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Abstract. Previously, it has been shown that wired infrastructures such as optical networks can improve the capacity of ad hoc
wireless networks significantly. However, sometimes these wired infrastructures are too expensive or even infeasible. In this paper,
we use wireless helping networks to enhance the throughput performance of ad hoc networks. We focus on heterogeneous multicast
networks with wireless helping networks. The heterogeneity refers to the inhomogeneity of the distribution of the nodes. The
helping networks are neither the sources nor the destinations of data flow. They only serve as relays of the data. The wireless
helping networks can be regularly placed or randomly uniformly distributed or mobile. We derive achievable throughput for all
these three cases. We also make a comparison between them and pure ad hoc networks without helping networks to see the
contribution of wireless helping networks.

1 Introduction

There have been great interests in the scaling laws of wireless networks since the seminal work [1]. In that paper, Gupta and Kumar
show that a throughput of Θ(1/n

√
log n) is achievable. In [2], Franceschetti et.al show us a throughput of Θ(1/

√
n) is achievable

via percolation theory.
Besides unicast, multicast is also considered in the literature[3]. Heterogeneity is also considered in wireless networks. For

instance, [4] and [5] study the capacity of wireless networks with Inhomogeneous Poisson Process (IPP) distribution and give the
upper bound and lower bound for the networks respectively. The impact of mobility on wireless networks is first discussed in [13].
In that paper, Grossglauser and Tse show that mobility can significantly increase the throughput capacity of wireless networks to
Θ(1) at the cost of large delay. Garetto et.al [15][16] combine mobility and heterogeneity and derive the upper and lower bound for
throughput capacity of mobile heterogeneous networks. The delay capacity tradeoff is considered in [18][17] and generally capacity
can only increase at the cost of large delay. Li et.al [19] and Zhang et.al [20][21] study the impact of directional antennas on capacity
and delay of wireless ad hoc networks.

In the above works, all nodes are assumed to share one common communication channel and one same wireless channel band-
width. However, the corresponding capacity scaling for these kind of pure ad hoc wireless networks are pessimistic. The per node
throughput usually goes to zero as the number of nodes goes to infinity. Although mobility can somehow increase the network
capacity, it will also incur the large delay. Thus, a kind of hybrid wireless networks is proposed. The hybrid networks consist of both
wireless ad hoc networks and wired base stations. In [11], Kozat and Tassiulas study the throughput capacity of hybrid wireless net-
works where both normal ad hoc nodes and access points are randomly distributed. In [9], Zemlianov and Veciana study the hybrid
wireless networks with random ad hoc nodes and fixed base stations. In [8], Liu et.al show that under the k-nearest-cell strategy, if
the number of base stations is Ω(

√
n), then the network throughput will gain a significant enhance. In [12], Li et.al consider hybrid

networks with so called L-maximum-hop strategy and show that [8] is actually a special case for that. Zhang et.al [10] consider
hybrid wireless networks with directional antennas. Li et.al [7] consider the hybrid networks with asymmetric traffic patterns and
network areas. Mao et.al [14] take multicast into consideration for hybrid networks.

However, this kind of hybrid wireless networks will need wired infrastructures which are very costly and even infeasible under
some conditions. For example, in the battle field, constructing wired infrastructures previously is impossible. As a result, some
scholars suggest to replace the wired infrastructures with wireless helping networks with large bandwidth (related with the number
of nodes). For example, Li et.al [6] derive an achievable throughput of the asymmetric networks with wireless helping networks.
This kind of wireless helping network is more realistic and less costly compared to wired base stations. The wireless helping network
is neither sources of data nor destinations of data. They only serve as relay for transmissions. In addition, they are usually equipped
with large bandwidth and thus more powerful than normal nodes. There is no doubt that the existence of these powerful wireless
helping nodes will enhance the capacity performance of the original ad hoc network significantly.

So far, some works have been done about the multicast in hybrid networks with wired infrastructures or wired networks. But,
to the best of our knowledge, few previous works have taken heterogeneous multicast with wireless helping networks into consid-
eration. For wireless helping network, although its bandwidth will scale with the number of nodes, it is still finite. In contrast, the
bandwidth of wired base stations is infinite. This is an essential difference since the transmission on the wireless helping networks
will also take time. Besides, unlike [14], the multicast considered in this paper is heterogeneous i.e. the cluster clients (destinations)
are more likely to be located nearby their corresponding cluster heads (sources).



In this paper, we will study the achievable throughput of heterogeneous multicast network with wireless helping network.
The wireless helping network is assumed to have a large bandwidth (scales with n). The network area is a rectangle and thus
asymmetric. We consider three cases: the wireless helping network is (i) regularly placed (ii) randomly distributed (iii) mobile. We
derive achievable throughput for all the three cases respectively, which are the main results of this paper. We attempt to find out
the extra throughput a heterogeneous multicast network can gain with the help of powerful wireless helping networks. We will also
make a comparison between the three cases and pure ad hoc network without helping networks under a special case.

The rest of this paper is organized as follows. In Section 2, we describe the system model, including network topology and
interference model. In Section 3 and Section 4, we describe the routing strategy and derive the corresponding achievable throughput
for heterogeneous multicast network with regular wireless helping network and heterogeneous multicast network with random wire-
less helping network, respectively. In Section 5, we describe the transmission scheme and achievable throughput of heterogeneous
multicast network with mobile wireless helping network. In Section 6 we show an achievable throughput for pure heterogeneous
multicast networks without helping networks. In Section 7, we compare the results in previous sections and discuss (i)whether the
wireless helping network will improve the throughput or not (ii)whether the mobility of helping network will improve the throughout
or not . Finally, we conclude the paper in Section 8.

