal, we design a scheduling scheme that satisfies the following
two propositions.

1. For each source node Vi, we randomly and independently select a group Ai as its destination, then packets are transmitted,
through ad hoc mode, from Vi to any node Vi,d in the group Ai.

2. Vi,d transmits the packets to all other nodes in the group Ai.

To meet the first proposition, we follow the schedule of Franceschetti et al. [21], adopting percolation theory in routing.
To meet the second proposition, we employ flooding algorithm. Flooding, where packets from a source node is delivered to all

other nodes, has extensive applicability in ad hoc wireless networks. The traditional flooding scheme generates excessive packet
retransmissions, resource contention, and collisions since every node forwards the packet at least once. Recently, several flooding
schemes have been proposed to avoid these problems. Kim et al. [22] proposed PriorityForwarding, for efficient and fast flooding
operations in wireless ad hoc networks. They demonstrated that with priority checking, the host closest to the coverage perimeter
of a flooding packet would forward the packet immediately without delay. Obviously, the schedule can achieve the bound, and we
have

Theorem 1. The capacity of regular distribution group multicast is Θ( 1√
ns ), when s+ d < 1.

Proof. As stated above, we design a scheduling scheme which ensures the transmissions of all nodes by a time-division multi-access
(TDMA) manner such that all nodes will be able to transmit at least once in every time

√
ns+K slots, thus the capacity can achieve

λ (n) = Ω(
1√

ns +K
)

= Ω(
1√
ns

).

3.2 When s + d > 1

Since the expected value of Ni goes to infinity when the number of nodes increases, the methods above is not applicable anymore.
Previously each group will receive information from K source nodes at most, while when s + d > 1 each group has to receive
packets from more than constant source nodes, then the packets will be broadcast in the group. If we select a representative node
similar to the previous case, it is difficult to understand the topology of the network and devise effective routing scheme since the
representative node will be chosen as a destination node for many times, which is similar to the convergecast traffic pattern.

Thus we modify the transmission mode. As shown in Figure 3, we choose ns+d−1 nodes in each group as representatives. Firstly
packets are transmitted from each source node to any representative node in a randomly selected group, and then representative nodes
employ a celluar TDMA transmission scheme, broadcasting the packets to all other nodes in the group.

Capacity of Phase One Transmission There are totally ns source nodes transmitting packets to their destinations and the trans-
mission mode is the same as that of Kumar et al. [1], thus the capacity of phase one transmission is

λ1 (n) = O(
1√
ns

).
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Fig. 3. Transmission mode when s+ d > 1

Capacity of Phase Two Transmission From the above derivation we have E[Ni] = nsp = ns+d−1, which means that every group
will be chosen as a destination ns+d−1 times on average. In other words, k = ns+d−1, it follows,

λ2 (n) = O(
W

ns+d−1
)

= O(
1

ns+d−1
).

Combining phase one transmission and phase two transmission, we can derive the upper bound of the capacity of regular
distribution scenario as

λ (n) = O(min{Θ(
1√
ns

), Θ(
1

ns+d−1
)}).

Using similar scheduling scheme as described previously, we can achieve the following theorem.

Theorem 2. The capacity of regular distribution group multicast is min{Θ( 1√
ns ), Θ( 1

ns+d−1 )}, when s+ d > 1, which is shown in
Figure 4.

Proof. We choose ns+d−1 nodes in each group as representatives. Firstly packets are transmitted from each source node to any rep-
resentative node in a randomly selected group through ad hoc mode adopting percolation theory in routing, and then representative
nodes employ the flooding scheme, broadcasting the packets to all other nodes in the group. This can be accomplished by adopting
a TDMA scheme so that the time-slot is further divided into sub packet time-slots, and each node can be scheduled to transmit at
least once in every

√
ns + ns+d−1 time-slots, thus the capacity can achieve

λ (n) = Ω(
1√

ns + ns+d−1
)

= Ω(min{Θ(
1√
ns

), Θ(
1

ns+d−1
)}).

3.3 when s + d = 1

Since E[Ni] = nsp = ns+d−1 = 1, clearly Ni follows the Poisson distribution with parameters λ = 1 as the number of nodes goes
to infinity. Thus we can get that the number of times when any group is appointed as a destination is at most log ns.
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Fig. 4. Capacity of regular distribution group multicast when s+ d > 1

Similarly, we have

λ(n) = min{Θ(
1√
ns

), Θ(
1

log ns
)}

= Θ(
1√
ns

).

4 Capacity of Random Distribution Group Multicast

In this section, we discuss the bounds for random group distribution wireless networks. As shown in Figure 5, when these groups
are randomly distributed in the network, there will inevitably be interferences due to the intersections between the groups, making
it difficult to schedule the model. Unlike previous analysis, we mainly discuss the random scenario capacity from the perspective of
destination nodes.

Any node Vi in the network will be selected by a certain source node as its destination node with the probability p = nd−1. Let
Ni be the number of times when the node Vi is chosen as a destination node, then clearly Ni follows the binomial distribution with
parameters ns and p. Easily we can derive

Pr(Ni = k) =

(
ns

k

)
pk(1− p)n

s−k,

and the expected value of Ni is E[Ni] = nsp = ns+d−1. Similarly according to the various circumstances of s+ d, we will employ
different approaches to investigate the network capacity.

4.1 When s + d < 1

As the number of nodes goes to infinity while the product nsp remains fixed, the binomial distribution converges towards the
Poisson distribution. Therefore the Poisson distribution with parameter λ = nsp = nc can be used as an approximation to the
binomial distribution here. Consequently, we can derive the following lemma.

Lemma 2. The number of times when any node is appointed as a destination node under random distribution scenario is also at
most constant when s+ d < 1.

