
A Unifying Perspective on Multicast Capacity in
Wireless Network with Spatial Inhomogeneity

Abstract—In this paper, we investigate the asymptotic multicast
capacity of static wireless network with inhomogeneous node
distributions per cluster and each cluster kernel desires to
send identical packet to nodes of its cluster. In particular,
we introduce a novel indicator spatial variance δO to describe
inhomogeneities over the deployment region. In addition, we
construct an optimal network layout to achieve the maximum
capacity of a cluster when δO is upper bounded by some value.
Finally, we provide an algorithm of the achievable capacity of
such network configuration utilizing percolation theory.

To the best of our knowledge, there is few work concerning
spatial inhomogeneous of a cluster and non-uniform cluster size.
Our analysis can generalize various previous results like [2]–[4],
[12] obtained under homogeneous node distributions and traffic.
By analyzing the constraints imposed by the wireless network, we
provide a close form of the capacity upper bound of each cluster.
Then we study the maximized achievable capacity given δO is
restricted. And at last, we propose a routing scheme for a special
case. In addition, we find that non-uniform traffic can improve
the achievable capacity in our network, which, in some case, can
achieve the maximized capacity even as MANET Θ(W ).

Index Terms—Static Wireless Ad-hoc Network, Capacity, In-
homogeneity.

I. INTRODUCTION

Wireless networks are modeled as a set of nodes that
send and receive messages over a wireless channel. Since
the seminal work done by P. Gupta, P. R. Kumar [1], there
is significant interest toward the asymptotic capacity of such
networks when the number of nodes n grows. In [1], they
prove that the achievable unicast capacity is Θ(W/

√
n logn)

of static ad hoc network. Later M. Franceschetti, etc. [4] show
a better result of Θ(W/

√
n) utilizing percolation theory.

While the above studies are all based on unicast traffic,
there are blast applications on some more generalized traffic
patterns. In [16], S. Toumpis present capacity results for asym-
metric, cluster, and hybrid wireless ad hoc networks, which
first theoretically investigate non-uniform traffic. In [2], Li, etc.
study cluster network, also known as multicast network. They
provide a better achievable data rate Θ(W/

√
kn log n) when

a single source sends identical packets to k randomly selected
destinations, which generalize both unicast and broadcast [14]
capacity. Other works falling into this class can be seen in
[3], [8]. In [17], [18], they analyze the capacity of hybrid
wireless network with n randomly distributed normal nodes
and m regularly placed base stations connected via an optical
network. On the other hand, some researchers also investigate
the achievable capacity of wireless network with non-uniform
traffic, i.e [19], [20].

Another line of research deals with inhomogeneous node
distributions. In [11], the proposed approach can be utilized

to analyze capacity for non-i.i.d. node distributions. However,
their resulting capacity is similar to that derived in [1]. In
[5], G.Alfano, etc. study the upper bound on the achievable
capacity of networks comprising significant inhomogeneities
in the node spatial distribution. They show that the network
capacity is related with the minimal node intensity. And in
[6], they propose novel scheduling and routing schemes which
approach previously computed upper bounds.

To the best of our knowledge, the SD1 pairs assumed in
all the previous works are across the deployed region, which
means the distance between source and destination scales
linearly with the side length of the network area. However,
SD pairs are likely to exist between nodes of shorter distance
in many applications, e.g, in military battlefield, different
commanders from different places must send their orders over
a common wireless channel to their respect soldiers around
them. In sensor network, a local scheduler also need to send
packets to sensors around it. They exhibit both clustered
characteristic and spatial inhomogeneities for that members
belonged to the same cluster are are not uniformly distributed
in the network area. Therefore, an estimation on the achievable
capacity of these wireless networks is essential. Now the
questions are as follows:

• How to model the non-uniform distributed SD pairs to
approximate the above natural scenario?

• Is there an indicator that can describe the degrees of the
inhomogeneity?

• What is the maximized data rate of such network and
how to schedule the traffic to make it achievable.

To answer the above questions, we generate non-uniform
distributed SD pairs with an IPP2. Specifically, we assume
there are ns clusters over the network deployed region O. In
each cluster, a header (also known as kernel) disseminates its
packets to the other members generated by an IPP according
to a dispersion density function ϕ(·).

The main insight provided in this paper is that the extent of
inhomogeneity can be described by a variable spatial variance
δO over the deployed region O. And it is intuitive that a larger
δO usually indicates a higher degree of inhomogeneity.

Based on the proposed model, we first analyze various
constraints imposed by the wireless network. These are some
fundamental limits which can not be violated by arbitrary rout-
ing and scheduling policies. Then we unify these limitations
and present an upper bound for the achievable capacity per

1source and destination
2inhomogeneous poisson process
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Fig. 1: Demonstration of Network topology. Members of the
same cluster are labeled with the same cluster. The square
nodes and circular nodes are kernels and members respectively.

cluster. Counter-intuitively, we find that the achievable data
rate per cluster does not relate with its cluster size if the size
of each cluster are identical. After that, we consider what is the
maximized achievable capacity given that δO is constrained.
For studying the optimal case, we propose a uniform cluster
random model and propose routing schemes to approach the
previous upper bound. Therefore, we find the mathematical
upper bounds can be achievable to some extent.

Main Contributions:
• We propose a novel cluster network model for inves-

tigating the non-uniform distributed SD pairs, which
utilizes dispersion density function ϕ(·) for describing
inhomogeneity.

• We provide a fundamental restrictions on the achievable
capacity λi = O(1) for each cluster Ci (1 ≤ i ≤ ns) as
follows:

ns∑
i=1

λi
√
|Ci| ≤

8
√
2π
∑ns

i=1 |Ci|WL

∆c0c2c4c5
∫
O

√
ϕ(ξ)dξ

where ci is some constants and |Ci| is the size of cluster
Ci.

• When δO is utilized to characterize inhomogeneity, we
derive the maximized capacity in terms of it. We find that
the achievable capacity per cluster does not vary with the
cluster size if all the clusters are equal sized.

• Under the cluster random model, we propose a routing
scheme for approaching the upper bound assisted by
percolation theory.

The rest of the paper is organized as follows. In section II,
we outline the network topology, transmission model, traffic
model and some mathematical notations. In section III, we
analyze various restrictions of the proposed network model. In
section IV, we give a close form of the capacity upper bound
per cluster. In section V, we provide a routing scheme for
the achievable capacity for unform random cluster model. A
discussion of the results is in section VI. Finally, we conclude
this paper in section VII.

II. NETWORK MODEL

A. Network Topology

We consider a large scale wireless ad hoc networks com-
posed of ns clusters distributed within a 2-dimensional torus
O of side length L. For each cluster Ci(1 ≤ i ≤ ns), We first

specify a HPP3 to generate cluster kernel vi, whose position
is denoted as ki. Then, each kernel vi generates its cluster
members according to an IPP whose intensity at ξ is given
by |Ci|ϕi(ki, ξ), where |Ci| is the expected size(cardinality) of
the cluster. We further assume that |Ci| ≤ p and there exists
a constant c0 such that the number of cluster whose size is
Θ(p) is larger than c0ns.