2 System Model

2.1 Network Model

We consider a heterogeneous multicast network to be the normal network. Specifically, there are nh(h > 0) cluster heads in the
network. Those heads are served as sources of data flows. Each head has nc(c > 0) clients which are the destinations of the data
from this head. The network area is a rectangle with width na1 and length na2 , where a2 ≥ a1 > 0. In the following, we denote
the direction of the short side of the rectangle as the direction of x axis and the direction of the long side of the rectangle as the
direction of y axis. We denote the network as A. The nh cluster sessions are independently distributed on the network area. Each
head is uniformly distributed on the area. Once a head is distributed on the position ξ, all the clients of this head will be distributed
independently around it with probability density fuction (PDF) f(z, ξ). The function f(z, ξ) induces heterogeneity into the network
model and is achieved in the following way:

f(z, ξ) =
s(|z − ξ|)∫

A
s(|z − ξ|)dz

where s() is a positive, monotonically decreasing, continuous function defined on the interval [0,∞). We further assume s() satisfy
the property: limρ→∞ ρ2+εs(ρ) = c1 ,where c1 and ε are two positive constants. Since we have:∫

A

s(|z − ξ|)dz ≤
∫
R2

s(|z|)dz = 2π

∫ ∞
0

ρs(ρ)dρ

and ∫
A

s(|z − ξ|)dz ≥
∫ 1

0

1

4
2πρdρs(ρ) ≥ π

2

∫ 1

0

ρs(ρ)dρ

we can say that f(z, ξ) and s(|z − ξ|) are of the same order i.e. there exists two positive constants c and c such that for all z and ξ
in the network area, we have: cs(|z − ξ|) ≤ f(z, ξ) ≤ cs(|z − ξ|).

In addition, there are m = nb(b > 0) helping nodes in the network area. These helping nodes can be either regularly placed
on the network area or randomly distributed on the network area. If they are regularly placed, we call the corresponding network
heterogeneous multicast network with regular wireless helping network, which will be discussed in Section 3. If the helping
nodes are uniformly and independently distributed on the network area, we call the corresponding network heterogeneous multicast
network with random wireless helping network, which will be discussed in Section 4. Since the distribution of random wireless
helping network is uniform, we will see that the analysis is very similar to regular wireless helping network.

The wireless helping network can also be mobile. We call this model heterogeneous multicast network with mobile wireless
helping network. This is specified as follows. Among the m helping nodes, each will have a home point. The m home points are
regularly placed in the network area. Then each helping node will move within a circle centered at its home point independently.
The radius of these circles are all nr. In each circle, the probability density of the corresponding helping node is assumed to be
uniform. The movement of each helping node is a stationary ergodic random process. This model will be discussed in Section 5.



2.2 Definition of Gaussian Channel Model[1]

The maximum transmission rate from transmitter Xi to its receiver Xj is given by:

Rij =W log(1 + SINRij)

where W is the bandwidth of the channel and SINRij is the signal to noise and interference ratio i.e. SINRij =
Pi/d

γ
i

N+
∑
k 6=i Pk/d

γ
k

.
Pi is the transmission power of each transmitter. dk is the distance from any simultaneously active transmitter to the receiver Xj . γ
is the attenuation exponent. As usual, we assume γ > 2.

2.3 Definition of Protocol Model[1]

Nodes are assumed to employ a common transmission range, R. Then node i will transmit data successfully to node j iff:
(i) The distance between node i and j is no more than R, i.e., dij ≤ R
(ii) For any other simultaneously active transmitters k, dkj ≥ (1 +4)R
where4 is a positive constant.
In the following sections, we will use Gaussian Channel Model to analyze static wireless helping networks in Section 3, Section

4 and Section 6. However, in Section 5, we will use Protocol Model to analyze the mobile helping network for simplicity. In fact,
since Protocol Model has some kind of feasibility under Gaussian Channel Model, our analysis for mobile wireless helping networks
can be easily extended to Gaussian Channel Model. Protocol Model is only for analysis convenience.

3 Achievable Throughput of Heterogeneous Multicast Network with Regular Wireless Helping
Network

In this section, we study the achievable throughput of heterogeneous multicast network with regular wireless helping network. We
assume the bandwidth of the normal network to be W1, a positive constant. This bandwidth is used for either the communications
between normal nodes or the communications between normal nodes and helping nodes. However, the bandwidth of the helping
network is W2, an variable related with n. This bandwidth is only used for communications between helping nodes. Then we
transmit the data flow from the cluster heads to their corresponding clients with the help of helping nodes. Firstly, we transmit the
data from the heads to a nearby help node. Secondly, we transmit the data from this help node to a help node near the destined
clients. Thirdly, we transmit the data from that help node to the corresponding clients. The first step is called uplink while the third
one is called downlink. We further divide the bandwidth of normal nodes into uplink bandwidth W3 and downlink bandwidth W4,
where W3 and W4 are two positive constants i.e. W1 = W3 +W4. This will ensure that there is no interference between uplink
transmissions and downlink transmissions.

We first derive the achievable throughput for the network under the assumption b > a2 − a1 carefully. After this, we will show
that another achievable throughput can also be gained via a similar way of analysis for the case b ≤ a2 − a1.

We tessellate the network area into small squares (cells) with side length l =
√

na1+a2

nb
= n

a1+a2−b
2 . The constraint b+a1 > a2

will guarantee the feasibility of this tessellation. Then we just put the nb helping nodes at the center of each cell such that one cell
has exactly one helping node.

By using a TDMA transmission scheme and an equal power for every normal nodes and an equal power for every helping nodes,
every cell can achieve a Θ(1) transmission rate at uplink (first step) or downlink (third step) and a Θ(W2) transmission rate at the
second step. In Step I and III, we only allow transmission within the same cell. In Step II, we allow transmission between adjacent
cells. This concluded as the following lemma. The proof can be found in [6].

Lemma 31 Every cell can achieve a Θ(1) transmission rate at the first step and third step. Every cell can achieve a Θ(W2)
transmission rate at the second step.

Now we are ready to derive the throughput of the step I (uplink), step II, and step III (downlink), respectively. The lowest one
among these three will be the bottleneck of the overall multicast transmission and is therefore the throughput of the whole network.