Proof. Let K be a positive integer. Using the same technique described previously, we can have

Pr(Ni ≥ K) =
∑
k≥K

e−λλ
k

k!

≤
∑
k≥K

e−λλk

≤ e−λλK

1− λ
,
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Pr(max
i

Ni ≥ K) ≤
∑
i

Pr(Ni ≥ K)

≤ ne−λλK

1− λ
,

lim
n→∞

Pr(max
i

Ni ≥ K) ≤ lim
n→∞

ncK+1e−λ

1− nc
= 0

as long as cK + 1 < 0. We choose K = 1 + [ 1
1−s−d ].

Based on Lemma 2, we have

λ (n) = O(min{Θ(
1√
ns

), Θ(
W

[ 1
1−s−d ] + 1

)})

= O(
1√
ns

).

Similarly, we design the following schedule to achieve the capacity bound.

1. Each source node transmits packets, through ad hoc mode, to a destination node Vi,d in a randomly selected group.
2. Vi,d transmits the packets to all other nodes in the group.

We follow the schedule of Franceschetti et al. [21], adopting percolation theory in routing, in order to meet the first requirement.
To meet the second requirement, we employ flooding algorithm. We should design the process such that every node acts as

both a transmitter and a receiver, and each node tries to transmit packages to every one of its neighbors except the source node. In
addition, the frequency that a node is transmitting should be the same as the frequency that it is receiving. Obviously, the bound can
be achieved through the schedule, and we have,

Theorem 3. The capacity of random-distribution group multicast is Θ( 1√
ns ), when s+ d < 1.

Proof. The proof is similar to that of Theorem 1, which employs the TDMA scheme.



4.2 When s + d > 1

According to the previous derivation, we need to establish the maximum flow, k, of the network. Firstly we consider how close two
adjacent crossing pairs can be under the scheme to obtain the minimum distance between adjacent crossing pairs, thus to determine
the maximum flow. Then we intend to utilize the properties of binomial distribution. However, we do not work out the problem as
expected.

Finally we succeed analyzing the capacity of wireless networks from the perspective of destination nodes instead of groups.
Let’s recall some results from the appendix of Vasudevan et al. [23], as shown in Lemma 3.
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Fig. 6. Transmission mode when groups are randomly distributed and s+ d > 1

Lemma 3. Let X be a Poisson random variable with parameter λ.

1. If x > λ, then Pr(X ≥ x) ≤ e−λ(eλ)x/xx.
2. If x < λ, then Pr(X ≤ x) ≤ e−λ(eλ)x/xx.

Performing some algebraic manipulations, we obtain

Lemma 4. The number of times when any node is appointed as a destination node under random distribution scenario is at most
2ns+d−1 when s+ d > 1.

Proof. As Ni follows the Poisson distribution with parameter λ = nsp = ns+d−1, then we can have

Pr(Ni ≥ 2λ) ≤ e−λ(
e

2
)2λ

= (
√
e)−2λ(

e

2
)2λ

= (

√
e

2
)2λ,

P r(max
i

Ni ≥ 2λ) ≤
∑
i

Pr(Ni ≥ 2λ)

≤ n(

√
e

2
)2λ.



Since
√
e
2 < 1, λ = ns+d−1 goes to infinity when the number of nodes n increases, then we have

lim
n→∞

Pr(max
i

Ni ≥ 2λ) ≤ lim
n→∞

n(

√
e

2
)2n

s+d−1

= 0.

From the above derivation we have k = 2λ = 2ns+d−1, it follows,

λ (n) = O(min{Θ(
1√
ns

), Θ(
W

2ns+d−1
)})

= O(min{Θ(
1√
ns

), Θ(
1

ns+d−1
)}).

Using the same schedule described previously, we can then prove that the bound can be achieved, and that the capacity of the
random distribution scenario is

λ(n) = Ω(
1√

ns + 2ns+d−1
) = Ω(min{Θ(

1√
ns

), Θ(
1

ns+d−1
)}).

With the above discussion, we can prove the following Theorem.

Theorem 4. The capacity of random-distribution group multicast is min{Θ( 1√
ns ), Θ( 1

ns+d−1 )}, when s+ d > 1.

Proof. The proof is similar to that of Theorem 2, and the capacity is displayed in Figure 4.

4.3 When s + d = 1

This is identical to the situation when s+ d = 1 under regular distribution scenario, and we need to establish the maximum flow of
the network.

Lemma 5. The number of times when any node is appointed as a destination node under random distribution scenario is at most
log n when s+ d = 1.

Proof. When s+ d = 1, Ni follows the Poisson distribution with parameter λ = ns+d−1 = 1,

Pr(Ni ≥ log n) ≤ e−1(
e

log n
)logn

≤ e−1(
1

e2
)logn

=
1

en2
,

P r(max
i

Ni ≥ log n) ≤
∑
i

Pr(Ni ≥ log n)

≤ 1

en
.

When the number of nodes n goes to infinity , we have

lim
n→∞

Pr(max
i

Ni ≥ log n) ≤ lim
n→∞

1

en
= 0.

Thus, we have

λ(n) = min{Θ(
1√
ns

), Θ(
1

log ns
)}

= Θ(
1√
ns

).



5 Conclusion

We have studied the theoretical group multicast capacity of wireless ad hoc network. In particular, we have investigated wireless
networks using both regular distribution and random distribution models. Our results can well unify the previous multicast results
in wireless ad hoc networks. What’s more, our study is the first attempt to understand how group multicast may impact on network
capacity from a theoretical perspective.

We are also interested in how to improve the throughput capacity of wireless ad hoc network by adopting multiple groups as
destinations and using physical model. Although group multicast provides gain in certain wireless ad hoc network, an interesting
question is what is the impact of combining group multicast and social network. And this question is also important in realistic
cellular network.
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