And N =
∑ns

i=1 |Ci| denotes the expected number of overall
wireless nodes. The dispersion density function ϕ(ki, ξ) satisfy
the following properties.

(i) ϕ(ki, ξ) is invariant under both translation and rotation
with respect to vi, which means ϕ(ki, ξ) can be rewritten
as ϕ(|ki − ξ|).

(ii) ϕ(|ki − ξ|) is a non-increasing function with respect to
the Euclidean distance |ki − ξ|.

(iii) Integrate ϕ(ki, ξ) of ξ over the whole torus O equals 1,
which means ∫

O
ϕ(ki, ξ)dξ = 1.

Then we know the size of a cluster conforms to a poisson
distribution with rate |Ci|. Virtually, we can prove that the size
of cluster Ci is between |Ci|/2 and 2|Ci| w.h.p. when |Ci| scales
with N 4. For what we concern is the scaling laws, |Ci| can be
utilized to denote the number of nodes in cluster Ci, which will
not influence our results. In addition, we restrict L = o(

√
ns),

which means the distance between two adjacent kernels tends
to zero when ns goes to infinity. In our literature, we describe
inhomogeneity of node distributions with spatial variance δO,
defined as

δO =

∫
O

(
ϕ(|ξ|)−

∫
O ϕ(|ξ

′|)dξ′

L2

)2

dξ =

∫
O
ϕ2(|ξ|)dξ− 1

L2

We omit the term ki for simplification of notations. It will
not affect our results and liberate us from analyzing the tedious
but useless border effect. Therefore we will always make such
an assumption when discussing the properties of dispersion
density function in the rest of the paper. According to the
definition, we know in case of uniform distribution functions
over the region O, δO = 0 and larger inhomogeneity results
in larger δO.

Finally, we specify a special point process for each cluster
as Uniform Cluster Random Model. In this case, the dispersion
density function is as follows:

ϕ(|ki − ξ|) =

{
1

πR2 |ξ − ki| ≤ R
0 otherwise

where R = L√
π(1+(Lδmax

O )2)
and will be utilized frequently in

the following parts. It is a special case of the point generating
process and we can prove that it will lead to a maximized
throughput for each clusters when δO is upper bounded by
δmax
O . Fig.1 demonstrates such model with ns = 10 clusters.

3homogeneous poison process
4Throughout this paper, N =

∑ns
i=1 |Ci| is the total number of nodes in

the deployed region and x scales with N means x can approach infinity when
N goes to infinity
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Fig. 2: Demonstration of two successful transmission satisfy-
ing the protocol model.

B. Transmission Model

All the wireless transceivers can communicate over a com-
mon channel of limited bandwidth W . We adopt the same
transmission protocol model for interference proposed in [1],
which derives from a well-known physical interference model:

Capacity =W log(1 + SINR),

where SINR represents the signal to interference and noise
ratio. The proposed model is identical to this model when
analyzing the scaling laws, which is verified in [1]. A sender
i can successfully transmit at W bit/second to a destination
j when the Euclidean distance between any other concurrent
transmitters and j is larger than (1 + ∆)Ri,j , where Ri,j is
the Euclidean distance between i and j, ∆ > 0 defines a
guard zone for a successful transmission, which is a constant
independent of the position of i, j, k. We further assume that
all the nodes within the transmission range can overhear the
information. Fig.2 illustrates two concurrent transmissions.

C. Traffic Model

A multicast scenario is assumed where each cluster kernel
generates data flows to their respect members i.e. in Fig.1.
Therefore there are ns one to many data flows existing in the
wireless network. A multicast tree Ti spanning |Ci| nodes of
cluster Ci as in Fig.1 can be constructed to indicate the data
flows. In [2], they prove that the Euclidean minimal spanning
tree EMSTi will result in the optimal network performance.
However, whether it can also lead to the optimal result under
inhomogeneous node distributions are unknown, which will
be discussed in the following sections. Note that the the
communication between any SD pairs can also go through
multiple members of other cluster as relays. Now we provide
the definition of capacity.

Definition of Capacity: Let λi(1 ≤ i ≤ ns) denote the
sustainable rate of data flow for cluster Ci. A rate vector Λns =
(λ1, λ2, . . . , λns−1, λns) for all ns clusters can be constructed.
Assume that λ = min{λ1, λ2, . . . , λns−1, λns}. Then λ =
Θ(f(n)) is achievable if and if only if there exist deterministic
constants c > c′ > 0 such that

lim
nsp→∞

Pr(λ ≥ cf(n)) < 1 lim
nsp→∞

Pr(λ ≥ c′f(n)) = 1.

Fig. 3: Case I A relative larger
uniform transmission range.

Fig. 4: Case II A relative
shorter transmission range.

Then capacity λ is defined as the achievable rate for all
clusters. Therefore, it will not cause any network backlog,
which means limt→∞ sup1≤i≤ns

Bi(t) ≤ O(1), Bi(t) is the
number of data units already generated in Ci which has not
yet been delivered to all of its members at time t.

D. Mathematical Notations

Here we list some mathematical notations used frequently
in our analysis.

• hbCi
: Number of hops required of bit b sent to all members

in cluster Ci.
• ℓhb : Length of transmission of bit b in its hth(1 ≤ h ≤
hbCi

) hop. We assume a uniform transmission range r =
O(L), such that ℓhb = Θ(r).

• δh,b: Number of nodes that can overhear a packet during
a transmission of bit b in its hth hop.

• D(ξ,R): Circular region centered at ξ with radius R.
• dc: Critical distance between cluster centers and defined

as dc = Θ( L√
ns
).

• R: The influencing range of every kernel, which means
that nodes outside such area have zero probability to help
relay packets belonged to that kernel.

III. SOME RESTRICTIONS IMPOSED BY THE WIRELESS
NETWORK

In this section, we will discuss several restrictions inherent
in the proposed network model. Regardless of the routing
policy, there are some tradeoffs that must be paid among
number of hops, transmission range, limited radio resources
and so force. Therefore, a through comprehension of the im-
plicit relationships among them is constructive for deriving the
information-theoretic upper bound of the achievable capacity.
First, we will investigate some restrictions on network from a
global aspect, that is, we do not consider the inner properties
of a cluster.

A. Restrictions From Global Aspects

Since it consumes radio resources to forward a bit b to relays
or destinations. The following lemma captures the tradeoffs
among number of hops, transmission range, limited radio
resources.



Lemma 1: Constraint of Transmission Protocol model
Under the transmission protocol model, the following inequity
must be hold for any routing scheme when the simulation time
T is sufficient large.

ns∑
i=1

λiT∑
b=1

hb
Ci∑

h=1

π

16
∆2(ℓhb )

2 ≤WTL2.