Step I: From the heads (sources) to the helping network.
In Step I, for every head, it must be located in a cell. We transmit the data from this head to the helping node belonging to this

cell.In order to derive an achievable throughput for Step I, we need an upper bound for the number of heads in each cell. This is
stated in the following lemma.

Lemma 32 For every cell, there are at most Θ(max{nh−b, log n}) heads inside it w.h.p.



Proof. The proof is a standard application of Chernoff bound.
For any particular cell, denote X the number of heads inside it. Then for any positive sequence xn, we have:

P(X ≥ xn) ≤
E(eX)

exn
≤ (1 + (e− 1)n−b)n

h

exn
≤ exp((e− 1)nh−b − xn)

The last step uses the fact that 1 + x ≤ ex. Denote event E1 as {There exists a cell such that the number of heads inside it is larger
than xn}. Then we have:

P(E1) ≤
na1+a2

l2
exp((e− 1)nh−b − xn) = nb exp((e− 1)nh−b − xn)

If h > b, then xn = Θ(nh−b) will ensure that P(E1)→ 0. Else, h ≤ b, then xn = Θ(log n) will also ensure that P(E1)→ 0. Thus
we complete the proof.

Hence, we get an achievable throughput for Step I (uplink):

λ1 = Θ

(
min

{
nb−h,

1

log n

})
Step II: Helping network relay.

In this Step II, we transmit the data through helping network in the following way. This routing strategy is the same as [6].
Suppose there is a head client pair. The coordinate of the cell the head lies in is (x1, y1) and the coordinate of the cell the client lies
in is (x2, y2). Every coordinate can also represent a helping node. Firstly, we transmit the data from (x1, y1) to (x1, y2) through
the line parallel to the y axis. Then we transmit the data from (x1, y2) to (x2, y2) though the line parallel to the x axis. Each time,
we only allow the transmission between two adjacent helping nodes. And by using multihop and TDMA, we can transmit the data
successfully.

In order to get an achievable throughput for Step II, we need to get an upper bound on the number of data flows that go across
each cell. This is done by the following lemma.

Lemma 33 For every cell, the number of data flows that go across it is at most w.h.p.:

Θ(min{nh,max{nc+h+
a1−a2−b

2 , nh+
a2−a1−b

2 , log n}})

Proof. Consider a particular cell, denoted as B. Suppose the coordinate of the B is (x1, y1). Denote F the rectangle consists of all
the cells with y coordinate y1. We call this rectangle the horizontal rectangle of this cell. Denote G the rectangle consists of all the
cells with x coordinate x1. We call this rectangle the vertical rectangle of this cell. Denote X the number of cluster sessions which
have at least one client in F . Denote Y the number of heads inside G. Then the number of data flows is no more than X + Y . Let
E be a certain client of a certain head H .

Now we consider X .
Firstly, we consider the case that the distance between H and F is larger than l. Denote this case (event) as E2. Denote E3 the

event {The distance between H and F is within the interval [ρ, ρ+ dρ]}, where 0 < ρ <
√
2na2 . We have:

P(E3) ≤ 2
dρ

na2

Connect H and arbitrary point in the boundary of F to form a line. Denote θ the angle between this line and the y axis. Denote E4

the event {client E is inside F}. Then we have:

P(E4|E3) ≤ 2

∫ π
2

0

l
ρdθ

cos2 θ
cs
( ρ

cos θ

)
= 2lρc

∫ π
2

0

1

cos2 θ
s
( ρ

cos θ

)
dθ

Since limρ→∞ ρ2+εs(ρ) = c1, there must exist a positive constant c2, such that for all positive ρ: ρ2+εs(ρ) ≤ c2. Substitute this
into the above equation we have:

P(E4|E3) ≤
2lcc2
ρ1+ε

∫ π
2

0

(cos θ)εdθ = c10
l

ρ1+ε

where c10 is a positive constant. So:

P(E4, E2) ≤
∫ √2na2

l

c10
l

ρ1+ε
2
dρ

na2
=

2c10l

na2

∫ √2na2

l

dρ

ρ1+ε



If a1 + a2 ≥ b, then

P(E4, E2) ≤
2c10l

na2
1

εlε
=
c11l

1−ε

na2
(1)

Else a1 + a2 < b, then

P(E4, E2) ≤
c12l

na2

c11 and c12 are two positive constants.
Secondly, we consider the case that the distance between H and F is no more than l. We denote this case as E5. Then we have:

P(E5) ≤
3l

na2

By consider only the distance in x direction, we get the following inequality:

P(E4|E5) ≤
∫ na1

0

2cs(ρ)ldρ = c13l

where c13 is a positive constant. So:

P(E4, E5) ≤
3c13l

2

na2
(2)

If a1 + a2 < b, we will use (2). Else if a1 + a2 ≥ b, then we just use P(E4, E5) ≤ P(E5) ≤ 3l
na2 .

Combine the above two formulas (1) and (2), if a1 + a2 ≥ b, then:

P(E4) ≤ c11
l1−ε

na2
+

3l

na2
≤ c14

l

na2

where c14 is a positive constant.
Denote E6 the event {There exists at least one client of head H inside F}. Denote p′ = P(E6). Then we have:

p′ ≤ c14nc
l

na2
= c14n

c+
a1−b−a2

2

Then by Chernoff bound, for any positive sequence xn, we have:

P(X ≥ xn) ≤ exp((e− 1)p′nh − xn) ≤ exp((e− 1)c14n
c+h+

a1−b−a2
2 − xn)

DenoteE7 the event {There exists a cell, the number of cluster sessions which have at least one client inside the horizontal rectangle
of this cell is no less than xn}. Then:

P(E7) ≤
na1+a2

l2
exp((e− 1)c14n

c+h+
a1−b−a2

2 − xn) = nb exp((e− 1)c14n
c+h+

a1−b−a2
2 − xn)

When c + h + a1−b−a2
2 > 0, we let xn = Θ(nc+h+

a1−b−a2
2 ). When c + h + a1−b−a2

2 ≤ 0, we let xn = Θ(log n). Thus we can
ensure that P(E7)→ 0.

Now we consider Y . Since the nh heads are uniformly and independently distributed on the network area, by using Chernoff
bound, for any positive sequence yn, we have:

P(Y ≥ yn) ≤ exp((e− 1)
l

na1
nh − yn) ≤ exp((e− 1)nh+

a2−a1−b
2 − yn)

Denote E8 the event {There exists a cell, the number of heads inside the vertical rectangle of this cell is no less than yn}. Then we
have:

P(E8) ≤ nb exp((e− 1)nh+
a2−a1−b

2 − yn)

When h + a2−a1−b
2 > 0, we let yn = Θ(nh+

a2−a1−b
2 ). When h + a2−a1−b

2 ≤ 0, we let yn = Θ(log n). This will ensure that
P(E8)→ 0.

Denote E9 the event {There exists a cell such that the number of data flows go across this cell is no less than xn + yn}. Then
we have:

P(E9) ≤ P(E8) + P(E7)→ 0

And xn + yn = Θ(max{nc+h+
a1−b−a2

2 , nh+
a2−a1−b

2 , log n}).
Similarly, when a1 + a2 < b, we will get the same conclusion with xn + yn = Θ(max{nh+

a2−a1−b
2 , nc+h+

a1−a2−b
2 , log n})

Besides, since the total amount of data flows is just nh, it is obvious that the number of data flows go across any cell will be no
more than nh. Hence, we complete the proof.



Therefore, we’ve got an achievable throughput for Step II.

λ2 = Θ

(
W2 max

{
n−h,min

{
n−c−h+

a2+b−a1
2 , n−h+

a1+b−a2
2 ,

1

log n

}})
Step III: From the helping network to clients (destinations).

In order to derive an achievable throughput of Step III, for every cell, we need an upper bound for the number of cluster sessions
which have at least one client inside it. This is got by the following lemma.

Lemma 34 For every cell, the number of cluster sessions which have at least one client inside it is no more than w.h.p.:

Θ
(
min{nh,max{log n, nc+h−b}}

)
Proof. Let’s consider a particular cell B, a particular head H and a client of H named E. Firstly, we consider the case that the
distance between H and B is larger than l. Denote this case as E10. Denote E11 the event {The distance between H and B is within
the interval [ρ, ρ+ dρ]}, where l < ρ <

√
2na2 . Then we have:

P(E11) ≤
1

na1+a2
(π(ρ+ dρ)2 − πρ2 + 4ldρ) =

2πρ+ 4l

na1+a2
dρ

Denote E12 the event {E is inside B}. Then we have: P(E12|E11) ≤ cs(ρ)l2
So:

P(E12, E10) ≤ c
∫ √2na2

l

s(ρ)l2
2πρ+ 4l

na1+a2
dρ

Since ρ2+εs(ρ) ≤ c2 for any positive ρ, we have:

P(E12, E10) ≤
cl2

na1+a2

∫ √2na2

l

c2
ρ2+ε

(2πρ+ 4l)dρ =
cl2

na1+a2

(
2πc2

∫ √2na2

l

dρ

ρ1+ε
+ 4lc2

∫ √2na2

l

dρ

ρ2+ε

)

When a1 + a2 ≥ b, then l→∞ or l is a positive constant, so:

P(E12, E10) ≤
cl2

na1+a2

(
2πc2
εlε

+
4lc2

(1 + ε)l1+ε

)
= c3

l2−ε

na1+a2

When a1 + a2 < b, then l→ 0, so:

P(E12, E10) ≤ c′3
l2

na1+a2

Secondly, we consider the case that the distance between H and B is no more than l. Denote this case as E13. Then we have:

P(E13) ≤
1

na1+a2
(5l2 + πl2) =

(5 + π)l2

na1+a2

So:

P(E12|E13) ≤ c
∫ √

2
2 l

0

2πρs(ρ)dρ

We first consider the case a1 + a2 ≥ b. In this case, we have P(E12|E13) ≤ 1. So, P(E12, E13) ≤ c5l
2

na1+a2
, where c5 is a positive

constant. Hence:

P(E12) ≤ c3
l2−ε

na1+a2
+ c5

l2

na1+a2
≤ c6

l2

na1+a2

where c6 is a positive constant.
Denote E14 the event {There exists a client of H inside B}. Let p = P(E14) ≤ c6nc l2

na1+a2
= c6l

2

na1+a2−c .
Denote X the number of cluster sessions which have at least one client inside cell B. Then by Chernoff bound, for any positive

sequence xn, we have:

P(X ≥ xn) ≤
E(eX)

exn
= exp((e− 1)pnh − xn) ≤ exp((e− 1)c6l

2nc−a1−a2+h − xn)



Denote E15 the event {There exists one cell such that the number of cluster sessions which have at least one client inside this cell is
no less than xn}. Thus we have:

P(E15) ≤
na1+a2

l2
exp((e− 1)c6l

2nc+h−a1−a2 − xn) = nb exp((e− 1)c6n
c+h−b − xn)

When c+ h ≤ b, we let xn = Θ(log n). When c+ h > b, we let xn = Θ(nc+h−b). Thus by letting xn = Θ(max{log n, nc+h−b}),
we will ensure that P(E15)→ 0.

Similarly, when a1 + a2 < b, we will get the same result.
Since the overall number of cluster sessions is just nh, it is obvious that, for every cell, the number of cluster sessions which

have at least one client inside it is no more than nh. Hence, we finish the proof.