Proof: When T is sufficient large, the total number of bits
communicated from kernel to its members in cluster Ci is λiT .
According to our transmission protocol model, the Euclidean
distance between any two concurrent receivers from different
clusters must be greater than some value. Assume two current
SD pairs Xi → Xk and Xj → Xl are active in the given
time slot. Then according to [1],

|Xk −Xl| ≥
∆

2
(|Xi −Xk|+ |Xj −Xl|) .

Thus disks of radius ∆
2 times the transmission range cen-

tered at the receiver can be viewed as a “guard region”
that receivers of different data flows can not reside in. Such
property also holds for broadcast that the transmission range
is defined as the furthest node that can receive the packets.
Let Sh

b be the overlapped area between the consumed area of
bit b’s hth hop and the deployed region O, then

Sh
b ≥

π

4
(
∆ℓhb
2

)2 =
π∆2(ℓhb )

2

16
.

In our literature, radio resources can be regarded as the
limited bandwidth W times the simulation time T and times
the area of deployed region L2 such that the following inequity
must satisfy:

ns∑
i=1

λiT∑
b=1

hb
Ci∑

h=1

π

16
∆2(ℓhb )

2 ≤
ns∑
i=1

λiT∑
b=1

hb
Ci∑

h=1

Sh
b ≤WTL2.

We do not consider cooperative MIMO scheme as in [21],
each wireless transceiver is only equipped with a single
antenna, it can not transmit and receive signal at the same
time. Therefore the number of wireless transceivers can also
be regarded as wireless resources. The following lemma illus-
trates this property, which extends the result in [1] to broadcast
scenario.

Lemma 2: Constraint of Half Duplex
The following trivial inequity must be satisfied for sufficient
large simulation time T .

ns∑
i=1

λiT∑
b=1

hb
Ci∑

h=1

δh,b ≤ NTW

Let ϕ and ϕ denote the maximized and minimum point
intensity over O, then in such a cluster dense regime ϕ/ϕ ≤ 4
according to [5]. Given the order of transmission range Θ(r),
how many nodes δh,b can overhear the packets is taken into
consideration next.

Lemma 3: Given the transmission range r, the number of
nodes that are forced to overhear the information in bit b’s hth
hop is tight bounded by

δh,b = Θ(max{1, nspr
2

L2
}).

Proof: When r = ω( 1√
nsp/L

), δh,b is comprised between
c0πnspr

2

2L2 and 2πnspr
2

L2 , which is a standard application of
Chernoff bound and property of Riemann sum (one can refer
to Theorem 1 in [5]).

Now we come to r = Θ( 1√
nsp/L

) case. Note that the node

density is upper bound by a HPP with rate µ = πr2nsp
L2 .

Therefore the number of nodes inside the circle exceeding
n0 is

Pr(δh,b < n0) ≥ e−µ
n0∑
i=0

µi

i!

≥ e−µ

(
eµ − eθµµn0+1

(n0 + 1)!

)
0 < θ < 1

≥ 1− e(θ−1)µµn0+1

(n0 + 1)!

During the above derivation, we use Lagrange form of the
remainder term. Therefore we know when n0 = ω(nspr

2

L2 ),
Pr(δh,b < n0) = 1 w.h.p. For each transmission must cover
at least one node, therefore δh,b ≥ 1 is a prerequisite.
We have completed our analysis of the limited resources.
However, some local perspective inside a cluster is also
deterministic of information-theoretic capacity upper bound,
which we will investigate in the following part.

B. Restrictions from Local Aspect

The above two lemmas only depends on the limited re-
sources provided. They do not consider the constraints of
network topology and traffic patterns. In the following part, we
will investigate the characteristics of traffic patterns defined in
our model.

In [2], [3], EMST is widely investigated in multicast traffic
and such a multicast spanning tree can lead to the best network
performance in uniformly, non-clustered node distributions.
However, whether EMST is still powerful in inhomogeneous,
clustered regime are what we concern. To obtain the results,
we will first introduce a theorem in [10].

If f is the density of the probability function for pick-
ing points, then for large n and d ̸= 1, the size of the
EMST is approximately c(d)n

d−1
d

∫
Rd f(x)

d−1
d dx,

where where c(d) is a constant depending only on
the dimension d.

In our case, d = 2, thus there exists a constant c0, such that
the length of Euclidean minimum spanning tree (EMST) |Ti|
for each cluster Ci is

|Ti| = c0
√
p

∫
O

√
k(ξ)dξ.

Such a theorem is very useful in analysis of the length
of EMST under arbitrary node distributions. Before that,



we provide an algorithm for generating ρ-simplified EMST
ρ− EMST (Ti) from arbitrary EMST(Ti) .

Algorithm 1 Generation of ρ-simplified EMST from an
arbitrary EMST.
Input:EMST (Ti) Output:EMST (ρ− Ti)

1: Label each p + 1 nodes in tree Ti with number
1, 2, . . . , p, p+ 1.

2: Choose nodes with the smallest labeled number existed in
Ti.

3: Add the chosen nodes to ρ−Ti. and discard all the nodes
with distance smaller than ρ from the chosen node above,
including itself.

4: Back to process (2) until no node is left in process 2.
5: Construct EMST with the remained nodes in ρ− Ti.

Thus we know ρ − EMST (Ti) is a thinned version of
EMST (Ti) and all the discarding nodes are within a distance
of ρ from the remained nodes in ρ−Ti. The following lemma
will give a lower bound on the length of such simplified tree.

Lemma 4: Assume there are p nodes in a cluster following
the dispersion intensity function ϕ(·). Denote the overall
length of the ρ-simplified EMST as EMST (ρ− Ti), then we
can prove that

|ρ− Ti| ≥ c0
√
p

(
ρ21,i
ρ

+ c5

∫
O/S1,i

√
ϕ(|ξ − ki|)dξ

)

where ρ1,i is a sufficient solution for ϕ(ρ1,i) = ω(1/πρ2) and
c5 is a constant.

Proof: The point intensity after the thinning process
determines the length of such simplified tree. First we want to
specify three regions. For that the dispersion density function
is invariant under rotations, the specified regions are all
circular. Let X(ξ, ki, ρ) denote the number of members in
circle of radius ρ centered at ξ of cluster Ci and pϕ′(|ξ− ki|)
point intensity in ρ− Ti.

• Dense Region (S1,i = O1) Nodes in this region are
populous and we specify a radius ρ1 for this circular
region defined as ϕ(ρ1) = ω(1/πρ2). After the thinning
process, the distribution of the remained nodes can be
viewed as a HPP with point intensity pϕ′(|ξ−ki|) ≥ p

πρ2 .
• Sparse Region (S3,i = O/O2) Nodes in this region are

so sparse that each circle of radius ρ can cover at most 1
node. We specify a radius ρ2,i for O2 satisfying ϕ(ρ2,i) =
o(1/πρ2). The proposed algorithm can not thin nodes in
this region. Therefore, pϕ′(|ξ − ki|) = ϕ(|ξ − ki|).

• Partial Dense Region (S3,i = O2/O1) Nodes in this
region are neither populous nor sparse. Actually, the node
intensity distribution is Θ(1/πρ2). Therefore utilizing a
similar method as in Lemma 3, we can prove that there
exist a constant c4 > 0 so that the point intensity pϕ′(|ξ−
ki|) ≥ c4 p

πρ2 .

Recall the overall length of EMST introduced above, the

lower bound of EMST (ρ− Ti) is

EMST (ρ− Ti) = c0

∫
O

√
pϕ′(|ξ − ki|)dξ

≥ c0
√
p

(
ρ21,i
ρ

+

∫
S2,i

c4

√
ϕ(ρ2,i)dξ +

∫
S3,i

√
ϕ(|ξ − ki|)dξ

)

≥ c0
√
p

(
ρ21,i
ρ

+min{1, c4}
∫
O/S1,i

√
ϕ(|ξ − ki|)dξ

)

Let c5 = min{1, c4}, we complete our proof. Note that our
result holds even when there is no ρ1,i or ρ2,i suitable for the
equation, S1 or S2 or S3 perhaps is empty set.

The above lemmas theoretically analyze the constraint im-
posed by wireless communications i.e. radio resources, traffic
patterns, sensor distributions. In next section, we will utilize
the above lemmas to derive the upper bound of capacity in
such wireless network.

IV. UPPER BOUND OF MULTICAST CAPACITY UNDER
INHOMOGENEOUS NODE DISTRIBUTIONS

In this section, we will investigate the theoretical upper
bound of multicast capacity under our model. Note that our
results are unrelated with the scheduling/routing schemes.
Therefore, it is instructive when we want to know the max-
imized capacity when we distribute wireless nodes in some
regions.

Lemma 5: If the transmission range of each hop is on
the order of Θ(ρ) in cluster Ci, then the overall length of
transmission of a bit b in this cluster is constrained as follows

hb
p∑

h=1

ℓhb ≥ Θ(EMST (ρ− Ti)).

Proof: According to our definition, EMST (ρ− Ti) can
achieve minimal total length of transmission to cover all the
p + 1 nodes in cluster Ci when the transmission range is
bounded by Θ(ρ). For every routing scheme with transmission
range Θ(ρ), there must exist a constant c1 > 0, such that
ℓhb > c1ρ. Therefore,

hb
p∑

h=1

ℓhb ≥ EMST ((c1ρ)− Ti) = Θ(EMST (ρ− Ti)).

Summarize all the conditions listed above, we can provide an
upper bound of capacity λi in each cluster Ci.

Theorem 1: Under the assumptions of the proposed wire-
less network, the following tradeoffs must be satisfied by all
scheduling policy.

ns∑
i=1

λi
√
|Ci| ≤

8
√
2π
∑ns

i=1 |Ci|WL

∆c0c2c4c5
∫
O

√
ϕ(ξ)dξ

where λi represents the data rate achieved by cluster Ci and
all the ci are constants.



Proof: First, we must investigate the point intensity
generated by the process. In our cluster dense regime, it is
proved in [5] that the ratio of maximized node density ϕ and
minimal node density ϕ is smaller than 4. Therefore, given
the total number of nodes N =

∑ns

i=1 |Ci| generated by all
cluster kernels, we can obtain N

4L2 ≤ ϕ ≤ ϕ ≤ 4N
L2 . And the

transmission range r must guarantee there is at least 1 node
receiving the packet. Then according to Lemma 3,

0 < Pr(δh,b > 0) ≤ Pr(ϕmaxr
2 ≥ Θ(1)).

Substituting ϕ ≤ 4N
L2 into it, we can obtain that there exists

a constant c2 > 0 such that r ≥ c2L/
√
N is a necessary

condition. Now given the transmission range r, the number of
nodes one hop covers δh,b can be lower bounded according to
Lemma 3.when r = ω(L/

√
N ), δh,b ≥ 0.5πr2ϕmin = πNr2

8L2 ;
when r = Θ(L/

√
N ), δh,b ≥ 1. Therefore, there exists a

constant c3 > 0, such that δh,b ≥ c3Nr2

L2 .
Then according to Lemma 2, we know

ns∑
i=1

λiT∑
b=1

hb
p∑

h=1

1 ≤
∑ns

i=1

∑λiT
b=1

∑hb
p

h=1 δh,b
c3r

2(
∑ns

i=1 |Ci|)
8L2

≤
8L2

∑ns

i=1 |Ci|TW
c3r2

∑ns

i=1 |Ci|
≤ 8L2TW

c3r2

Then utilizing Lemma 1 and Cauchy inequality, we have

ns∑
i=1

λiT∑
b=1

hb
p∑

h=1

ℓhb ≤

√√√√ ns∑
i=1

λiT∑
b=1

hb
p∑

h=1

(ℓhb )
2

ns∑
i=1

λiT∑
b=1

hb
p∑

h=1

1

≤

√
16WTπL2

π∆2

8L2TW

c3r2

≤

√
128πW 2T 2L4

c3∆2r2
. (1)

Now we divide ns clusters into two sets S1, S2 depending
on the characteristic of their r − EMST .

S1 = {Ci|Partial Thinned Region S2,i exists}
S2 = {Ci|Partial Thinned Region S2,i does not exist} .

Applying Lemma 4,5, we can obtain if S1 ̸= ∅, there exists a
constant c4, such that

ns∑
i=1

λiT∑
b=1

hb
p∑

h=1

ℓhb ≥ c4
ns∑
i=1

λiT∑
b=1

EMST (r − Ti)

≥ c0c4

(∑
Ci∈S1

λiT∑
b=1

√
Ci (EMST (r − Ti))+

∑
Ci∈S2

λiT∑
b=1

√
Ci
∫
O

√
ϕ(|ki − ξ|)dξ

)

≥ c0c4T

(
ns∑
i=1

λi
√
Ci

)
ψ (ϕ(·),S1) (2)

Where

ψ (ϕ(·),S1) = min
Ci∈S1

{
EMST (r − Ti)

|Ci|

}
.