Therefore, an achievable throughput of Step III is :

λ3 = Θ

(
max

{
n−h,min

{
1

log n
, nb−c−h

}})
Now we’ve finished the discussion of the throughput of all the steps and we arrive at one main result:

Theorem 31 When b > a2 − a1, an achievable throughput for heterogeneous multicast networks with regular wireless helping
networks is:

λ = Θ(min{λ1, λ2, λ3})

where

λ1 = min

{
nb−h,

1

log n

}
λ2 =W2 max

{
n−h,min

{
n−c−h+

a2+b−a1
2 , n−h+

a1+b−a2
2 ,

1

log n

}}
λ3 = max

{
n−h,min

{
1

log n
, nb−c−h

}}
Now we consider the case b ≤ a2 − a1. The analysis is quite similar to the case b > a2 − a1.
When b ≤ a2 − a1, similar to [6], we tessellate the long side na2 into nb intervals of length na2−b. In this way, we get nb small

rectangles (cells) of which the length is na2−b and width is na1 . Then we locate the nb help nodes on the center of the nb cells and
every cell will has exactly one help node inside it. After that, we use the same transmission scheme as for the case b > a2− a1. The
complete transmission also consists of three steps, uplink, help node relay and downlink.

Now we begin to analyze the achievable throughput. Firstly, for Step I, following the same procedure as Lemma 3.2, we can
still get an achievable throughput of λ1 = Θ(min{nb−h, 1

logn}). For Step II, since all the cells have the same y coordinate now, we
simply let λ2 = Θ(Wn−h) as an achievable throughput. For Step III, by following the similar procedure as Lemma 3.4, we can still
get an achievable throughput of λ3 = Θ(max{n−h,min{nb−c−h, 1

logn}}). Now we get an achievable throughput for the overall
network.

Theorem 32 When b ≤ a2 − a1, an achievable throughput for heterogeneous multicast networks with regular wireless helping
networks is:

λ = Θ(min{λ1, λ2, λ3})

where

λ1 = min

{
nb−h,

1

log n

}
λ2 =W2n

−h

λ3 = max

{
n−h,min

{
1

log n
, nb−c−h

}}



4 Achievable Throughput of Heterogeneous Multicast Network with Random Wireless Helping
Network

In this section, we study the achievable throughput of heterogeneous multicast network with random wireless helping network. We
first consider the case b > a2 − a1. The analysis of the case b ≤ a2 − a1 is quite similar.

Similar to [6], we first tessellate the network area with small squares (cells) whose side length is l′ =
√

na1+a2 logm
m . The

constraint b > a2 − a1 will ensure the success of this tessellation and we will have the following lemma.

Lemma 41 For every cell, there exists at least one helping node inside it w.h.p.

The proof of this lemma is just a standard application of Chernoff bound and we omit it here.
The transmission scheme of heterogeneous multicast network with random wireless helping network is just the same as that of

heterogeneous multicast network with regular wireless helping network. It also consists of three steps: uplink, helping network relay
and downlink. As a result, the analysis is quite similar.

Step I: From the heads (sources) to the helping network.
For tessellation with side length l′, we have the following lemma which is quite similar to Lemma 3.2.

Lemma 42 For every cell, there is at most Θ(max{nh−b log n, log n}) heads inside it w.h.p.

As a result, an achievable throughput for Step I is:

λ′1 = Θ

(
min

{
nb−h

log n
,

1

log n

})
Step II: Helping network relay.

In Step II, we use the same transmission route as that in Section 3. Similar to Lemma 3.3, we have the following lemma.

Lemma 43 For every cell, the number of data flows that go across it is at most:

Θ
(
min

{
nh,max

{
nc+h+

a1−a2−b
2

√
log n, nh+

a2−a1−b
2

√
log n, log n

}})
Therefore, an achievable throughput for Step II is:

λ′2 = Θ

(
W2 max

{
n−h,min

{
n−c−h+

a2+b−a1
2

√
log n

,
n−h+

a1+b−a2
2

√
log n

,
1

log n

}})
Step III: From the helping network to clients (destinations)

Similar to Lemma 3.4, we have the following lemma:

Lemma 44 For every cell, the number of cluster sessions which have at least one client inside it is no more than:

Θ(min
{
nh,max

{
nc+h−b log n, log n

}}
)

Thus, an achievable throughput for Step III is:

λ′3 = Θ

(
max

{
n−h,min

{
nb−c−h

log n
,

1

log n

}})
So we come to the following result:

Theorem 41 When b > a2 − a1, an achievable throughput for heterogeneous multicast networks with random wireless helping
networks is:

λ′ = Θ(min{(λ′1, λ′2, λ′3)})
where

λ′1 = min

{
nb−h

log n
,

1

log n

}
λ′2 =W2 max

{
n−h,min

{
n−c−h+

a2+b−a1
2

√
log n

,
n−h+

a1+b−a2
2

√
log n

,
1

log n

}}

λ′3 = max

{
n−h,min

{
nb−c−h

log n
,

1

log n

}}



For the case b ≤ a2 − a1, we can derive the following theorem in a similar way:

Theorem 42 When b > a2 − a1, an achievable throughput for heterogeneous multicast networks with random wireless helping
networks is:

λ′ = Θ(min{λ′1, λ′2, λ′3})

where

λ′1 = min

{
nb−h

log n
,

1

log n

}
λ′2 =W2n

−h

λ′3 = max

{
n−h,min

{
nb−c−h

log n
,

1

log n

}}

5 Achievable Throughput of Heterogeneous Multicast Network with Mobile Wireless Helping
Network

In this section, we study the case the wireless helping network is mobile as described in Section 2. For heterogeneous multicast
network with this kind of mobile helping network, we show a feasible transmission scheme and derive its corresponding achievable
throughput. Recall that the movement of each node is within a circle centered at its home point and the radius of this circle is nr. In
the following, we will only analyze the case b > a2 − a1. One can easily analyze the case b ≤ a2 − a1 in a similar manner.