Then substitute (1) into (2), we can obtain

ns∑
i=1

λi
√
|Ci| ≤

1

c0c4Tψ (ϕ(·),S1)

ns∑
i=1

λiT∑
b=1

hb
p∑

h=1

ℓhb

≤ 8
√
2πWL2

∆c0
√
c3c4rψ (ϕ(·),S1)

(3)

Else if S1 = ∅:
ns∑
i=1

λiT∑
b=1

hb
p∑

h=1

ℓhb ≥ c4
ns∑
i=1

λiT∑
b=1

EMST (r − Ti)

≥ c0c4
ns∑
i=1

λiT∑
b=1

√
|Ci|
∫
O

√
ϕ(|ξ − ki|)dξ

= c0c4

∫
O

√
ϕ(ξ)dξ

(
ns∑
i=1

λi
√
|Ci|

)
(4)

Substitute (4) into (1), we obtain

ns∑
i=1

λi
√
|Ci| ≤

1

c0c4T
∫
O

√
ϕ(ξ)dξ

ns∑
i=1

λiT∑
b=1

hb
p∑

h=1

ℓhb

≤ 8
√
2πWL2

∆c0c4r
∫
O

√
ϕ(ξ)dξ

≤
8
√

2π
∑ns

i=1 |Ci|WL

∆c0c2c4
∫
O

√
ϕ(ξ)dξ

(5)

During the above derivation, we utilize that r ≥ c2 L√
N and

in this case N =
∑ns

i=1 |Ci|. Compare the results under the
two cases, the only thing required to do is to prove that there
exists a constant c5 such that

L
√∑ns

i=1 |Ci|
c5
∫
O

√
ϕ(ξ)dξ

≥ L2

√
c3rψ (ϕ(·),S1)

Recall the results of Lemma 4, it is equivalent to prove

c5

∫
O

√
ϕ(ξ)∑ns

i=1 |Ci|/L2
dξ ≤ c0

√
c3ρ

2
1,i + r

∫
O/S1,i

√
ϕ(ξ)dξ

Note that r ≥ c2
L√∑ns
i=1 |Ci|

and ϕ(ξ) ≤ ϕ ≤ 4
∑ns

i=1 |Ci|
L2 and

let c5 = max{c22, 2c0
√
c3} we complete our proof.

Theorem 2: If there are p members in each cluster Ci, then
the upper bound of achievable capacity λ is given as

λ ≤ min

{
1,

8
√
2π

∆c0c4c5

L
√
ns
∫
O

√
ϕ(ξ)dξ

}
W (6)

Proof: Utilizing theorem 1 and the definition of capacity
per cluster, we can directly obtain this result. Note that it
means that

λ ≤ O

(
min

{
1,

L
√
ns
∫
O

√
ϕ(ξ)dξ

}
W

)



Lemma 6: Constraint of our Traffic Model
For any multicast spanning trees (EMST) with p nodes uni-
formly distributed within a circle of radius L, let ||T || denote
the total Euclidean length of such EMST, then we can prove
that there exist a constant c1 such that

c1
√
pL ≤ ||T || ≤ 5

√
2pL,

which means ||T || = Θ(
√
pL).

Proof: First we derive the lower bound of ||T ||. In [9],
they prove that ||T || is at least

√
3
2 times the EMST spanning

of nodes. And in [10], we can know the EMST spanning of
nodes is asymptotic to Θ(p1/2L). Therefore we can obtain that
there exist a constant c1, such that

||T || ≥ c1
√
pL

Then we derive the upper bound of ||T ||. Now we use Prim’s
algorithm to construct EMST similar to Lemma 10 in [2]: To
begin with, each node is a separate part, we iteratively find a
shortest edge to compose a lager part until one part is left. We
utilize a square with side length 2L to cover the whole circle.
At each i th (1 ≤ i ≤ p) step, there are p+1−i parts remained.
We partition the the square into ⌊

√
p+ 1− i⌋2 equal size sub-

square with side length 2L
⌊
√
p+1−i⌋ , therefore there exists at

least one cell which contains more than 2 parts, which means
the shortest edge connecting two parts in i th step is at most

2
√
2L

⌊
√
p+1−i⌋ . Therefore, the upper bound of ||T || is:

||T || ≤
p∑

i=1

2
√
2L

⌊
√
p+ 1− i⌋

≤ 2
√
2L(1 +

∫ p−1

1

1√
x
dx)

= 2
√
2L(1 + 2

√
p− 1)

≤ 5
√
2pL.

Finally, we know that ||T || = Θ(
√
pL) .

V. HOW TO DISTRIBUTE NODES IN A CLUSTER WITHIN THE
NETWORK

In this section, we study what distribution can achieve the
maximized capacity per cluster when the variance of node
distribution δO is constrained. From previous section, we
obtain that the length of EMST |Ti| determines the upper
bound of achievable capacity per cluster. It is actually that a
smaller value of |Ti| leads to a larger upper bound of capacity.
Therefore it is intuitive to study what distributions can achieve
the minimized value of |Ti| of cluster Ci.

Theorem 3: Assume that the variance of node distribution
δO ≤ δmax

O for a cluster. Let R = L√
π(δmax

O )2L2+1)
, then we

can prove that the following dispersion density function can
achieve the maximized upper bound of capacity.

ϕ(|ξ − ki|) =

{
1

πR2 |ξ − ki| ≤ R
0 otherwise

Before proving this theorem, we need to prove another
theorem.

Theorem 4: Assume that the dispersion density function
k(ξ, ki) satisfies the following conditions:

1) ϕ(ξ, ki) is invariant under both translation and rotation
with respect to ki, which indicates ϕ(ξ, ki) can be
rewritten as ϕ(|ξ − ki|).

2) ϕ(|ξ − ki|) is a non-increasing with respect to |ξ − ki|.
3) The integration of ϕ(ξ, ki) over the entire deployed

region O equals 1.∫
O
ϕ(ξ, ki)dξ =

∫
O
ϕ(|ξ − ξk|)dξ = 1

4) The integration of ϕ2(ξ, ki) over the deployed region O
is upper bounded as follows:∫

O
ϕ2(ξ, ki)dξ =

∫
O
ϕ2(|ξ − ξk|)dξ ≤

1

L2
+ (δmax

O )2

Then we can prove that the following ϕ′(ξ, ki) can minimize
Υ(ϕ(·)).

ϕ′(|ξ − ki|) =

{
1

πR2 |ξ − ki| ≤ R
0 otherwise

(7)

Where Υ(ϕ(·)) is a real variable function with ϕ(·) as a
variable and Υ(ϕ(·)) =

∫
O

√
ϕ(ξ, ki)dξ.

Proof: To prove that ϕ′(·) can achieve the minimal value
of Υ(ϕ(·)), we first transform the conditions and objective
functions into Riemann sum. Here we do not explicitly explain
how to conduct the transformation and only list the results. As
to the thorough proof, one can refer to [13].

N∑
i=1

ϕni =
1

∆S

N∑
i=1

(ϕni )
2 ≤ 1

πR2∆S

Υ(ϕ(·)) = ∆S

(
N∑
i=1

√
ϕni

)
During the above derivation, we assume that we equally divide
the square O into n cells with area ∆S = L2

n each. ϕni is the
chosen point in cell i to approximate the value of ϕ(ξ, ki) in
cell i. It can be proved that when N →∞, the Riemann sums
equal the integrations. We further assume that ϕni ≤ ϕnj iff
i ≥ j.

In the following part, we utilize Φn =
(ϕn1 , ϕ

n
2 , . . . ϕ

n
n−1, ϕ

n
n−1) during the proof and the optimal

(Φn)′ = ((ϕn1 )
′, (ϕn2 )

′, . . . (ϕnn−1)
′, (ϕnn−1)

′) that can
minimize Υ(ϕ(·)) is

(ϕni )
′ =


1

πR2 1 ≤ i ≤ nc
1

∆S −
nc

πR2 i = nc + 1

0 otherwise

where nc = ⌊πR
2

∆S ⌋. To obtain this result, the proposed
Algorithm 2 can convert arbitrary Φn to the (Φn)′ and in every
step of the transformation,it decreases the value of Υ(ϕ(·)).