Since b > a2 − a1, similar to Section 3, we can tessellate the network area into small squares (cells) whose side length is
l = n

a1+a2−b
2 . Then we place the home points of the m = nb helping node at the center of these m small cells. In the following,

we further assume that a1+a2−b2 < r < a1. Otherwise, if r > a1, then the move range is larger than the network area and this is not
proper. If r ≤ a1+a2−b

2 , then the movement area of each helping node is just constrained within its corresponding small cell. Then
there will be no significant difference with the regular wireless helping network which is discussed in Section 3.

Since r < a1, we can further tessellate the network area into big squares (cells) whose side length is l1 = nr

10 . Then each big
cell will have ( l1l )

2 = Θ(n2r−a1−a2+b) small cells inside it.
The transmission scheme also consists of three steps: uplink, helping network relay and downlink. In the following, we will

discuss them respectively. Note that for the mobile model in this section, we will analyze problems under the Protocol Model
defined in Section 2. And we will choose different transmission ranges R for the three steps. We also assume the different steps use
different bandwidth, so there will be no interference between different steps.
Step I: Uplink.

In order to choose a proper transmission range for uplink, we need to know the minimum distance between any two heads. This
problem is solved by the following lemma.

Lemma 51 For any positive sequence dn such that dn = o(n
a1+a2

2 −h), the distance between any two heads will be larger than dn,
w.h.p.

Proof. Denote E′ the event {The distance between any two heads is larger than dn}. Then we have:

P(E′) ≥
nh−1∏
k=1

(1− kπd2n
na1+a2

) ≥ 1−
nh−1∑
k=1

kπd2n
na1+a2

= 1− πd2n
na1+a2

1

2
(nh − 1)nh ≥ 1− π

2

d2n
na1+a2

n2h → 1

With Lemma 5.1, we can get an achievable throughput for Step I. This is concluded in the following lemma.

Lemma 52 An achievable throughput for Step I is: λ(m)
1 = Θ(1) when b > 2h ; λ(m)

1 = o(nb−2h) when b ≤ 2h. Where o(nb−2h)
can be any small quantity compared to nb−2h.

Proof. First, let us consider the case r < a1+a2
2 − h. If so, we choose the transmission range to be RT = Θ(nr). Let dn =√

RTn
a1+a2

2 −h. According to Lemma 5.1, the distance between any two heads is larger than dn. Since dn = ω(RT ), the transmis-
sions from different heads will not interfere with each other. Consider any head H and the big cell it belongs to B. For any helping
node G whose home point is inside B, we have: P(|H −G| ≤ RT ) ≥ c15, where c15 is a positive constant. Hence, every head will
get a Θ(1) throughput.



Second, we consider the case r ≥ a1+a2
2 − h. If so, we choose the transmission range to be RT = o(n

a1+a2
2 −h). Let dn =√

RTn
a1+a2

2 −h. According to Lemma 5.1, similarly, we can ensure that there will be no interference between two simultaneous

transmitting heads. We also use the notations in the first case. Then we have: P(|H −G| > RT ) ≤ 1− R2
T

4n2r .
Since there are totally n2r−a1−a2+b helping nodes in the big cellB, denoting these helping nodes asGi(1 ≤ i ≤ n2r−a1−a2+b),

then we have:

P(|H −Gi| > RT ,∀1 ≤ i ≤ n2r−a1−a2+b) ≤
(
1− R2

T

4n2r

)n2r−a1−a2+b

≤ exp

(
− R2

T

4n2r
n2r−a1−a2+b

)
= exp

(
−1

4
R2
Tn
−a1−a2+b

)
Therefore,

P
(
∃1 ≤ i ≤ n2r−a1−a2+b, |H −Gi| ≤ RT

)
≥ 1− exp

(
−1

4
R2
Tn
−a1−a2+b

)
(3)

Then, if b > 2h, we have R2
Tn
−a1−a2+b = o(nb−2h). And we can always choose RT sufficiently close to n

a1+a2
2 −h, such that

R2
Tn
−a1−a2+b → +∞. Then the right hand side of (3) will tend to 1 as n goes to infinity. Thus, every head get an throughput

of Θ(1). Note that the case b > 2h will cover the first case r < a1+a2
2 − h, so as long as b > 2h, throughput of Θ(1) is always

achievable.
Next, if b ≤ 2h, note the fact that limx→0

ex−1
x = 1, the right hand side of (3) is asymptotically o(nb−2h). Thus, for every

head, a throughput of o(nb−2h) is achievable, where o(nb−2h) can be any small quantity compared to nb−2h. Hence we complete
the proof.

From now on, we choose the o(nb−2h) in Lemma 5.2 to be nb−2h

logn , hence an achievable throughput for Step I is:

λ
(m)
1 = Θ

(
min

{
1,
nb−2h

log n

})
Step II: Helping network relay

Different from the static case, now the helping nodes are mobile. So we can allow transmission between two helping nodes only
when they are close enough. This will enhance the performance of achievable throughput. Besides when r tends to be a1+a2−b

2 , the
movement of the helping nodes will be restricted within its corresponding small cell, thus the throughput will be the same as the
static case. All of the above assertions will be shown in the following and we will see that throughput of Step II will get a significant
enhance compared to the static case in Section 3 and 4.

In order to derive achievable throughput for Step II, we first need to know the transmission ability between two adjacent big
cells. This is done by the following lemma.

Lemma 53 Every two adjacent big cells can support µ = Θ(W2n
2r−a1−a2+b) communication rate, where W2 is the data rate for

successful transmission between two help nodes.