Algorithm 2 Conversion from Arbitrary Φn to Optimal (Φn)′

Input:Φn Output:Φ̃n = (Φn)′

Require: Φn satisfies all the conditions listed above
Ensure: Φ̃n can be generated

1: Φ̃n ← Φn

2: Find three points ϕ̃ni , ϕ̃nj , ϕ̃nl in Φ̃n satisfying the follow-
ing conditions:

• For k ≤ i, ϕnk > 1
πR2 and for k > i, ϕnk ≤ 1

πR2

• For k < j, ϕnk ≥ 1
πR2 and for k ≥ j, ϕnk < 1

πR2

• For k ≤ l, ϕnk > 0 and for i > l, ϕnk = 0

If ϕni can not be found, finish the program.
3: Find max{∆i} and max{∆l} satisfying the follow con-

ditions:

ϕni ≥
1

πR2
+∆i ϕnj ≤

1

πR2
−∆i −∆l ϕnl ≥ ∆l

(ϕni −∆i)
2 + (ϕnj +∆i +∆l)

2 + (ϕnl −∆l)
2

≤ (ϕni )
2 + (ϕnj )

2 + (ϕnl )
2

∆i ≤
ϕnj (
√
ϕni −

√
ϕnj )(

√
ϕni −

√
ϕnk )√

ϕni (1 + (
ϕn
i −ϕn

j

ϕn
j −ϕn

l
)2)(

√
ϕnj +

√
ϕnl )

4: ϕ̃ni = ϕ̃ni −∆i, ϕ̃nj = ϕ̃nj +∆i +∆l, ϕ̃nl = ϕ̃nl −∆l.
Go back to step 2.

Step (4) in Algorithm 2 can decrease the value of Υ(ϕ(·)),
which is equivalent to prove

√
ϕni −∆i +

√
ϕnj +∆i +∆l +

√
ϕnl −∆l

≤
√
ϕni +

√
ϕnj +

√
ϕnl (8)

According to step (3), we can obtain

∆l =
ϕni − ϕnj
ϕnj − ϕnl

∆i −
∆2

i +∆2
l +∆i∆l

ϕnj − ϕnl
(9)

Rewrite (8) and Substitute (9) into it, we can obtain√
ϕni −∆i +

√
ϕnj +∆i +∆l +

√
ϕnl −∆l

−(
√
ϕni +

√
ϕnj +

√
ϕnl )

≤ − ∆i

2
√
ϕni

+
∆i +∆l

2
√
ϕnj
− ∆l

2
√
ϕnl

+ δ(∆i,∆l)

≤ ∆i

2
√
ϕnj

(√
ϕni −

√
ϕnj√

ϕni
−
√
ϕnj −

√
ϕnl√

ϕnl

∆l

∆i

)
+ δ(∆i,∆l)

≤ ∆i

2
√
ϕnj

(√
ϕni −

√
ϕnj√

ϕni
−
√
ϕnj −

√
ϕnl√

ϕnl
(ρ+

1 + ρ+ ρ2

ϕnj − ϕnl
∆i)

)
+δ(∆i,∆l)

≤ −
∆i(
√
ϕni −

√
ϕnj )(

√
ϕni −

√
ϕnl )

2
√
ϕni ϕ

n
j ϕ

n
l

+(
1 + ρ+ ρ2

2
√
ϕnj ϕ

n
l (
√
ϕnj +

√
ϕnl )

+
1 + ρ2

2(ϕnj )
1.5

)
∆2

i

≤ −
∆i(
√
ϕni −

√
ϕnj )(

√
ϕni −

√
ϕnl )

2
√
ϕni ϕ

n
j ϕ

n
l

+
∆2

i (1 + ρ2)(ϕnj + ϕnl )

2
√
ϕnj ϕ

n
l ϕ

n
j

≤ 0

During the above derivation, δ(∆i,∆l) is the reminder term of
Taylor Series, and we can prove that δ(∆i,∆l) ≤ (∆i+∆l)

2

2(ϕn
j )

1.5 .

We also simplify our analysis using ρ =
ϕn
i −ϕn

j

ϕn
j −ϕn

l
.

Therefore, Algorithm 2 can reduce Υ(ϕ(·)) until Φ̃n =
(Φn)′. When n→∞, the Riemann sum becomes integration



Sender u

Receiver v

Fig. 5: Demonstration of Transmission Utilizing Information
Highway. Only Used Path and Nodes displayed.

and due to the non-increasing characteristic of Φn, the respect
ϕ(·) is the same as (7). Therefore we complete our proof.

When δO ≤ δmax
O , the optimal node distribution ϕ′(·) can

achieve the maximized capacity per cluster. Recall theorem 2,
the upper bound of achievable capacity is

λ ≤ min

{
8
√
2

∆c0c4c5

LW
√
nsR

, 1

}
W R =

L√
π(1 + L2(δmax

O )2)

VI. HOW TO SCHEDULE TRANSMISSION IN MAC LAYER
FOR THE ACHIEVABLE CAPACITY UNDER UNIFORM

CLUSTER RANDOM MODEL

In this section, we will use some results of percolation
theory to construct the network to lower bounded the capacity
of Uniform Cluster Grid/Random Model.

Theorem 5: In Cluster Grid/Random Model, When R =
Ω(L(log(nsp))

2

√
ns

), we can wisely schedule the network, therefore
the capacity of every cluster (multicast session) is lower
bounded by Θ

(
L

R
√
ns

)
, thus we know Θ

(
L

R
√
ns

)
is a tight

bound of such wireless network.
In order to prove the theorem, we world introduce some

lemmas. First, We give a definition of information highway in
a wireless network system.

Definition 1: Information Highway
Assume there are n nodes distributed in a square of length L.
We equally divide the square into m ∗m cells. A cell is open
if it contains at least one node. Link two adjacent cells with
a line if both of them are open. A horizontal (vertical) path
is a set of lines that cross the square from left to right (top
to bottom). The set of disjoint horizontal paths and disjoint
vertical paths is defined as Information Highway5, which is
also called backbones of wireless network. The yellow girds
in Fig.5 shows a vertical and horizontal path.

As to our hypothesis, cluster members are distributed ac-
cording to HPP within a circle of radius R. The next Lemma

5Vertical path and Horizontal path are not required to be disjoint.

tells us that all of the nodes within the network can also be
regarded as distributed according to HPP.

Lemma 7: Under both two models, let r = Θ(L/
√
nsp)

and N (r) denote number of nodes within a circle of radius r
over O, then if R = Ω(dc),

Pr(N (r) = k) ≤ 2e−
πr2nsp

L2
(πr

2nsp
L2 )k

k!
.