Proof. For Step II, we choose the transmission range to be R′T = Θ(n
a1+a2−b

2 ) = o(nr). Consider two adjacent big cells, B1

and B2. Gi is any help node whose home point is within Bi, i = 1, 2. Similar to [16], we allow transmission between G1 and G2

only when (i) the distance between G1 and G2 is no more than R′T i.e., |G1 − G2| ≤ R′T . (ii) for any other help node G, we have
|G−Gi| ≥ (1 +4)R′T , i = 1, 2. Then we have,in the order sense: P(|G1 −G2| ≤ R′T ) =

R′T
n2r . And regardless of the position of

G1 and G2, we have:

P(|G−Gi| ≥ (1 +4)R′T , i = 1, 2,∀G 6= G1, G2) ≥
(
1− 2((1 +4)R′T )

2

n2r

)1000n2r−a1−a2+b

≥ 1− 2000nb−a1−a2(1 +4)2R′2T

So, denote E′′ the event that G1 and G2 are permitted to communicate, combining the above inequalities, we have:

P(E′′) ≥
(
1− 2000nb−a1−a2(1 +4)2R′2T

) R′2T
n2r

= Θ
(
na1+a2−b−2r

)
In addition, there are totally n2r−a1−a2+b helping nodes in each big cell. As a result, two adjacent big cells can support communi-
cation rate of Θ((n2r−a1−a2+b)2W2n

a1+a2−b−2r) = Θ(W2n
2r−a1−a2+b). Thus we finish the proof.

To derive the achievable throughput for Step II, we need to bound the number of data flows which go across every adjacent two
big cells. Similar to Section 3, we have the following lemma.



Lemma 54 (i)The number of data flows which go across two vertically adjacent big cells is at most w.h.p.

Θ
(
max{nh+r−a1 , log n}

)
(ii)The number of data flows which go across two horizontally adjacent big cells is at most w.h.p.

Θ
(
min{nh,max{nc+r+h−a2 , log n}}

)
With the help of Lemma 5.3 and Lemma 5.4, we get an achievable throughput for Step II.

λ
(m)
2 = Θ

(
min

{
W2n

2r−a1−a2+b

max{nh+r−a1 , log n}
,

W2n
2r−a1−a2+b

min {nh,max {nc+r+h−a2 , log n}}

})
= Θ

(
W2n

2r−a1−a2+bmax

{
n−h,min

{
n−c−r−h+a2 , na1−h−r,

1

log n

}})
Observe this result, we can see that λ(m)

2 is a monotonically increasing function with respect to r, as long as the previous
assumption a1+a2−b

2 < r < a1 holds. Besides, when r tends to a1+a2−b
2 i.e., the mobility of helping nodes tends to disappear, the

throughput of Step II, λ(m)
2 , will tend to be:

Θ

(
W2 max

{
n−h,min

{
n−c−h+

a2−a1+b
2 , n

a1−a2+b
2 −h,

1

log n

}})
which is the exact achievable throughput for Step II in static case which has been derived in Theorem 3.1.
Step III: Downlink

Now we begin to derive an achievable throughput for downlink. Here, we will not make use of the mobility characteristic of
help nodes and mobility is even a disadvantage in our transmission scheme. However, as previously said, mobility will increase the
throughput of Step II, so in practice, one should make a tradeoff according to specified parameters.

For the transmission scheme, we will simply exploit a round-robin TDMA scheme. That is, we divide all the big cells into a
constant number of groups such that transmissions of different big cells of the same group will not interfere with each other. Hence,
each big cell gets a constant transmission rate. Now, all we need to do is to bound the number of multicast sessions which have at
least one client inside a big cell. Similar to Lemma 3.4 in Section 3, we have the following lemma.

Lemma 55 For every big cell, the number of multicast sessions which have at least one client inside it is no more than w.h.p.:

Θ
(
min

{
nh,max

{
nh+c−a1−a2+2r, log n

}})
.

With the help of Lemma 5.5, we can get an achievable throughput for Step III:

λ
(m)
3 = Θ

(
max

{
n−h,min

{
na1+a2−c−h−2r,

1

log n

}})
Now we have finished the discussion of all the three steps, and we arrive a main result:

Theorem 51 When b > a2 − a1, a1+a2−b2 < r < a1, an achievable throughput for heterogeneous multicast network with mobile
wireless helping network is:

λ(m) = Θ(min{λ(m)
1 , λ

(m)
2 , λ

(m)
3 })

where

λ
(m)
1 = min

{
1,
nb−2h

log n

}
λ
(m)
2 =W2n

2r−a1−a2+bmax

{
n−h,min

{
n−c−r−h+a2 , na1−h−r,

1

log n

}}
λ
(m)
3 = max

{
n−h,min

{
na1+a2−c−h−2r,

1

log n

}}



6 Achievable Throughput of Pure Heterogeneous Multicast Network without Helping Network

In this section, we study the case that heterogeneous multicast network is not equipped with wireless helping network. The routing
strategy is the same as the Step II in Section 3 and the corresponding analysis is similar.

If h ≤ a2 − a1, then we simply let the achievable throughput be λp = Θ(n−h). This is obviously feasible by means of TDMA.
Next, we focus on the case h > a2 − a1.

Firstly, as usual, we tessellate the network area with small squares (cells) whose side length is l′′ =
√

na1+a2 lognh

nh
. Then the

following lemma holds:

Lemma 61 For every cell, there is at least one head inside it w.h.p.

Then we use the same routing strategy as Step II in Section 3. For each head-client pair, we first transmit the data flow vertically
and then transmit it horizontally. By following the same procedure in Lemma 3.3, we can derive an achievable throughput and this
is summarized in the following theorem:

Theorem 61 An achievable throughput for heterogeneous multicast network without wireless helping network is:
when h > a2 − a1:

λp = Θ

(
max

{
n−h,min

{
n−c+

a2−h−a1
2

√
log n

,
n
a1−h−a2

2

√
log n

}})
when h ≤ a2 − a1:

λp = Θ(n−h)

7 Discussion

In this section, we make a comparison between heterogeneous multicast network with wireless helping network and heterogeneous
multicast network without wireless helping network. From Theorem 3.1, Theorem 3.2, Theorem 4.1, Theorem 4.2 and Theorem 5.1,
we can see that with helping network, the achievable throughput is influenced by many parameters: the number of cluster heads,
the number of clients for each session, the number of helping nodes, the length and width of the network area, the mobility radius
for mobile helping network. But it is not influenced by the heterogeneity parameter ε. From Theorem 6.1, we can see that, without
helping network, the achievable throughout is also influenced by a series of parameters. Now we make a comparison to see when
the helping network will enhance the throughput performance significantly in the order sense and when will the mobility of helping
network improve the throughput performance.

In subsection 7.1, we mainly discuss the case when the helping network is regular, but the result also holds when the helping
network is random since log n factor will not influence the behavior of throughput heavily. In subsection 7.2, we use a special case
to compare the performance between three kinds of networks: (i) heterogeneous multicast network without helping network, (ii)
heterogeneous multicast network with regular helping network, (iii) heterogeneous multicast network with mobile helping network.

7.1 Multicast heterogeneous network with regular helping network and multicast heterogeneous network without helping
network: a comparison

Case I: b− c ≤ 0.
In this case, no matter the helping network is regular or random, λ3 = Θ(n−h). Because of this bottleneck, no matter how large

bandwidth the helping network has, the overall throughput can not be better than a standalone multicast network without helping
network.
Case II: b− c > 0.

In this case, with helping network with sufficiently largeW2, λ2 will not a bottleneck. In addition, λ3 = min{ 1
logn , n

b−c−h} and
λ1 = min{nb−h, 1

logn}. As a result, with sufficiently large W2, the overall throughput is min{λ1, λ3} = Θ(min{ 1
logn , n

b−c−h}).
According to Theorem 6.1, when h ≤ a2 − a1, this is obviously better than the standalone throughput without helping networks,
λp = Θ(n−h).

If h > a2 − a1, we can further the situation into two cases:
If c ≤ a2 − a1, according to Theorem 6.1 we have λp = Θ(n

a1−h−a2√
logn

). Then if h ≥ 2(b − c) + a2 − a1, it is easy to see that
min{λ1, λ2} ≤ λp. So there will be no enhancement with helping network. Else if h < 2(b− c) + a2 − a1, with sufficiently large
W2, the helping network will improve the throughput significantly.



If c > a2 − a1, according to Theorem 6.1 we have λp = Θ(max{n−h, n
−c+ a2−h−a1

2√
logn

}). It is easy to prove that when b ≤
a2+b−a1

2 , there will be no enhancement with helping network. However, when b > a2+b−a1
2 , with sufficiently large W2, there will

be significant enhancement with helping network.
The above discussion can be summarized by the following corollary:

Corollary 71 With sufficiently large W2, helping network can enhance the throughput of heterogeneous multicast network signifi-
cantly only when one of the following cases holds:

– (i) b > c, h ≤ a2 − a1
– (ii) b > c, h > a2 − a1, c ≤ a2 − a1, h < 2(b− c) + a2 − a1
– (iii) b > c, h > a2 − a1, c > a2 − a1, b > a2+h−a1

2

Then one may ask how large W2 can be considered as sufficiently large in Corollary 7.1? In fact, specifically, we can let
W2 = nx, where x is any positive constant. Then λ2 = Θ(nx−h) must be achievable for Step II. In order to avoid letting λ2 as a
bottleneck, we can choose x as follows:

When c < b < c+ h, choose x ≥ b− c, thus the achievable overall throughput is λ = Θ(nb−c−h).
When b ≥ c+ h, choose x ≥ h, thus the achievable overall throughput is λ = Θ( 1

logn ).
By choosing W2 like above, we can say W2 is sufficiently large and Corollary 7.1 holds.
Thereby, to expect a significant enhance in the throughout performance with helping networks, one should ensure that at least

one condition in Corollary 7.1 holds.

7.2 Comparison between three kinds of networks: a specified case

Now we consider three kinds of networks:

– (i) Heterogeneous multicast network without helping network
– (ii) Heterogeneous multicast network with regular helping network
– (iii) Heterogeneous multicast network with mobile helping network

We consider a particular case as an example. The parameters are given as follows:a1 = 1, a2 = 3, b = 9, h = 7, c = 5. The
bandwidth of the powerful wireless helping network is assumed to be n i.e., W2 = n.

Then according to Theorem 3.1, Theorem 5.1 and Theorem 6.1, we get an achievable throughput λp,λs,λm for networks
(i)(ii)(iii) as follows, respectively:

λp = Θ(n−7), λs = Θ(n
−11
2 ), λm = Θ

(
min

{
n−5

log n
, n2r+6 max

{
n−7, n−r−9

}
,max

{
n−7, n−8−2r

}})
, where −2.5 < r < 1 is the mobility radius exponent of the mobile helping network.

From the result of the above computation, we can see that with the help of regular helping network, the normal network can
perform better. Furthermore, for some particular mobility radius exponent r, the mobility of helping network can also enhance the
performance compared to static helping network. This is shown in Figure 1. In Figure 1, for simplicity, we ignore the log n term in
the expression of λm since this will not influence the overall throughput heavily.

From Figure 1, we can see that when−2.5 < r < −1.25, mobile helping network performs better than regular helping network.
Particularly, when −2.5 < r < −2, the throughput will increase as the mobility radius exponent r increases. However, when
r > −1.25, mobile helping network performs worse than regular helping network due to the bottleneck of downlink in mobile
helping network.

8 Conclusion

In this paper, we study the throughput of heterogeneous multicast networks with helping networks. We discuss with quite general
conditions. For instance, the network area can be a rectangle and not necessarily a square. The growing speed of every parameter
is an arbitrary power of n. We discuss for three cases: helping network is regular, helping network is randomly distributed, helping
network is mobile. We also discuss the case when the heterogeneous multicast network is standalone without helping network. We
then make a comparison between different networks and see that under certain conditions, mobile helping network is better than
static helping network, static helping network is better than having no helping network, in the sense of throughput. If the helping
network is wired but not wireless, we can just let W2 →∞ i.e. helping network relay is not a bottleneck, to get the result.
As you can see, our analysis and result provide fundamental insight to heterogeneous multicast networks with helping networks.
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