Proof: Let A(d, r1, r2) denote the overlapping area of
two circles of radius r1, r2 with centers of distance d away,
and C(r) denotes number of centers within radius r. Note that
the distribution of cluster members is HPP within a circle of
radius R, thus we could obtain

Pr(N (r) = k)

=

ns∑
m=0

Pr(N (r) = k|C(r +R) = m)Pr(C(r +R) = m)

=

ns∑
m=0

(

∫ R+r

0

∑
S

(
m∏
i=1

(e−µ1
µυi
1

υi!
))

2x

(R+ r)2
dx)e−µ2

µm
2

m!

=

∫ R+r

0

(

ns∑
m=0

e−mµ1
(mµ1)

k

k!
e−µ2

(µ2)
m

m!
)

2x

(R+ r)2
dx

≤
∫ R+r

0

(e−µ1µ2
(µ1µ2)

k

k!
)

2x

(R+ r)2
dx

=

∫ R+r

0

e−
A(x,R,r)nsp

L2
(A(x,R,r)nsp

L2 )k

k!

2x

(R+ r)2
dx

During the above derivation, we utilize the following notations
to simplify our calculations:

µ1 =
A(x,R, r)p
π(R+ r)2

, µ2 =
π(R+ r)2ns

L2
and

m∑
i=1

υi = k

S = {υ0, υ1 . . . υm|
m∑
i=1

υi = k}

Note that R/r = Ω(
√
p), then we can obtain that

A(x,R, r) =


πr2 if x < R− r
R2(θ1−sin θ1)+r2(θ2−sin θ2)

2 if R− r < x < R+ r

0 if x > R+ r

cos θ1 = R2+x2−r2

2xR and cos θ2 = r2+x2−R2

2xr , then we substi-
tute it into Pr(N (r) = k) to obtain:

Pr(N (r) = k) ≤ 2e−
πr2nsp

L2
(πr

2nsp
L2 )k

k!

Lemma 8: We partition the square O into equal sub-square
with side length τL/

√
nsp where τ is some constant, then we

can make sure that the probability that at least one node inside
a sub-square is larger than 1− 2e

πτ2

4 w.h.p.
Proof: First, assume r= τL

2
√
nsp

then in every sub-square
we can construct such a circle. According to Lemma7, the
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Fig. 6: Demonstration of influential range and a division of a
percolation path

probability that at least one node inside the circle is greater
than

Pr(N (r) ≥ 1) ≥ 1− 2e−
πr2nsp

L2 = 1− 2e
πτ2

4

Therefore, according to Theorem 5 in [4], we can construct
an information highway if the constant τ is large enough. Now
we list some properties of such information highway originated
from [4].

• there are Θ(
√
nsp) crossing paths from left to right and

top to bottom, respectively.
• the length of each crossing path is tightly bounded by

Θ(L).
• In each horizontal(vertical) rectangular of size6 L ∗

(κ log(nsp)
L√
nsp
− ϵL), there are at least δ log(nsp)

horizontal(vertical) highway paths w.h.p.
• the distance between two adjacent horizontal(vertical)

path is at most O(L log(nsp)/
√
nsp).

• the distance between two adjacent nodes on the same path
is O(L

√
1/nsp).

• there exists a spatial and temporal scheme that can
achieve O(1) throughput on the highway. That is to say
one node can relay O(1) bits to its adjacent nodes in a
single time slot.

Based on the above characteristic of information highway,
we provide a scheme to achieve a per cluster throughput of
Θ( L√

nsp
).

Now we will prove that such a scheme can achieve the lower
bound of capacity in Theorem7. First we would upper bounded
the number of clusters a cell need to serve transmission for.

Lemma 9: As for every cell, it can not serve for trans-
mission of clusters with kernels

√
2(R + (1+κ log (nsp))τL√

nsp
)

away from the cell, which also means R ≤
√
2(R +

(1+κ log (nsp))τL√
nsp

)

Proof: We will refer to Fig.5 to prove this lemma. Accord-
ing to the properties of information highway, every path is con-
strained within a strip of width (κ log(nsp)

L√
nsp
− ϵL). Thus

6κ and δ is some constant, ϵL = o(log(nsp)
L√
nsp

) and is to make

κ log(nsp)
L√
nsp

− ϵL an integer.

Algorithm 3 Multicast capacity of Uniform Cluster Random
Model

1: Choose τ large enough so that 1− 2e
πτ2

4 > 5/6. then we
equally partition O into cells with side length τL/

√
nsp.

Thus there are ⌊
√
nsp

τ ⌋ ∗ ⌊
√
nsp

τ ⌋ cells and each cell in ith
row and jth column is denoted by si,j .

2: Construct an information highway in the same way as in
[4], which holds all of the properties listed above.

3: Construct an Euclidean spanning tree(EMST) for each
cluster described in Lemma 6 to prove that the length
of EMST is upper bounded by 5

√
2pR.

4: As to every edge on EMST linking nodes u and v in
cell sx1,y1 , sx2,y2 , respectively, find a nearest horizontal
path in the highway system from sx1,y1 , node on the path
with the same ordinate is considered access point of u.
The same method for v to find its access point on vertical
path.

5: We equally divide every single time slot into 3 phases as
in Fig.5:

• Uplink: Nodes drain its information to the access
point.

• Highway link: Relaying information to the respect
access point of its destination.

• Downlink: Delivering information from access point
to nodes.

D in the figure is upper bounded by (κ log(nsp)
L√
nsp
− ϵL).

And the radius of such circle is R. From the figure we know
the farthest cell that could be used is the black cell, a distance
R ≤

√
2(R+ (1+κ log (nsp))τL√

nsp
) from the kernel. Therefore we

prove the lemma.
Corollary 1: The number of cells that a cell serves can not

exceed 4π(R/L+ (1+κ log (nsp))τ√
nsp

)2ns
Proof: The proof is a directly use of Lemma 9 and

Chernoff bound.
Lemma 10: Assuming that the distance between a sender

and receiver is ℓ, then the number of hops for transmission
is smaller than O( c4

√
2nspℓ
L + 6κ log(nsp)) when utilizing

Scheme I (3).
Proof: Assume sux,uy and svx,vy are two points on a

horizontal path of information highway. Let h(sux,uy , svx,vy )
denote the number of hops required for transmission from
sux,uy to svx,vy . We can prove that there exists a constant
c4, such that

Pr(h(si,j , sk,l) ≤ c4|ux−vx|) ≥ 1−δ(nsp) lim
nsp→∞

δ(nsp) = 0

(10)
Now we divide an aribitrary path into K = L

ux−uy
sub-paths

as in the second figure in Fig.6 and use ℓi =
L℘(nsp,i)

K (1 ≤
i ≤ K) to denote the length for transmission across the ith
sub-path. Then the proof of Eqn.10 is identical to prove the
following inequity.

lim
nsp→∞

Pr(ℓi = Ω(
L

K
)) = 0,



which is also identical to prove

lim
nsp→∞

Pr(℘(nsp, i) =∞) = 0.

For each path on the highway system, the length of it is on the
order of Θ(L) according to its properties. Thus there exist a
constant c3, such that the length of every path is upper bounded
by c3L, which means

∑K
i=1 ℓi ≤ c3L. Taking the expectation

on both sides, we can obtain

K∑
i=1

inf
℘(nsp,i)=∞

{℘(nsp, i)}Pr(ℓ = Ω(L/K))
L

K
≤

K∑
i=1

E[ℓi] = E[

K∑
i=1

ℓi] ≤ c3L.

Then we can obtain

Pr(ℓ = Ω(L/K)) ≤ c3
inf℘(nsp,i)=∞{℘(nsp, i)}

Taking δ(nsp) = c3
inf℘(nsp,i)=∞{℘(nsp,i)} , we complete the

proof of Eqn.10.
Now consider two nodes of distance ℓ away with si,j and sk,l
serving as their access points, respectively. And sm,n as the
intersection point for transmission. According to the properties
of percolation path, every highway path is constrained within
a strip of width κ log(nsp) L√

nsp
and Eqn.10, such that


max{|m− i|} ≤ c4|i− k|+ κ log(nsp)

max{|n− j|} ≤ c4|j − l|+ κ log(nsp)

max{
√
(i− k)2 + (j − l)2} ≤ ℓ

√
nsp

L + 2κ log(nsp) w.h.p

Then the number of hops required for transmission with nodes
ℓ away is upper bounded by

max{|m− i|+ |n− j|}
≤ c4(|i− k|+ |j − l|) + 2κ log(nsp)

≤ c4
√
2((i− k)2 + (j − l)2) + 2κ log(nsp)

≤ c4
√
2nspℓ

L
+ 6κ log(nsp) (11)

Lemma 11: Given a cluster(multicast session), assume that
cell s is within the radius R of the kernel. Then the probability
that s is utilized for transmission for that kernel is less than
16

√
2c0τ

2L√
nsR

.

Proof: There are at least ⌊
√
2nspR
τL ⌋2 ≥ (

√
2nspR
τL − 1)2

cells within the circle of radius R. Imitating the steps of
constructing EMST in Lemma 6. Let I(s, i) be the indicator
whether cell s is used in the ith step and P be the probability
that s is used in the whole process. Then the probability

Pr(I(s) = 1) is

P ≤
p∑

i=1

Pr(I(s, i) = 1)

≤
p∑

i=1

c0

(
√
2nspR
τL − 1)2

(
4c4
√
nspR

⌊
√
p+ 1− i⌋L

+ 6κ log(nsp))

≤
p∑

i=1

2c0τ
2L2

nspR2
(

4c4
√
2nsp

⌊
√
p+ 1− i⌋L

(R+
(1 + κ log(nsp)τL)√

nsp
)

+ 6κ log(nsp))

≤ 8
√
2c0c4τ

2L
√
nsR2

(R+
2κ log(nsp)τL√

nsp
) +

12c0τ
2κL2 log(nsp)

nsR2

≤ 16
√
2c0c4τ

2L
√
nsR

During the above derivation, we use R ≤
√
2(R +

(1+κ log (nsp))τL√
nsp

) from Lemma 9 and R = Ω( log(nsp)L√
nsp

)

according to our prerequisite.
Now we have upper bounded the probability that a cell serving
for a cluster within its influential region R. Then we will
utilize Vapnik-Chervonenkis theory to prove our results as in
[1]. Before that, we must know the VC-dimension of any
multicast trees. From [2], we know the VC-dimension of
EMST with p nodes is Θ(log p).

Theorem 6: Given cluster radius R in a wireless network,
we can prove that for arbitrary cell s,

Pr(#of flows using s ≤ 64
√
2nsc0c4πτ

2R

L
) ≥ 1− δ(nsp),

which means, every cell on the highway can serve for at most
64

√
2nsc0c4πτ

2R
L clusters w.h.p.

Proof: First we will introduce Vapnik-Chervonenkis the-
ory as follows:
For each sub-square s and the whole set of all the sub-square
O:

Pr

(
sup
s∈O
|# of flows utilizing s

N
− P| ≤ ϵ(nsp)

)
> 1−δ(nsp)

when N ≥ max

{
8d

ϵ(nsp)
log

13

ϵ(nsp)
,

4

ϵ(nsp)
log

2

δ(nsp)

}
d is the VC-dimension of O and d = Θ(log(nsp)), P is the
probability that s is utilized to serve for the cluster when it is
within the influential region of that kernel.
Then we substitute P ≤ 16

√
2c0c4τ

2L√
nsR

according to Lemma 11
into it to obtain

Pr

(
sup
s∈O

# of flows utilizing s
N

≤ 16
√
2c0c4τ

2L
√
nsR

+ ϵ(nsp)

)
> 1−δ(nsp)

Now let ϵ(nsp) = 16
√
2c0c4τ

2L√
nsR

and δ(nsp) = 2
nsp

and when

N ≥ max

{
8d

ϵ(nsp)
log

13

ϵ(nsp)
,

4

ϵ(nsp)
log

2

δ(nsp)

}
,



we can satisfy the inequity. Now according to Lemma ??,
N ≥ πR2

2d2
c
= πR2ns

2L2 , then we can know if

πR2ns
2L2

≥
(log(nsp))

2√nsR
2
√
2c0c4τ2L

R ≥ (log(nsp))
2L√

2nsπc0c4τ2
,

the condition of the inequity can be satisfied. Then utilizing
N ≤ 2πR2

d2
c

= 2πR2ns

L2 according to Lemma ??, we can obtain
the result.
Note that the constraint of R above means that only when
R is sufficiently large, the upper bound of number of flows
over a certain sub-square s could be determined by Vapnik-
Chervonenkis theory. However, it does not mean that the upper
bound of number of flows can not be determined for these
cases, which is beyond the scope of this paper. Therefore we
can obtain the constraint of highwaylink on capacity is

λhighwaylink ≥
WL

64
√
2nsc0c4πτ2R

= Θ(
LW
√
nsR

) when R = Ω(
L(log(nsp))

2

√
ns

)

The above parts all deal with transmissions on information
highway, nevertheless, we must analyze the constraint of
transmission between nodes and its access point to complete
the proof of our Scheme. First we introduce Lemma 3 in [4].

Lemma 12: Every node inside can achieve w.h.p. a rate to
some node on the highway system of

λuplink = λdownlink = Ω((log(nsp))
−3)

However, when R = Ω(L(log(nsp))
2

√
ns

), the bottleneck is caused
by the highwaylink, when indicates:

λ = min{λuplink, λdownlink, λhighwaylink} ≥ Θ(
LW
√
nsR

),

(12)

Therefore complete our proof.

VII. UPPER BOUND FOR SNCP CLUSTER RANDOM/GRID
MODEL

Theorem 7: Under

VIII. CONCLUSION

The conclusion goes here.
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